alibi_detectt.py 2.64 KB
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, recall_score

from alibi_detect.od import SpectralResidual
from alibi_detect.utils.perturbation import inject_outlier_ts
from alibi_detect.utils.saving import save_detector, load_detector
from alibi_detect.utils.visualize import plot_instance_score, plot_feature_outlier_ts
import timesynth as ts

n_points = 10000
time_sampler = ts.TimeSampler(stop_time=n_points)
time_samples = time_sampler.sample_regular_time(num_points=n_points)

X = np.loadtxt("x_test.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1)
Y = np.loadtxt("Y_test.csv", delimiter=",", dtype=np.float32, encoding='UTF8', skiprows=1)
X = np.expand_dims(X, axis=1)

data = inject_outlier_ts(X, perc_outlier=10, perc_window=10, n_std=2, min_std=1.)
X_outlier, y_outlier, labels = data.data, data.target.astype(int), data.target_names


od = SpectralResidual(
    threshold=None,  # threshold for outlier score
    window_amp=20,   # window for the average log amplitude
    window_local=20, # window for the average saliency map
    n_est_points=20  # nb of estimated points padded to the end of the sequence
)

X_threshold = X_outlier[:10000, :]

od.infer_threshold(X_threshold, time_samples[:10000], threshold_perc=80)
print('New threshold: {:.4f}'.format(od.threshold))

od_preds = od.predict(X_outlier, time_samples, return_instance_score=True)

a,TP,FP,FN = 0,0,0,0
for i in range(10000):
    if od_preds['data']['is_outlier'][i] == 0 and Y[i] == 0:
        a +=1
    if od_preds['data']['is_outlier'][i] == 1 and Y[i] == 1:
        TP +=1
    if od_preds['data']['is_outlier'][i] == 1 and Y[i] == 0:
        FP +=1
    if od_preds['data']['is_outlier'][i] == 0 and Y[i] == 1:
        FN +=1

print(a, TP, FP, FN)

if TP == 0:
    print("wrong model")
else:
    Precision = TP / (TP + FP)
    Recall = TP / (TP + FN)
    F1 = 2 * ((Precision * Recall) / (Precision + Recall))
    print(Precision, Recall, F1)

# y_pred = od_preds['data']['is_outlier']
# f1 = f1_score(y_outlier, y_pred)
# acc = accuracy_score(y_outlier, y_pred)
# rec = recall_score(y_outlier, y_pred)
# print('F1 score: {} -- Accuracy: {} -- Recall: {}'.format(f1, acc, rec))
# cm = confusion_matrix(y_outlier, y_pred)
# df_cm = pd.DataFrame(cm, index=labels, columns=labels)
# sns.heatmap(df_cm, annot=True, cbar=True, linewidths=.5)
# plt.show()

# plot_feature_outlier_ts(od_preds,
#                         X_outlier,
#                         od.threshold,
#                         window=(0, 200),
#                         t=time_samples,
#                         X_orig=X)