testbench.v
8.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
module testbench;
/*
wire clk; // clock
reg[31:0] PC; // program counter
reg[31:0] instr_address;
wire[31:0] addPC4, addPCbranch, tempPC1, nextPC;
wire[31:0] instr; // loaded instruction.
wire[4:0] reg_writereg1; // register number for the write data.
wire[31:0] reg_writedata; // data that will be written in the register.
wire[31:0] reg_readdata1, reg_readdata2; // data from the requested register.
wire[31:0] alu_input2; // input data of ALU.
wire[31:0] alu_result; // result data of ALU.
wire alu_branch; // indicator for branch operation.
wire[31:0] mem_readdata; // data from the requested address.
wire ctrl_regdst, ctrl_regwrite, ctrl_alusrc, ctrl_memread, ctrl_memwrite, ctrl_memtoreg, ctrl_branch, ctrl_jump;
wire[1:0] ctrl_aluop; // control signals.
wire[3:0] aluctrl; // alu control signal.
wire[31:0] extend_output;
wire[31:0] shiftBranch_output;
wire[31:0] shiftJump_output;
Clock clock(clk);
InstructionMemory instrmem(instr_address, instr);
Register register(instr[25:21], instr[20:16], reg_writereg1, reg_writedata, ctrl_regwrite, reg_readdata1, reg_readdata2);
ALU alu(reg_readdata1, alu_input2, aluctrl, alu_result, alu_branch);
DataMemory datamem(alu_result, reg_readdata2, ctrl_memread, ctrl_memwrite, mem_readdata);
Control ctrl(instr[31:26], ctrl_regdst, ctrl_regwrite, ctrl_alusrc, ctrl_aluop, ctrl_memread, ctrl_memwrite, ctrl_memtoreg, ctrl_branch, ctrl_jump);
ALUControl ALUctrl(instr[5:0], ctrl_aluop, aluctrl);
Mux5bit mux_writereg(instr[20:16], instr[15:11], ctrl_regdst, reg_writereg1);
Mux32bit mux_alu(reg_readdata2, extend_output, ctrl_alusrc, alu_input2);
Mux32bit mux_writedata(alu_result, mem_readdata, ctrl_memtoreg, reg_writedata);
Mux32bit mux_branch(addPC4, addPCbranch, {ctrl_branch&alu_branch} , tempPC1);
Mux32bit mux_jump(tempPC1, {addPC4[31:28], shiftJump_output[27:0]}, ctrl_jump, nextPC);
SignExtend extend(instr[15:0], extend_output);
Adder add_pc4(PC, 32'h00000004, addPC4);
Adder add_branch(addPC4, shiftBranch_output, addPCbranch);
ShiftLeft2 shiftBranch(extend_output, shiftBranch_output);
ShiftLeft2 shiftJump({6'b000000, instr[25:0]}, shiftJump_output);
initial begin
PC = 32'h00000000;
end
always @(posedge clk) begin
case(nextPC[31]) // if nextPC is available, PC = nextPC.
1'b0: PC = nextPC;
1'b1: PC = nextPC;
endcase
instr_address = PC;
end
*/
wire clk; // clock
reg[31:0] PC, nextPC; // program counter
// Instruction Memory (IM)
reg[31:0] address; // instruction address. input of IM.
wire[31:0] instr; // loaded instruction. output of IM
// Register
reg[4:0] reg_readreg1, reg_readreg2; // register numbers of the read data. input of register.
reg[4:0] reg_writereg1; // register number for the write data. input of register.
reg[31:0] reg_writedata; // data that will be written in the register. input of register.
reg reg_sig_regwrite; // regwrite control signal. input of register
wire[31:0] reg_readdata1, reg_readdata2; // data from the requested register. outputs of register.
// ALU
reg[31:0] alu_input1, alu_input2; // input data of ALU. inputs of ALU.
reg[3:0] alu_control; // ALU control signal. input of ALU.
wire[31:0] alu_result; // result data of ALU. output of ALU.
wire alu_branch; // indicator for branch operation. output of ALU.
//Data Memory (DM)
reg[31:0] mem_addr; // address of the read data. input of DM.
reg[31:0] mem_writedata; // data that will be written in the memory. input of DM.
reg mem_memread, mem_memwrite; // control signals for DM. input of DM.
wire[31:0] mem_readdata; // data from the requested address. output of DM.
// Control Unit
reg[5:0] ctrl_opcode; // opcode of the instruction. input of control unit.
wire ctrl_regdst, ctrl_regwrite, ctrl_alusrc, ctrl_memread; // ??
wire ctrl_memwrite, ctrl_memtoreg, ctrl_branch, ctrl_jump; // ??? control signals outputs of control unit.
wire[1:0] ctrl_aluop; // ??
// ALU Control Unit
reg[5:0] aluctrl_funct; // function code of the R type instructions. input of ALU control unit.
reg[1:0] aluctrl_aluop; // aluop signal. input of ALU control unit.
wire[3:0] aluctrl_sig; // alu control signal. output of ALU control unit.
// Multiplexer (Mux)
// mux_writereg Mux for Write Register.
reg[4:0] mux_writereg_input1, mux_writereg_input2;
reg mux_writereg_signal;
wire[4:0] mux_writereg_output;
// mux_alu Mux for ALU input 2.
reg[31:0] mux_alu_input1, mux_alu_input2;
reg mux_alu_signal;
wire[31:0] mux_alu_output;
// mux_writedata Mux for Write Data of Register.
reg[31:0] mux_writedata_input1, mux_writedata_input2;
reg mux_writedata_signal;
wire[31:0] mux_writedata_output;
// mux_branch Mux for Branch
reg[31:0] mux_branch_input1, mux_branch_input2;
reg mux_branch_signal;
wire[31:0] mux_branch_output;
// mux_jump Mux for Jump
reg[31:0] mux_jump_input1, mux_jump_input2;
reg mux_jump_signal;
wire[31:0] mux_jump_output;
// Sign Extend
reg[15:0] extend_input;
wire[31:0] extend_output;
// Adder
// add_pc4
reg[31:0] add_pc4_input; // input2 is 4.
wire[31:0] add_pc4_output;
// add_branch
reg[31:0] add_branch_input1, add_branch_input2;
wire[31:0] add_branch_output;
// Shift Left 2
// shiftBranch ShiftLeft2 which is used for Branch instructions.
reg[31:0] shiftBranch_input;
wire[31:0] shiftBranch_output;
// shiftJump ShiftLeft2 which is used for Jump instructions.
reg[31:0] shiftJump_input;
wire[31:0] shiftJump_output;
Clock clock(clk);
InstructionMemory instrmem(address, instr);
Register register(reg_readreg1, reg_readreg2, reg_writereg1, reg_writedata, reg_sig_regwrite, reg_readdata1, reg_readdata2);
ALU alu(alu_input1, alu_input2, alu_control, alu_result, alu_branch);
DataMemory datamem(mem_addr, mem_writedata, mem_memread, mem_memwrite, mem_readdata);
Control ctrl(ctrl_opcode, ctrl_regdst, ctrl_regwrite, ctrl_alusrc, ctrl_aluop, ctrl_memread, ctrl_memwrite, ctrl_memtoreg, ctrl_branch, ctrl_jump);
ALUControl aluctrl(aluctrl_funct, aluctrl_aluop, aluctrl_sig);
Mux5bit mux_writereg(mux_writereg_input1, mux_writereg_input2, mux_writereg_signal, mux_writereg_output);
Mux32bit mux_alu(mux_alu_input1, mux_alu_input2, mux_alu_signal, mux_alu_output);
Mux32bit mux_writedata(mux_writedata_input1, mux_writedata_input2, mux_writedata_signal, mux_writedata_output);
Mux32bit mux_branch(mux_branch_input1, mux_branch_input2, mux_branch_signal, mux_branch_output);
Mux32bit mux_jump(mux_jump_input1, mux_jump_input2, mux_jump_signal, mux_jump_output);
SignExtend extend(extend_input, extend_output);
Adder add_pc4(add_pc4_input, 32'h00000004, add_pc4_output);
Adder add_branch(add_branch_input1, add_branch_input2, add_branch_output);
ShiftLeft2 shiftBranch(shiftBranch_input, shiftBranch_output);
ShiftLeft2 shiftJump(shiftJump_input, shiftJump_output);
initial begin
PC = 32'h00000000;
nextPC = 32'h00000000;
end
always @(posedge clk) begin
// IF
case(nextPC[0])
1'b0: PC = nextPC;
1'b1: PC = nextPC;
endcase
#1;
address = PC;
add_pc4_input = PC;
#1;
// ID
ctrl_opcode <= instr[31:26];
reg_readreg1 <= instr[25:21];
reg_readreg2 <= instr[20:16];
mux_writereg_input1 <= instr[20:16];
mux_writereg_input2 <= instr[15:11];
extend_input <= instr[15:0];
aluctrl_funct <= instr[5:0];
shiftJump_input <= {6'b000000, instr[25:0]};
#1;
mux_writereg_signal <= ctrl_regdst;
aluctrl_aluop <= ctrl_aluop;
// EX
mux_alu_input1 <= reg_readdata2;
mux_alu_input2 <= extend_output;
mux_alu_signal <= ctrl_alusrc;
shiftBranch_input <= extend_output;
#1;
alu_input1 <= reg_readdata1;
alu_input2 <= mux_alu_output;
alu_control <= aluctrl_sig;
add_branch_input1 <= add_pc4_output;
add_branch_input2 <= shiftBranch_output;
#1;
mux_branch_input1 <= add_pc4_output;
mux_branch_input2 <= add_branch_output;
mux_branch_signal <= ctrl_branch & alu_branch;
#1;
// MEM
mux_jump_input1 <= mux_branch_output;
mux_jump_input2 <= {add_pc4_output[31:28], shiftJump_output[27:0]};
mux_jump_signal <= ctrl_jump;
mem_addr <= alu_result;
mem_writedata <= reg_readdata2;
mem_memread <= ctrl_memread;
mem_memwrite <= ctrl_memwrite;
#1;
// WB
mux_writedata_input1 <= alu_result;
mux_writedata_input2 <= mem_readdata;
mux_writedata_signal <= ctrl_memtoreg;
#1;
reg_sig_regwrite <= ctrl_regwrite;
reg_writereg1 <= mux_writereg_output;
reg_writedata <= mux_writedata_output;
#1;
nextPC <= mux_jump_output;
end
endmodule