video_vector_generator.py 432 Bytes
import pandas as pd
from gensim.models import Word2Vec


def vectorization_video():
    print('[0.1 0.2]')


if __name__ == '__main__':
    tag_vectors = Word2Vec.load("esot3ria/tags_word2vec.model").wv
    video_vectors = Word2Vec().wv   # Empty model

    # Load video recommendation tags.
    video_tags = pd.read_csv('esot3ria/video_recommendation_tags.csv')
    for i, row in video_tags.iterrows():
        video_id = row[0]