Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-1-capstone-design1
/
PET_Project1
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
김성주
2020-05-18 22:47:34 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
a87016b18f299c3add4871a893e38712e39ab034
a87016b1
1 parent
0af1fa34
fix/update for pretrained transfer learning
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
37 additions
and
7 deletions
code/yolov3/convert_weights.py
code/yolov3/eval.py
code/yolov3/train.py
code/yolov3/yolov3.ipynb
code/yolov3/convert_weights.py
0 → 100644
View file @
a87016b
from
__future__
import
division
,
print_function
import
os
import
sys
import
tensorflow
as
tf
import
numpy
as
np
from
model
import
yolov3
from
misc_utils
import
parse_anchors
,
load_weights
img_size
=
416
weight_path
=
'../../data/darknet_weights/yolov3.weights'
save_path
=
'../../data/darknet_weights/yolov3.ckpt'
anchors
=
parse_anchors
(
'../../data/yolo_anchors.txt'
)
model
=
yolov3
(
80
,
anchors
)
with
tf
.
Session
()
as
sess
:
inputs
=
tf
.
placeholder
(
tf
.
float32
,
[
1
,
img_size
,
img_size
,
3
])
with
tf
.
variable_scope
(
'yolov3'
):
feature_map
=
model
.
forward
(
inputs
)
saver
=
tf
.
train
.
Saver
(
var_list
=
tf
.
global_variables
(
scope
=
'yolov3'
))
load_ops
=
load_weights
(
tf
.
global_variables
(
scope
=
'yolov3'
),
weight_path
)
sess
.
run
(
load_ops
)
saver
.
save
(
sess
,
save_path
=
save_path
)
print
(
'TensorFlow model checkpoint has been saved to {}'
.
format
(
save_path
))
\ No newline at end of file
code/yolov3/eval.py
View file @
a87016b
...
...
@@ -97,9 +97,9 @@ saver_to_restore = tf.train.Saver()
with
tf
.
Session
()
as
sess
:
sess
.
run
([
tf
.
global_variables_initializer
()])
if
os
.
path
.
exists
(
args
.
restore_path
)
:
try
:
saver_to_restore
.
restore
(
sess
,
args
.
restore_path
)
e
lse
:
e
xcept
:
raise
ValueError
(
'there is no model to evaluate. You should move/create the checkpoint file to restore path'
)
print
(
'
\n
Start evaluation...
\n
'
)
...
...
code/yolov3/train.py
View file @
a87016b
...
...
@@ -102,8 +102,12 @@ else:
with
tf
.
Session
()
as
sess
:
sess
.
run
([
tf
.
global_variables_initializer
(),
tf
.
local_variables_initializer
()])
if
os
.
path
.
exists
(
args
.
restore_path
):
saver_to_restore
.
restore
(
sess
,
args
.
restore_path
)
try
:
saver_to_restore
.
restore
(
sess
,
restore_path
)
print
(
"Restoring parameters..."
)
except
:
print
(
"*** Failed to restore parameters!!! You would need pretrained weights ***"
)
print
(
'
\n
Start training...: Total epoches ='
,
args
.
total_epoches
,
'
\n
'
)
...
...
@@ -184,7 +188,6 @@ with tf.Session() as sess:
best_mAP
=
mAP
saver_best
.
save
(
sess
,
args
.
save_dir
+
'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'
.
format
(
epoch
,
int
(
__global_step
),
best_mAP
,
val_loss_total
.
average
,
__lr
))
saver_to_restore
.
save
(
sess
,
restore_path
)
## all epoches end
sess
.
run
(
val_init_op
)
...
...
@@ -226,5 +229,4 @@ with tf.Session() as sess:
if
save_optimizer
and
mAP
>
best_mAP
:
best_mAP
=
mAP
saver_best
.
save
(
sess
,
save_dir
+
'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'
.
format
(
epoch
,
int
(
__global_step
),
best_mAP
,
val_loss_total
.
average
,
__lr
))
saver_to_restore
.
save
(
sess
,
restore_path
)
\ No newline at end of file
epoch
,
int
(
__global_step
),
best_mAP
,
val_loss_total
.
average
,
__lr
))
\ No newline at end of file
...
...
code/yolov3/yolov3.ipynb
View file @
a87016b
This diff could not be displayed because it is too large.
Please
register
or
login
to post a comment