ftoa.go 10.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Binary to decimal floating point conversion.
// Algorithm:
//   1) store mantissa in multiprecision decimal
//   2) shift decimal by exponent
//   3) read digits out & format

package strconv

import "math"

// TODO: move elsewhere?
type floatInfo struct {
	mantbits uint
	expbits  uint
	bias     int
}

var float32info = floatInfo{23, 8, -127}
var float64info = floatInfo{52, 11, -1023}

// FormatFloat converts the floating-point number f to a string,
// according to the format fmt and precision prec.  It rounds the
// result assuming that the original was obtained from a floating-point
// value of bitSize bits (32 for float32, 64 for float64).
//
// The format fmt is one of
// 'b' (-ddddp±ddd, a binary exponent),
// 'e' (-d.dddde±dd, a decimal exponent),
// 'E' (-d.ddddE±dd, a decimal exponent),
// 'f' (-ddd.dddd, no exponent),
// 'g' ('e' for large exponents, 'f' otherwise), or
// 'G' ('E' for large exponents, 'f' otherwise).
//
// The precision prec controls the number of digits
// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
// For 'e', 'E', and 'f' it is the number of digits after the decimal point.
// For 'g' and 'G' it is the total number of digits.
// The special precision -1 uses the smallest number of digits
// necessary such that ParseFloat will return f exactly.
func FormatFloat(f float64, fmt byte, prec, bitSize int) string {
	return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize))
}

// AppendFloat appends the string form of the floating-point number f,
// as generated by FormatFloat, to dst and returns the extended buffer.
func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte {
	return genericFtoa(dst, f, fmt, prec, bitSize)
}

func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
	var bits uint64
	var flt *floatInfo
	switch bitSize {
	case 32:
		bits = uint64(math.Float32bits(float32(val)))
		flt = &float32info
	case 64:
		bits = math.Float64bits(val)
		flt = &float64info
	default:
		panic("strconv: illegal AppendFloat/FormatFloat bitSize")
	}

	neg := bits>>(flt.expbits+flt.mantbits) != 0
	exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
	mant := bits & (uint64(1)<<flt.mantbits - 1)

	switch exp {
	case 1<<flt.expbits - 1:
		// Inf, NaN
		var s string
		switch {
		case mant != 0:
			s = "NaN"
		case neg:
			s = "-Inf"
		default:
			s = "+Inf"
		}
		return append(dst, s...)

	case 0:
		// denormalized
		exp++

	default:
		// add implicit top bit
		mant |= uint64(1) << flt.mantbits
	}
	exp += flt.bias

	// Pick off easy binary format.
	if fmt == 'b' {
		return fmtB(dst, neg, mant, exp, flt)
	}

	if !optimize {
		return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
	}

	var digs decimalSlice
	ok := false
	// Negative precision means "only as much as needed to be exact."
	shortest := prec < 0
	if shortest {
		// Try Grisu3 algorithm.
		f := new(extFloat)
		lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
		var buf [32]byte
		digs.d = buf[:]
		ok = f.ShortestDecimal(&digs, &lower, &upper)
		if !ok {
			return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
		}
		// Precision for shortest representation mode.
		switch fmt {
		case 'e', 'E':
			prec = max(digs.nd-1, 0)
		case 'f':
			prec = max(digs.nd-digs.dp, 0)
		case 'g', 'G':
			prec = digs.nd
		}
	} else if fmt != 'f' {
		// Fixed number of digits.
		digits := prec
		switch fmt {
		case 'e', 'E':
			digits++
		case 'g', 'G':
			if prec == 0 {
				prec = 1
			}
			digits = prec
		}
		if digits <= 15 {
			// try fast algorithm when the number of digits is reasonable.
			var buf [24]byte
			digs.d = buf[:]
			f := extFloat{mant, exp - int(flt.mantbits), neg}
			ok = f.FixedDecimal(&digs, digits)
		}
	}
	if !ok {
		return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
	}
	return formatDigits(dst, shortest, neg, digs, prec, fmt)
}

// bigFtoa uses multiprecision computations to format a float.
func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
	d := new(decimal)
	d.Assign(mant)
	d.Shift(exp - int(flt.mantbits))
	var digs decimalSlice
	shortest := prec < 0
	if shortest {
		roundShortest(d, mant, exp, flt)
		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
		// Precision for shortest representation mode.
		switch fmt {
		case 'e', 'E':
			prec = digs.nd - 1
		case 'f':
			prec = max(digs.nd-digs.dp, 0)
		case 'g', 'G':
			prec = digs.nd
		}
	} else {
		// Round appropriately.
		switch fmt {
		case 'e', 'E':
			d.Round(prec + 1)
		case 'f':
			d.Round(d.dp + prec)
		case 'g', 'G':
			if prec == 0 {
				prec = 1
			}
			d.Round(prec)
		}
		digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
	}
	return formatDigits(dst, shortest, neg, digs, prec, fmt)
}

func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte {
	switch fmt {
	case 'e', 'E':
		return fmtE(dst, neg, digs, prec, fmt)
	case 'f':
		return fmtF(dst, neg, digs, prec)
	case 'g', 'G':
		// trailing fractional zeros in 'e' form will be trimmed.
		eprec := prec
		if eprec > digs.nd && digs.nd >= digs.dp {
			eprec = digs.nd
		}
		// %e is used if the exponent from the conversion
		// is less than -4 or greater than or equal to the precision.
		// if precision was the shortest possible, use precision 6 for this decision.
		if shortest {
			eprec = 6
		}
		exp := digs.dp - 1
		if exp < -4 || exp >= eprec {
			if prec > digs.nd {
				prec = digs.nd
			}
			return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
		}
		if prec > digs.dp {
			prec = digs.nd
		}
		return fmtF(dst, neg, digs, max(prec-digs.dp, 0))
	}

	// unknown format
	return append(dst, '%', fmt)
}

// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
// that will let the original floating point value be precisely reconstructed.
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
	// If mantissa is zero, the number is zero; stop now.
	if mant == 0 {
		d.nd = 0
		return
	}

	// Compute upper and lower such that any decimal number
	// between upper and lower (possibly inclusive)
	// will round to the original floating point number.

	// We may see at once that the number is already shortest.
	//
	// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
	// The closest shorter number is at least 10^(dp-nd) away.
	// The lower/upper bounds computed below are at distance
	// at most 2^(exp-mantbits).
	//
	// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
	// or equivalently log2(10)*(dp-nd) > exp-mantbits.
	// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
	minexp := flt.bias + 1 // minimum possible exponent
	if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
		// The number is already shortest.
		return
	}

	// d = mant << (exp - mantbits)
	// Next highest floating point number is mant+1 << exp-mantbits.
	// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
	upper := new(decimal)
	upper.Assign(mant*2 + 1)
	upper.Shift(exp - int(flt.mantbits) - 1)

	// d = mant << (exp - mantbits)
	// Next lowest floating point number is mant-1 << exp-mantbits,
	// unless mant-1 drops the significant bit and exp is not the minimum exp,
	// in which case the next lowest is mant*2-1 << exp-mantbits-1.
	// Either way, call it mantlo << explo-mantbits.
	// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
	var mantlo uint64
	var explo int
	if mant > 1<<flt.mantbits || exp == minexp {
		mantlo = mant - 1
		explo = exp
	} else {
		mantlo = mant*2 - 1
		explo = exp - 1
	}
	lower := new(decimal)
	lower.Assign(mantlo*2 + 1)
	lower.Shift(explo - int(flt.mantbits) - 1)

	// The upper and lower bounds are possible outputs only if
	// the original mantissa is even, so that IEEE round-to-even
	// would round to the original mantissa and not the neighbors.
	inclusive := mant%2 == 0

	// Now we can figure out the minimum number of digits required.
	// Walk along until d has distinguished itself from upper and lower.
	for i := 0; i < d.nd; i++ {
		var l, m, u byte // lower, middle, upper digits
		if i < lower.nd {
			l = lower.d[i]
		} else {
			l = '0'
		}
		m = d.d[i]
		if i < upper.nd {
			u = upper.d[i]
		} else {
			u = '0'
		}

		// Okay to round down (truncate) if lower has a different digit
		// or if lower is inclusive and is exactly the result of rounding down.
		okdown := l != m || (inclusive && l == m && i+1 == lower.nd)

		// Okay to round up if upper has a different digit and
		// either upper is inclusive or upper is bigger than the result of rounding up.
		okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)

		// If it's okay to do either, then round to the nearest one.
		// If it's okay to do only one, do it.
		switch {
		case okdown && okup:
			d.Round(i + 1)
			return
		case okdown:
			d.RoundDown(i + 1)
			return
		case okup:
			d.RoundUp(i + 1)
			return
		}
	}
}

type decimalSlice struct {
	d      []byte
	nd, dp int
	neg    bool
}

// %e: -d.ddddde±dd
func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte {
	// sign
	if neg {
		dst = append(dst, '-')
	}

	// first digit
	ch := byte('0')
	if d.nd != 0 {
		ch = d.d[0]
	}
	dst = append(dst, ch)

	// .moredigits
	if prec > 0 {
		dst = append(dst, '.')
		i := 1
		m := min(d.nd, prec+1)
		if i < m {
			dst = append(dst, d.d[i:m]...)
			i = m
		}
		for ; i <= prec; i++ {
			dst = append(dst, '0')
		}
	}

	// e±
	dst = append(dst, fmt)
	exp := d.dp - 1
	if d.nd == 0 { // special case: 0 has exponent 0
		exp = 0
	}
	if exp < 0 {
		ch = '-'
		exp = -exp
	} else {
		ch = '+'
	}
	dst = append(dst, ch)

	// dd or ddd
	switch {
	case exp < 10:
		dst = append(dst, '0', byte(exp)+'0')
	case exp < 100:
		dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0')
	default:
		dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0')
	}

	return dst
}

// %f: -ddddddd.ddddd
func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte {
	// sign
	if neg {
		dst = append(dst, '-')
	}

	// integer, padded with zeros as needed.
	if d.dp > 0 {
		m := min(d.nd, d.dp)
		dst = append(dst, d.d[:m]...)
		for ; m < d.dp; m++ {
			dst = append(dst, '0')
		}
	} else {
		dst = append(dst, '0')
	}

	// fraction
	if prec > 0 {
		dst = append(dst, '.')
		for i := 0; i < prec; i++ {
			ch := byte('0')
			if j := d.dp + i; 0 <= j && j < d.nd {
				ch = d.d[j]
			}
			dst = append(dst, ch)
		}
	}

	return dst
}

// %b: -ddddddddp±ddd
func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
	// sign
	if neg {
		dst = append(dst, '-')
	}

	// mantissa
	dst, _ = formatBits(dst, mant, 10, false, true)

	// p
	dst = append(dst, 'p')

	// ±exponent
	exp -= int(flt.mantbits)
	if exp >= 0 {
		dst = append(dst, '+')
	}
	dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true)

	return dst
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}