이동찬

add training report at 20200427

model_checkpoint_path: "model.ckpt-50000"
all_model_checkpoint_paths: "model.ckpt-0"
all_model_checkpoint_paths: "model.ckpt-32700"
all_model_checkpoint_paths: "model.ckpt-50000"
This diff could not be displayed because it is too large.
No preview for this file type
No preview for this file type
model {
ssd {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
feature_extractor {
type: "ssd_mobilenet_v1_ppn"
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999999e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.0099999998
}
}
activation: RELU_6
batch_norm {
decay: 0.97000003
center: true
scale: true
epsilon: 0.001
}
}
override_base_feature_extractor_hyperparams: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999999e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.0099999998
}
}
activation: RELU_6
batch_norm {
decay: 0.97000003
center: true
scale: true
epsilon: 0.001
train: true
}
}
depth: 512
num_layers_before_predictor: 1
kernel_size: 1
class_prediction_bias_init: -4.5999999
share_prediction_tower: true
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.15000001
max_scale: 0.94999999
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.33329999
reduce_boxes_in_lowest_layer: false
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 9.9999999e-09
iou_threshold: 0.60000002
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.75
}
}
classification_weight: 1.0
localization_weight: 1.5
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 32
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.69999999
total_steps: 50000
warmup_learning_rate: 0.13330001
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.89999998
}
use_moving_average: false
}
fine_tune_checkpoint: "gs://fire_land/data/model.ckpt"
num_steps: 50000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
use_bfloat16: false
}
train_input_reader {
label_map_path: "gs://fire_land/data/fire_label_map.pbtxt"
tf_record_input_reader {
input_path: "gs://fire_land/data/train.record"
}
}
eval_config {
num_examples: 65
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "gs://fire_land/data/fire_label_map.pbtxt"
shuffle: false
num_epochs: 1
num_readers: 1
tf_record_input_reader {
input_path: "gs://fire_land/data/val.record"
}
sample_1_of_n_examples: 1
}
# Training Report
date: 2020 04 27 Mon
model name: MobileNet based Single Shot MultiBox Detector with Pooling Pyramid Network
input image size: 300 x 300
entire steps: 50000
best step: 32700
batch size: 32
number of samples for training: 300
number of samples for validation: 65
metrics set: coco detection metrics
### mAP@50IOU
![mAP@50IOU](./imgs/mAP@50IOU.JPG)
**[32700 - best step]**
mAP@50IOU: 64%
loss:
​ classification: 0.7869
​ localization: 0.4739
​ total: 1.418
### Result
![result1](./imgs/result1.JPG)
![result2](./imgs/result2.JPG)
### Comment
need more fire data.
\ No newline at end of file