model.py 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from utils import stochastic_depth
############# Mobile Net V3 #############
def make_divisible(x, divisible_by=8):
    import numpy as np
    return int(np.ceil(x * 1. / divisible_by) * divisible_by)

def conv_bn(inp, oup, stride, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
    return nn.Sequential(
        conv_layer(inp, oup, 3, stride, 1, bias=False),
        norm_layer(oup),
        nlin_layer(inplace=True)
    )

# without bn
def conv_block(inp, oup, stride, conv_layer=nn.Conv2d, nlin_layer=nn.ReLU):
    return nn.Sequential(
        conv_layer(inp, oup, 3, stride, 1, bias=False),
        nlin_layer(0.1, inplace=True)
    )

def trans_conv_block(inp, oup, stride, conv_layer=nn.ConvTranspose2d, nlin_layer=nn.ReLU):
    return nn.Sequential(
        conv_layer(inp, oup, 2, 2),               #Transpose convolution을 통하여 가로세로 2배로.
        nlin_layer(0.1, inplace=True)
    )

def conv_1x1_bn(inp, oup, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
    return nn.Sequential(
        conv_layer(inp, oup, 1, 1, 0, bias=False),
        norm_layer(oup),
        nlin_layer(inplace=True)
    )

class Hswish(nn.Module):
    def __init__(self, inplace=True):
        super(Hswish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return x * F.relu6(x + 3., inplace=self.inplace) / 6.


class Hsigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(Hsigmoid, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return F.relu6(x + 3., inplace=self.inplace) / 6.


class SEModule(nn.Module):
    def __init__(self, channel, reduction=4):
        super(SEModule, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            Hsigmoid()
            # nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


class Identity(nn.Module):
    def __init__(self, channel):
        super(Identity, self).__init__()

    def forward(self, x):
        return x

class MobileBottleneck(nn.Module):
    def __init__(self, inp, oup, kernel, stride, exp, se=False, nl='RE', stochastic=False, block_ratio=None):
        super(MobileBottleneck, self).__init__()
        assert stride in [1, 2]
        assert kernel in [3, 5]
        padding = (kernel - 1) // 2
        self.use_res_connect = stride == 1 and inp == oup
        self.use_stochastic = stochastic
        self.block_ratio = block_ratio

        conv_layer = nn.Conv2d
        norm_layer = nn.BatchNorm2d
        if nl == 'RE':
            nlin_layer = nn.ReLU # or ReLU6
        elif nl == 'HS':
            nlin_layer = Hswish
        else:
            raise NotImplementedError
        if se:
            SELayer = SEModule
        else:
            SELayer = Identity

        self.conv = nn.Sequential(
            # pw
            conv_layer(inp, exp, 1, 1, 0, bias=False),
            norm_layer(exp),
            nlin_layer(inplace=True),
            # dw
            conv_layer(exp, exp, kernel, stride, padding, groups=exp, bias=False),
            norm_layer(exp),
            SELayer(exp),
            nlin_layer(inplace=True),
            # pw-linear
            conv_layer(exp, oup, 1, 1, 0, bias=False),
            norm_layer(oup),
        )

    def forward(self, x):
        if self.use_res_connect:
            if self.use_stochastic:
                return x + stochastic_depth(self.conv(x),self.training, 0.2 * self.block_ratio)
            else:
                return x + self.conv(x)
        else:
            if self.use_stochastic:
                return stochastic_depth(self.conv(x), self.training, 0.2 * self.block_ratio)
            else:
                return self.conv(x)
    

class MobileNetV3(nn.Module):
    def __init__(self, n_class, input_size=64, dropout=0.8, width_mult=1.0, blocknum=4, stochastic=False):
        super(MobileNetV3, self).__init__()
        input_channel = 16
        last_channel = 1280
        self.mobileblock = [
                # k, exp, c,  se,     nl,  s,
                [3, 16,  16,  True,  'RE', 2],
                [3, 72,  24,  False, 'RE', 2],
                [3, 88,  24,  False, 'RE', 1],
                [5, 96,  40,  True,  'HS', 2],
                [5, 240, 40,  True,  'HS', 1],
                [5, 240, 40,  True,  'HS', 1],
                [5, 120, 48,  True,  'HS', 1],
                [5, 144, 48,  True,  'HS', 1],
                [5, 288, 96,  True,  'HS', 2],
                [5, 576, 96,  True,  'HS', 1],
                [5, 576, 96,  True,  'HS', 1],
            ]

        mobile_setting = [
            self.mobileblock[idx] for idx in range(blocknum)
        ]
        self.last_exp = self.mobileblock[blocknum-1][1]

        # building first layer
        assert input_size % 32 == 0
        last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
        self.features = [conv_bn(1, input_channel, 2, nlin_layer=Hswish)]   #input channel change
        self.classifier = []

        # building mobile blocks
        for idx, (k, exp, c, se, nl, s) in enumerate(mobile_setting):
            output_channel = make_divisible(c * width_mult)
            exp_channel = make_divisible(exp * width_mult)
            self.features.append(MobileBottleneck(input_channel, output_channel, k, s, exp_channel, se, nl, stochastic=stochastic, block_ratio=float(idx) / float(blocknum)))
            input_channel = output_channel

        # building last several layers
        last_conv = make_divisible(self.last_exp * width_mult)
        self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish))
        # self.features.append(SEModule(last_conv))  # refer to paper Table2, but I think this is a mistake
        self.features.append(nn.AdaptiveAvgPool2d(1))
        self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0))
        self.features.append(Hswish(inplace=True))

        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)
        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout),    # refer to paper section 6
            nn.Linear(last_channel, n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = x.mean(3).mean(2)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)


def mobilenetv3(pretrained=False, **kwargs):
    model = MobileNetV3(**kwargs)
    if pretrained:
        state_dict = torch.load('mobilenetv3_small_67.4.pth.tar')
        model.load_state_dict(state_dict, strict=True)
        # raise NotImplementedError
    return model


### EFFICIENT NET ###
from utils import (
    round_filters,
    round_repeats,
    drop_connect,
    get_same_padding_conv2d,
    get_model_params,
    efficientnet_params,
    load_pretrained_weights,
    Swish,
    MemoryEfficientSwish,
)


class MBConvBlock(nn.Module):
    """
    Mobile Inverted Residual Bottleneck Block
    Args:
        block_args (namedtuple): BlockArgs, see above
        global_params (namedtuple): GlobalParam, see above
    Attributes:
        has_se (bool): Whether the block contains a Squeeze and Excitation layer.
    """

    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """
        :param inputs: input tensor
        :param drop_connect_rate: drop connect rate (float, between 0 and 1)
        :return: output of block
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._swish(self._bn0(self._expand_conv(inputs)))
        x = self._swish(self._bn1(self._depthwise_conv(x)))

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_expand(self._swish(self._se_reduce(x_squeezed)))
            x = torch.sigmoid(x_squeezed) * x

        x = self._bn2(self._project_conv(x))

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):
    """
    An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods
    Args:
        blocks_args (list): A list of BlockArgs to construct blocks
        global_params (namedtuple): A set of GlobalParams shared between blocks
    Example:
        model = EfficientNet.from_pretrained('efficientnet-b0')
    """

    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 1  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)


    def extract_features(self, inputs):
        """ Returns output of the final convolution layer """

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)
            x = block(x, drop_connect_rate=drop_connect_rate)

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))

        return x

    def forward(self, inputs):
        """ Calls extract_features to extract features, applies final linear layer, and returns logits. """
        bs = inputs.size(0)
        # Convolution layers
        x = self.extract_features(inputs)

        # Pooling and final linear layer
        x = self._avg_pooling(x)
        x = x.view(bs, -1)
        x = self._dropout(x)
        x = self._fc(x)
        return x

    @classmethod
    def from_name(cls, model_name, override_params=None):
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        return cls(blocks_args, global_params)

    @classmethod
    def from_pretrained(cls, model_name, advprop=False, num_classes=1000, in_channels=3):
        model = cls.from_name(model_name, override_params={'num_classes': num_classes})
        load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop)
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size)
            out_channels = round_filters(32, model._global_params)
            model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        return model
    
    @classmethod
    def get_image_size(cls, model_name):
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """ Validates model name. """ 
        valid_models = ['efficientnet-b'+str(i) for i in range(9)]
        if model_name not in valid_models:
            raise ValueError('model_name should be one of: ' + ', '.join(valid_models))

class AutoEncoder(nn.Module):
    def __init__(self, input_channel=1):
        super(AutoEncoder, self).__init__()
        self.input_channel = input_channel
        self.encoder, self.decoder = self.make_encoder_layers()

    def make_encoder_layers(self, input_channel=1,layer_num=6):
        encoder_output_channels = [64,56,48,32,24,20]
        decoder_output_channels = [24,32,48,56,64,1]
        encoder = []
        decoder = []

        #make encoder
        for i in range(layer_num):
            encoder.append(conv_block(input_channel, encoder_output_channels[i], 1, nlin_layer=nn.LeakyReLU))
            encoder.append(conv_block(encoder_output_channels[i], encoder_output_channels[i],1,nlin_layer=nn.LeakyReLU))
            encoder.append(nn.MaxPool2d(2,2))
            if(i != layer_num-1):
                encoder.append(nn.Dropout2d(p=0.3))
            input_channel = encoder_output_channels[i]

        #make decoder
        for i in range(layer_num):
            decoder.append(nn.Upsample(scale_factor=2))
            decoder.append(conv_block(input_channel, input_channel, 1, nlin_layer=nn.LeakyReLU))
            decoder.append(conv_block(input_channel, decoder_output_channels[i], 1, nlin_layer=nn.LeakyReLU))
            if(i != layer_num-1):
                decoder.append(nn.Dropout2d(p=0.3))
            input_channel = decoder_output_channels[i]


        encoder = nn.Sequential(*encoder)
        decoder = nn.Sequential(*decoder)
        return encoder, decoder

    def forward(self, x):
        x = self.encoder(x)
        print(x.shape)
        x = self.decoder(x)
        return x
class AutoEncoder_s(nn.Module):
    def __init__(self, input_channel=1):
        super(AutoEncoder, self).__init__()
        self.input_channel = input_channel
        self.encoder, self.decoder = self.make_encoder_layers()

    def make_encoder_layers(self, input_channel=1,layer_num=3):
        encoder_output_channels = [64,56,48]
        decoder_output_channels = [56,64,1]
        encoder = []
        decoder = []

        #make encoder
        for i in range(layer_num):
            encoder.append(conv_block(input_channel, encoder_output_channels[i], 1, nlin_layer=nn.LeakyReLU))
            encoder.append(conv_block(encoder_output_channels[i], encoder_output_channels[i],1,nlin_layer=nn.LeakyReLU))
            encoder.append(nn.MaxPool2d(2,2))
            if(i != layer_num-1):
                encoder.append(nn.Dropout2d(p=0.3))
            input_channel = encoder_output_channels[i]

        #make decoder
        for i in range(layer_num):
            decoder.append(nn.Upsample(scale_factor=2))
            decoder.append(conv_block(input_channel, input_channel, 1, nlin_layer=nn.LeakyReLU))
            decoder.append(conv_block(input_channel, decoder_output_channels[i], 1, nlin_layer=nn.LeakyReLU))
            if(i != layer_num-1):
                decoder.append(nn.Dropout2d(p=0.3))
            input_channel = decoder_output_channels[i]


        encoder = nn.Sequential(*encoder)
        decoder = nn.Sequential(*decoder)
        return encoder, decoder

    def forward(self, x):
        x = self.encoder(x)
        print(x.shape)
        x = self.decoder(x)
        return x


class pytorch_autoencoder(nn.Module):
    def __init__(self):
        super(pytorch_autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 32, 2, stride=2, padding=0),  
            nn.ReLU(True),
            nn.MaxPool2d(2, stride=2),
            nn.Conv2d(32, 16, 2, stride=2, padding=0),
            nn.ReLU(True),
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(16, 32, 2, stride=2),  
            nn.ReLU(True),
            nn.ConvTranspose2d(32, 64, 2, stride=2, padding=0),  
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 1, 2, stride=2, padding=0),
            nn.Tanh()
        )

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x