tsan_platform_linux.cpp 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
//===-- tsan_platform_linux.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Linux- and FreeBSD-specific code.
//===----------------------------------------------------------------------===//


#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_flags.h"

#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#if SANITIZER_LINUX
#include <sys/personality.h>
#include <setjmp.h>
#endif
#include <sys/syscall.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sched.h>
#include <dlfcn.h>
#if SANITIZER_LINUX
#define __need_res_state
#include <resolv.h>
#endif

#ifdef sa_handler
# undef sa_handler
#endif

#ifdef sa_sigaction
# undef sa_sigaction
#endif

#if SANITIZER_FREEBSD
extern "C" void *__libc_stack_end;
void *__libc_stack_end = 0;
#endif

#if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO
# define INIT_LONGJMP_XOR_KEY 1
#else
# define INIT_LONGJMP_XOR_KEY 0
#endif

#if INIT_LONGJMP_XOR_KEY
#include "interception/interception.h"
// Must be declared outside of other namespaces.
DECLARE_REAL(int, _setjmp, void *env)
#endif

namespace __tsan {

#if INIT_LONGJMP_XOR_KEY
static void InitializeLongjmpXorKey();
static uptr longjmp_xor_key;
#endif

#ifdef TSAN_RUNTIME_VMA
// Runtime detected VMA size.
uptr vmaSize;
#endif

enum {
  MemTotal  = 0,
  MemShadow = 1,
  MemMeta   = 2,
  MemFile   = 3,
  MemMmap   = 4,
  MemTrace  = 5,
  MemHeap   = 6,
  MemOther  = 7,
  MemCount  = 8,
};

void FillProfileCallback(uptr p, uptr rss, bool file,
                         uptr *mem, uptr stats_size) {
  mem[MemTotal] += rss;
  if (p >= ShadowBeg() && p < ShadowEnd())
    mem[MemShadow] += rss;
  else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
    mem[MemMeta] += rss;
#if !SANITIZER_GO
  else if (p >= HeapMemBeg() && p < HeapMemEnd())
    mem[MemHeap] += rss;
  else if (p >= LoAppMemBeg() && p < LoAppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
  else if (p >= HiAppMemBeg() && p < HiAppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
#else
  else if (p >= AppMemBeg() && p < AppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
#endif
  else if (p >= TraceMemBeg() && p < TraceMemEnd())
    mem[MemTrace] += rss;
  else
    mem[MemOther] += rss;
}

void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
  uptr mem[MemCount];
  internal_memset(mem, 0, sizeof(mem[0]) * MemCount);
  __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
  StackDepotStats *stacks = StackDepotGetStats();
  internal_snprintf(buf, buf_size,
      "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
      " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n",
      mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
      mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
      mem[MemHeap] >> 20, mem[MemOther] >> 20,
      stacks->allocated >> 20, stacks->n_uniq_ids,
      nlive, nthread);
}

#if SANITIZER_LINUX
void FlushShadowMemoryCallback(
    const SuspendedThreadsList &suspended_threads_list,
    void *argument) {
  ReleaseMemoryPagesToOS(ShadowBeg(), ShadowEnd());
}
#endif

void FlushShadowMemory() {
#if SANITIZER_LINUX
  StopTheWorld(FlushShadowMemoryCallback, 0);
#endif
}

#if !SANITIZER_GO
// Mark shadow for .rodata sections with the special kShadowRodata marker.
// Accesses to .rodata can't race, so this saves time, memory and trace space.
static void MapRodata() {
  // First create temp file.
  const char *tmpdir = GetEnv("TMPDIR");
  if (tmpdir == 0)
    tmpdir = GetEnv("TEST_TMPDIR");
#ifdef P_tmpdir
  if (tmpdir == 0)
    tmpdir = P_tmpdir;
#endif
  if (tmpdir == 0)
    return;
  char name[256];
  internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
                    tmpdir, (int)internal_getpid());
  uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
  if (internal_iserror(openrv))
    return;
  internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
  fd_t fd = openrv;
  // Fill the file with kShadowRodata.
  const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
  InternalMmapVector<u64> marker(kMarkerSize);
  // volatile to prevent insertion of memset
  for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
    *p = kShadowRodata;
  internal_write(fd, marker.data(), marker.size() * sizeof(u64));
  // Map the file into memory.
  uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
                            MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
  if (internal_iserror(page)) {
    internal_close(fd);
    return;
  }
  // Map the file into shadow of .rodata sections.
  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
  // Reusing the buffer 'name'.
  MemoryMappedSegment segment(name, ARRAY_SIZE(name));
  while (proc_maps.Next(&segment)) {
    if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
        segment.IsReadable() && segment.IsExecutable() &&
        !segment.IsWritable() && IsAppMem(segment.start)) {
      // Assume it's .rodata
      char *shadow_start = (char *)MemToShadow(segment.start);
      char *shadow_end = (char *)MemToShadow(segment.end);
      for (char *p = shadow_start; p < shadow_end;
           p += marker.size() * sizeof(u64)) {
        internal_mmap(p, Min<uptr>(marker.size() * sizeof(u64), shadow_end - p),
                      PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
      }
    }
  }
  internal_close(fd);
}

void InitializeShadowMemoryPlatform() {
  MapRodata();
}

#endif  // #if !SANITIZER_GO

void InitializePlatformEarly() {
#ifdef TSAN_RUNTIME_VMA
  vmaSize =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
#if defined(__aarch64__)
# if !SANITIZER_GO
  if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
    Die();
  }
#else
  if (vmaSize != 48) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
    Die();
  }
#endif
#elif defined(__powerpc64__)
# if !SANITIZER_GO
  if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
    Die();
  }
# else
  if (vmaSize != 46 && vmaSize != 47) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
    Die();
  }
# endif
#endif
#endif
}

void InitializePlatform() {
  DisableCoreDumperIfNecessary();

  // Go maps shadow memory lazily and works fine with limited address space.
  // Unlimited stack is not a problem as well, because the executable
  // is not compiled with -pie.
#if !SANITIZER_GO
  {
    bool reexec = false;
    // TSan doesn't play well with unlimited stack size (as stack
    // overlaps with shadow memory). If we detect unlimited stack size,
    // we re-exec the program with limited stack size as a best effort.
    if (StackSizeIsUnlimited()) {
      const uptr kMaxStackSize = 32 * 1024 * 1024;
      VReport(1, "Program is run with unlimited stack size, which wouldn't "
                 "work with ThreadSanitizer.\n"
                 "Re-execing with stack size limited to %zd bytes.\n",
              kMaxStackSize);
      SetStackSizeLimitInBytes(kMaxStackSize);
      reexec = true;
    }

    if (!AddressSpaceIsUnlimited()) {
      Report("WARNING: Program is run with limited virtual address space,"
             " which wouldn't work with ThreadSanitizer.\n");
      Report("Re-execing with unlimited virtual address space.\n");
      SetAddressSpaceUnlimited();
      reexec = true;
    }
#if SANITIZER_LINUX && defined(__aarch64__)
    // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
    // linux kernel, the random gap between stack and mapped area is increased
    // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
    // this big range, we should disable randomized virtual space on aarch64.
    int old_personality = personality(0xffffffff);
    if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
      VReport(1, "WARNING: Program is run with randomized virtual address "
              "space, which wouldn't work with ThreadSanitizer.\n"
              "Re-execing with fixed virtual address space.\n");
      CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
      reexec = true;
    }
    // Initialize the xor key used in {sig}{set,long}jump.
    InitializeLongjmpXorKey();
#endif
    if (reexec)
      ReExec();
  }

  CheckAndProtect();
  InitTlsSize();
#endif  // !SANITIZER_GO
}

#if !SANITIZER_GO
// Extract file descriptors passed to glibc internal __res_iclose function.
// This is required to properly "close" the fds, because we do not see internal
// closes within glibc. The code is a pure hack.
int ExtractResolvFDs(void *state, int *fds, int nfd) {
#if SANITIZER_LINUX && !SANITIZER_ANDROID
  int cnt = 0;
  struct __res_state *statp = (struct __res_state*)state;
  for (int i = 0; i < MAXNS && cnt < nfd; i++) {
    if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
      fds[cnt++] = statp->_u._ext.nssocks[i];
  }
  return cnt;
#else
  return 0;
#endif
}

// Extract file descriptors passed via UNIX domain sockets.
// This is requried to properly handle "open" of these fds.
// see 'man recvmsg' and 'man 3 cmsg'.
int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
  int res = 0;
  msghdr *msg = (msghdr*)msgp;
  struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
  for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
    if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
      continue;
    int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
    for (int i = 0; i < n; i++) {
      fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
      if (res == nfd)
        return res;
    }
  }
  return res;
}

// Reverse operation of libc stack pointer mangling
static uptr UnmangleLongJmpSp(uptr mangled_sp) {
#if defined(__x86_64__)
# if SANITIZER_LINUX
  // Reverse of:
  //   xor  %fs:0x30, %rsi
  //   rol  $0x11, %rsi
  uptr sp;
  asm("ror  $0x11,     %0 \n"
      "xor  %%fs:0x30, %0 \n"
      : "=r" (sp)
      : "0" (mangled_sp));
  return sp;
# else
  return mangled_sp;
# endif
#elif defined(__aarch64__)
# if SANITIZER_LINUX
  return mangled_sp ^ longjmp_xor_key;
# else
  return mangled_sp;
# endif
#elif defined(__powerpc64__)
  // Reverse of:
  //   ld   r4, -28696(r13)
  //   xor  r4, r3, r4
  uptr xor_key;
  asm("ld  %0, -28696(%%r13)" : "=r" (xor_key));
  return mangled_sp ^ xor_key;
#elif defined(__mips__)
  return mangled_sp;
#else
  #error "Unknown platform"
#endif
}

#ifdef __powerpc__
# define LONG_JMP_SP_ENV_SLOT 0
#elif SANITIZER_FREEBSD
# define LONG_JMP_SP_ENV_SLOT 2
#elif SANITIZER_NETBSD
# define LONG_JMP_SP_ENV_SLOT 6
#elif SANITIZER_LINUX
# ifdef __aarch64__
#  define LONG_JMP_SP_ENV_SLOT 13
# elif defined(__mips64)
#  define LONG_JMP_SP_ENV_SLOT 1
# else
#  define LONG_JMP_SP_ENV_SLOT 6
# endif
#endif

uptr ExtractLongJmpSp(uptr *env) {
  uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
  return UnmangleLongJmpSp(mangled_sp);
}

#if INIT_LONGJMP_XOR_KEY
// GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
// functions) by XORing them with a random key.  For AArch64 it is a global
// variable rather than a TCB one (as for x86_64/powerpc).  We obtain the key by
// issuing a setjmp and XORing the SP pointer values to derive the key.
static void InitializeLongjmpXorKey() {
  // 1. Call REAL(setjmp), which stores the mangled SP in env.
  jmp_buf env;
  REAL(_setjmp)(env);

  // 2. Retrieve vanilla/mangled SP.
  uptr sp;
  asm("mov  %0, sp" : "=r" (sp));
  uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];

  // 3. xor SPs to obtain key.
  longjmp_xor_key = mangled_sp ^ sp;
}
#endif

void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
  // Check that the thr object is in tls;
  const uptr thr_beg = (uptr)thr;
  const uptr thr_end = (uptr)thr + sizeof(*thr);
  CHECK_GE(thr_beg, tls_addr);
  CHECK_LE(thr_beg, tls_addr + tls_size);
  CHECK_GE(thr_end, tls_addr);
  CHECK_LE(thr_end, tls_addr + tls_size);
  // Since the thr object is huge, skip it.
  MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, thr_beg - tls_addr);
  MemoryRangeImitateWrite(thr, /*pc=*/2, thr_end,
                          tls_addr + tls_size - thr_end);
}

// Note: this function runs with async signals enabled,
// so it must not touch any tsan state.
int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
    void *abstime), void *c, void *m, void *abstime,
    void(*cleanup)(void *arg), void *arg) {
  // pthread_cleanup_push/pop are hardcore macros mess.
  // We can't intercept nor call them w/o including pthread.h.
  int res;
  pthread_cleanup_push(cleanup, arg);
  res = fn(c, m, abstime);
  pthread_cleanup_pop(0);
  return res;
}
#endif  // !SANITIZER_GO

#if !SANITIZER_GO
void ReplaceSystemMalloc() { }
#endif

#if !SANITIZER_GO
#if SANITIZER_ANDROID
// On Android, one thread can call intercepted functions after
// DestroyThreadState(), so add a fake thread state for "dead" threads.
static ThreadState *dead_thread_state = nullptr;

ThreadState *cur_thread() {
  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
  if (thr == nullptr) {
    __sanitizer_sigset_t emptyset;
    internal_sigfillset(&emptyset);
    __sanitizer_sigset_t oldset;
    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
    thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
    if (thr == nullptr) {
      thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
                                                     "ThreadState"));
      *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
      if (dead_thread_state == nullptr) {
        dead_thread_state = reinterpret_cast<ThreadState*>(
            MmapOrDie(sizeof(ThreadState), "ThreadState"));
        dead_thread_state->fast_state.SetIgnoreBit();
        dead_thread_state->ignore_interceptors = 1;
        dead_thread_state->is_dead = true;
        *const_cast<int*>(&dead_thread_state->tid) = -1;
        CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
                                      PROT_READ));
      }
    }
    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
  }
  return thr;
}

void set_cur_thread(ThreadState *thr) {
  *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
}

void cur_thread_finalize() {
  __sanitizer_sigset_t emptyset;
  internal_sigfillset(&emptyset);
  __sanitizer_sigset_t oldset;
  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
  if (thr != dead_thread_state) {
    *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
    UnmapOrDie(thr, sizeof(ThreadState));
  }
  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
}
#endif  // SANITIZER_ANDROID
#endif  // if !SANITIZER_GO

}  // namespace __tsan

#endif  // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD