Showing
3 changed files
with
189 additions
and
0 deletions
소스코드/capstone2.py
0 → 100644
1 | +import csv | ||
2 | +import numpy as np | ||
3 | +import torch | ||
4 | +from torch import nn | ||
5 | +from torch.autograd import Variable | ||
6 | +import torch.nn.functional as F | ||
7 | + | ||
8 | +# parameters | ||
9 | +num_epochs = 20 | ||
10 | +window_size = 50 | ||
11 | +batch_size = 128 | ||
12 | +learning_rate = 1e-3 | ||
13 | +threshold = 0.5 | ||
14 | + | ||
15 | +# data load | ||
16 | +x_dataset = np.loadtxt("x_train.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1) | ||
17 | +y_dataset = np.loadtxt("x_test.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1) | ||
18 | +y_label = np.loadtxt("y_test.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1) | ||
19 | + | ||
20 | +# model: Simple-autoencoder | ||
21 | +class autoencoder(nn.Module): | ||
22 | + def __init__(self): | ||
23 | + super(autoencoder, self).__init__() | ||
24 | + self.encoder = nn.Sequential( | ||
25 | + nn.Linear(window_size, 128), | ||
26 | + nn.ReLU(True), | ||
27 | + nn.Linear(128, 64), | ||
28 | + nn.ReLU(True), | ||
29 | + nn.Linear(64, 12), | ||
30 | + nn.ReLU(True), | ||
31 | + nn.Linear(12, 3) | ||
32 | + ) | ||
33 | + self.decoder = nn.Sequential( | ||
34 | + nn.Linear(3, 12), | ||
35 | + nn.ReLU(True), | ||
36 | + nn.Linear(12, 64), | ||
37 | + nn.ReLU(True), | ||
38 | + nn.Linear(64, 128), | ||
39 | + nn.ReLU(True), | ||
40 | + nn.Linear(128, window_size), | ||
41 | + nn.Tanh() | ||
42 | + ) | ||
43 | + | ||
44 | + def forward(self, x): | ||
45 | + x = self.encoder(x) | ||
46 | + x = self.decoder(x) | ||
47 | + return x | ||
48 | + | ||
49 | +# model: Variational-autoencoder | ||
50 | +class VAE(nn.Module): | ||
51 | + def __init__(self): | ||
52 | + super(VAE, self).__init__() | ||
53 | + | ||
54 | + self.fc1 = nn.Linear(window_size, 20) | ||
55 | + self.fc2 = nn.Linear(20, 12) | ||
56 | + self.fc31 = nn.Linear(12, 3) | ||
57 | + self.fc32 = nn.Linear(12, 3) | ||
58 | + | ||
59 | + self.fc4 = nn.Linear(3, 12) | ||
60 | + self.fc5 = nn.Linear(12, 20) | ||
61 | + self.fc6 = nn.Linear(20, window_size) | ||
62 | + | ||
63 | + def encode(self, x): | ||
64 | + h1 = F.relu(self.fc1(x)) | ||
65 | + h2 = F.relu(self.fc2(h1)) | ||
66 | + return self.fc31(h2), self.fc32(h2) | ||
67 | + | ||
68 | + def reparametrize(self, mu, logvar): | ||
69 | + std = logvar.mul(0.5).exp_() | ||
70 | + if torch.cuda.is_available(): | ||
71 | + eps = torch.cuda.FloatTensor(std.size()).normal_() | ||
72 | + else: | ||
73 | + eps = torch.FloatTensor(std.size()).normal_() | ||
74 | + eps = Variable(eps) | ||
75 | + return eps.mul(std).add_(mu) | ||
76 | + | ||
77 | + def decode(self, z): | ||
78 | + h3 = F.relu(self.fc4(z)) | ||
79 | + h4 = F.relu(self.fc5(h3)) | ||
80 | + return F.sigmoid(self.fc6(h4)) | ||
81 | + | ||
82 | + def forward(self, x): | ||
83 | + mu, logvar = self.encode(x) | ||
84 | + z = self.reparametrize(mu, logvar) | ||
85 | + return self.decode(z), mu, logvar | ||
86 | + | ||
87 | +# loss function for VAE | ||
88 | +reconstruction_function = nn.MSELoss(size_average=False) | ||
89 | +def loss_function(recon_x, x, mu, logvar): | ||
90 | + """ | ||
91 | + recon_x: generating images | ||
92 | + x: origin images | ||
93 | + mu: latent mean | ||
94 | + logvar: latent log variance | ||
95 | + """ | ||
96 | + BCE = reconstruction_function(recon_x, x) # mse loss | ||
97 | + # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) | ||
98 | + KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) | ||
99 | + KLD = torch.sum(KLD_element).mul_(-0.5) | ||
100 | + # KL divergence | ||
101 | + return BCE + KLD | ||
102 | + | ||
103 | + | ||
104 | +model = VAE() | ||
105 | +criterion = nn.MSELoss() | ||
106 | +optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-3) | ||
107 | + | ||
108 | +# train | ||
109 | +for epoch in range(num_epochs): | ||
110 | + model.train() | ||
111 | + train_loss = 0 | ||
112 | + for idx in range(0, len(x_dataset)-batch_size+1, batch_size): | ||
113 | + data = [] | ||
114 | + for i in range(batch_size): | ||
115 | + datum = x_dataset[idx + i: idx + i + window_size] | ||
116 | + if(len(datum) != window_size): # 마지막 부분 window_size만큼의 데이터가 없는 경우 0 추가 | ||
117 | + for _ in range(window_size - len(datum)): | ||
118 | + datum = np.append(datum, 0) | ||
119 | + data.append(datum) | ||
120 | + data = torch.FloatTensor(data) | ||
121 | + | ||
122 | + optimizer.zero_grad() | ||
123 | + recon_batch, mu, logvar = model(data) | ||
124 | + loss = loss_function(recon_batch, data, mu, logvar) | ||
125 | + loss.backward() | ||
126 | + train_loss += loss.item() | ||
127 | + optimizer.step() | ||
128 | + | ||
129 | + print('====> Epoch: {} Average loss: {:.4f}'.format( | ||
130 | + epoch, train_loss / len(x_dataset))) | ||
131 | + | ||
132 | +# evaluation | ||
133 | +TP = 0 | ||
134 | +FP = 0 | ||
135 | +FN = 0 | ||
136 | +f = open('result.csv', 'w', encoding='utf-8', newline='') | ||
137 | +wr = csv.writer(f) | ||
138 | +wr.writerow(["index", "loss", "label"]) | ||
139 | +for idx in range(len(y_dataset)-window_size+1): | ||
140 | + with torch.no_grad(): | ||
141 | + data = y_dataset[idx:idx+window_size] | ||
142 | + data = torch.FloatTensor(data).unsqueeze(0) | ||
143 | + | ||
144 | + recon_batch, mu, logvar = model(data) | ||
145 | + loss = loss_function(recon_batch, data, mu, logvar) | ||
146 | + | ||
147 | + wr.writerow([idx, loss.item(), y_label[idx+window_size-1]]) | ||
148 | + | ||
149 | + if(loss.item() >= threshold): | ||
150 | + predict = 1 | ||
151 | + else: | ||
152 | + predict = 0 | ||
153 | + | ||
154 | + if(predict == 1 and y_label[idx+window_size-1] == 1): | ||
155 | + TP += 1 | ||
156 | + elif(predict == 1 and y_label[idx+window_size-1] == 0): | ||
157 | + FP += 1 | ||
158 | + elif(predict == 0 and y_label[idx+window_size-1] == 1): | ||
159 | + FN += 1 | ||
160 | + | ||
161 | +# precision = TP / (TP + FP) | ||
162 | +# recall = TP / (TP + FN) | ||
163 | +# F1 = 2 * (precision * recall) / (precision + recall) | ||
164 | + | ||
165 | +# print("precision: ", precision) | ||
166 | +# print("recall: ", recall) | ||
167 | +# print("F1: ", F1) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
소스코드/scaling.py
0 → 100644
1 | +import numpy as np | ||
2 | +import matplotlib.pyplot as plt | ||
3 | + | ||
4 | +myX = np.loadtxt("sample.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1) | ||
5 | +myX = np.expand_dims(myX, axis=0) | ||
6 | +print(myX.shape) | ||
7 | + | ||
8 | + | ||
9 | +# #### Hyperparameters : sigma = STD of the zoom-in/out factor | ||
10 | +sigma = 0.1 | ||
11 | + | ||
12 | +def DA_Scaling(X, sigma=0.1): | ||
13 | + scalingFactor = np.random.normal(loc=1.0, scale=sigma, size=(1,X.shape[1])) # shape=(1,3) | ||
14 | + myNoise = np.matmul(np.ones((X.shape[0],1)), scalingFactor) | ||
15 | + return X*myNoise | ||
16 | + | ||
17 | +plt.plot(list(myX)[0]) | ||
18 | +plt.plot(list(DA_Scaling(myX, sigma))[0]) | ||
19 | +plt.xlabel("Time") | ||
20 | +plt.ylabel("Data") | ||
21 | +plt.legend(["original", "scaling"]) | ||
22 | +plt.show() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
진행 보고서/중간보고서_김한주.docx
0 → 100644
No preview for this file type
-
Please register or login to post a comment