ForwardOpTree.cpp 36 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
//===- ForwardOpTree.h ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Move instructions between statements.
//
//===----------------------------------------------------------------------===//

#include "polly/ForwardOpTree.h"
#include "polly/Options.h"
#include "polly/ScopBuilder.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#include "polly/ZoneAlgo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/isl-noexceptions.h"
#include <cassert>
#include <memory>

#define DEBUG_TYPE "polly-optree"

using namespace llvm;
using namespace polly;

static cl::opt<bool>
    AnalyzeKnown("polly-optree-analyze-known",
                 cl::desc("Analyze array contents for load forwarding"),
                 cl::cat(PollyCategory), cl::init(true), cl::Hidden);

static cl::opt<bool>
    NormalizePHIs("polly-optree-normalize-phi",
                  cl::desc("Replace PHIs by their incoming values"),
                  cl::cat(PollyCategory), cl::init(false), cl::Hidden);

static cl::opt<unsigned>
    MaxOps("polly-optree-max-ops",
           cl::desc("Maximum number of ISL operations to invest for known "
                    "analysis; 0=no limit"),
           cl::init(1000000), cl::cat(PollyCategory), cl::Hidden);

STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(KnownOutOfQuota,
          "Analyses aborted because max_operations was reached");

STATISTIC(TotalInstructionsCopied, "Number of copied instructions");
STATISTIC(TotalKnownLoadsForwarded,
          "Number of forwarded loads because their value was known");
STATISTIC(TotalReloads, "Number of reloaded values");
STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses");
STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees");
STATISTIC(TotalModifiedStmts,
          "Number of statements with at least one forwarded tree");

STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree");

STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree");
STATISTIC(NumValueWritesInLoops,
          "Number of scalar value writes nested in affine loops after OpTree");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after OpTree");
STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after OpTree");

namespace {

/// The state of whether an operand tree was/can be forwarded.
///
/// The items apply to an instructions and its operand tree with the instruction
/// as the root element. If the value in question is not an instruction in the
/// SCoP, it can be a leaf of an instruction's operand tree.
enum ForwardingDecision {
  /// The root instruction or value cannot be forwarded at all.
  FD_CannotForward,

  /// The root instruction or value can be forwarded as a leaf of a larger
  /// operand tree.
  /// It does not make sense to move the value itself, it would just replace it
  /// by a use of itself. For instance, a constant "5" used in a statement can
  /// be forwarded, but it would just replace it by the same constant "5".
  /// However, it makes sense to move as an operand of
  ///
  ///   %add = add 5, 5
  ///
  /// where "5" is moved as part of a larger operand tree. "5" would be placed
  /// (disregarding for a moment that literal constants don't have a location
  /// and can be used anywhere) into the same statement as %add would.
  FD_CanForwardLeaf,

  /// The root instruction can be forwarded and doing so avoids a scalar
  /// dependency.
  ///
  /// This can be either because the operand tree can be moved to the target
  /// statement, or a memory access is redirected to read from a different
  /// location.
  FD_CanForwardProfitably,

  /// Used to indicate that a forwarding has be carried out successfully, and
  /// the forwarded memory access can be deleted.
  FD_DidForwardTree,

  /// Used to indicate that a forwarding has be carried out successfully, and
  /// the forwarded memory access is being reused.
  FD_DidForwardLeaf,

  /// A forwarding method cannot be applied to the operand tree.
  /// The difference to FD_CannotForward is that there might be other methods
  /// that can handle it.
  /// The conditions that make an operand tree applicable must be checked even
  /// with DoIt==true because a method following the one that returned
  /// FD_NotApplicable might have returned FD_CanForwardTree.
  FD_NotApplicable
};

/// Implementation of operand tree forwarding for a specific SCoP.
///
/// For a statement that requires a scalar value (through a value read
/// MemoryAccess), see if its operand can be moved into the statement. If so,
/// the MemoryAccess is removed and the all the operand tree instructions are
/// moved into the statement. All original instructions are left in the source
/// statements. The simplification pass can clean these up.
class ForwardOpTreeImpl : ZoneAlgorithm {
private:
  /// Scope guard to limit the number of isl operations for this pass.
  IslMaxOperationsGuard &MaxOpGuard;

  /// How many instructions have been copied to other statements.
  int NumInstructionsCopied = 0;

  /// Number of loads forwarded because their value was known.
  int NumKnownLoadsForwarded = 0;

  /// Number of values reloaded from known array elements.
  int NumReloads = 0;

  /// How many read-only accesses have been copied.
  int NumReadOnlyCopied = 0;

  /// How many operand trees have been forwarded.
  int NumForwardedTrees = 0;

  /// Number of statements with at least one forwarded operand tree.
  int NumModifiedStmts = 0;

  /// Whether we carried out at least one change to the SCoP.
  bool Modified = false;

  /// Contains the zones where array elements are known to contain a specific
  /// value.
  /// { [Element[] -> Zone[]] -> ValInst[] }
  /// @see computeKnown()
  isl::union_map Known;

  /// Translator for newly introduced ValInsts to already existing ValInsts such
  /// that new introduced load instructions can reuse the Known analysis of its
  /// original load. { ValInst[] -> ValInst[] }
  isl::union_map Translator;

  /// Get list of array elements that do contain the same ValInst[] at Domain[].
  ///
  /// @param ValInst { Domain[] -> ValInst[] }
  ///                The values for which we search for alternative locations,
  ///                per statement instance.
  ///
  /// @return { Domain[] -> Element[] }
  ///         For each statement instance, the array elements that contain the
  ///         same ValInst.
  isl::union_map findSameContentElements(isl::union_map ValInst) {
    assert(!ValInst.is_single_valued().is_false());

    // { Domain[] }
    isl::union_set Domain = ValInst.domain();

    // { Domain[] -> Scatter[] }
    isl::union_map Schedule = getScatterFor(Domain);

    // { Element[] -> [Scatter[] -> ValInst[]] }
    isl::union_map MustKnownCurried =
        convertZoneToTimepoints(Known, isl::dim::in, false, true).curry();

    // { [Domain[] -> ValInst[]] -> Scatter[] }
    isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule);

    // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] }
    isl::union_map SchedValDomVal =
        DomValSched.range_product(ValInst.range_map()).reverse();

    // { Element[] -> [Domain[] -> ValInst[]] }
    isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal);

    // { Domain[] -> Element[] }
    isl::union_map MustKnownMap =
        MustKnownInst.uncurry().domain().unwrap().reverse();
    simplify(MustKnownMap);

    return MustKnownMap;
  }

  /// Find a single array element for each statement instance, within a single
  /// array.
  ///
  /// @param MustKnown { Domain[] -> Element[] }
  ///                  Set of candidate array elements.
  /// @param Domain    { Domain[] }
  ///                  The statement instance for which we need elements for.
  ///
  /// @return { Domain[] -> Element[] }
  ///         For each statement instance, an array element out of @p MustKnown.
  ///         All array elements must be in the same array (Polly does not yet
  ///         support reading from different accesses using the same
  ///         MemoryAccess). If no mapping for all of @p Domain exists, returns
  ///         null.
  isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) {
    // { Domain[] -> Element[] }
    isl::map Result;

    // MemoryAccesses can read only elements from a single array
    // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }).
    // Look through all spaces until we find one that contains at least the
    // wanted statement instance.s
    for (isl::map Map : MustKnown.get_map_list()) {
      // Get the array this is accessing.
      isl::id ArrayId = Map.get_tuple_id(isl::dim::out);
      ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user());

      // No support for generation of indirect array accesses.
      if (SAI->getBasePtrOriginSAI())
        continue;

      // Determine whether this map contains all wanted values.
      isl::set MapDom = Map.domain();
      if (!Domain.is_subset(MapDom).is_true())
        continue;

      // There might be multiple array elements that contain the same value, but
      // choose only one of them. lexmin is used because it returns a one-value
      // mapping, we do not care about which one.
      // TODO: Get the simplest access function.
      Result = Map.lexmin();
      break;
    }

    return Result;
  }

public:
  ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard)
      : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {}

  /// Compute the zones of known array element contents.
  ///
  /// @return True if the computed #Known is usable.
  bool computeKnownValues() {
    isl::union_map MustKnown, KnownFromLoad, KnownFromInit;

    // Check that nothing strange occurs.
    collectCompatibleElts();

    {
      IslQuotaScope QuotaScope = MaxOpGuard.enter();

      computeCommon();
      if (NormalizePHIs)
        computeNormalizedPHIs();
      Known = computeKnown(true, true);

      // Preexisting ValInsts use the known content analysis of themselves.
      Translator = makeIdentityMap(Known.range(), false);
    }

    if (!Known || !Translator || !NormalizeMap) {
      assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota);
      Known = nullptr;
      Translator = nullptr;
      NormalizeMap = nullptr;
      LLVM_DEBUG(dbgs() << "Known analysis exceeded max_operations\n");
      return false;
    }

    KnownAnalyzed++;
    LLVM_DEBUG(dbgs() << "All known: " << Known << "\n");

    return true;
  }

  void printStatistics(raw_ostream &OS, int Indent = 0) {
    OS.indent(Indent) << "Statistics {\n";
    OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied
                          << '\n';
    OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded
                          << '\n';
    OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n';
    OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied
                          << '\n';
    OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees
                          << '\n';
    OS.indent(Indent + 4) << "Statements with forwarded operand trees: "
                          << NumModifiedStmts << '\n';
    OS.indent(Indent) << "}\n";
  }

  void printStatements(raw_ostream &OS, int Indent = 0) const {
    OS.indent(Indent) << "After statements {\n";
    for (auto &Stmt : *S) {
      OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
      for (auto *MA : Stmt)
        MA->print(OS);

      OS.indent(Indent + 12);
      Stmt.printInstructions(OS);
    }
    OS.indent(Indent) << "}\n";
  }

  /// Create a new MemoryAccess of type read and MemoryKind::Array.
  ///
  /// @param Stmt           The statement in which the access occurs.
  /// @param LI             The instruction that does the access.
  /// @param AccessRelation The array element that each statement instance
  ///                       accesses.
  ///
  /// @param The newly created access.
  MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI,
                                    isl::map AccessRelation) {
    isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out);
    ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user());

    // Create a dummy SCEV access, to be replaced anyway.
    SmallVector<const SCEV *, 4> Sizes;
    Sizes.reserve(SAI->getNumberOfDimensions());
    SmallVector<const SCEV *, 4> Subscripts;
    Subscripts.reserve(SAI->getNumberOfDimensions());
    for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) {
      Sizes.push_back(SAI->getDimensionSize(i));
      Subscripts.push_back(nullptr);
    }

    MemoryAccess *Access =
        new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(),
                         LI->getType(), true, {}, Sizes, LI, MemoryKind::Array);
    S->addAccessFunction(Access);
    Stmt->addAccess(Access, true);

    Access->setNewAccessRelation(AccessRelation);

    return Access;
  }

  /// Forward a load by reading from an array element that contains the same
  /// value. Typically the location it was loaded from.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param Inst        The (possibly speculatable) instruction to forward.
  /// @param UseStmt     The statement that uses @p Inst.
  /// @param UseLoop     The loop @p Inst is used in.
  /// @param DefStmt     The statement @p Inst is defined in.
  /// @param DefLoop     The loop which contains @p Inst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable  if @p Inst cannot be forwarded by creating a new
  ///                           load.
  ///         FD_CannotForward  if the pointer operand cannot be forwarded.
  ///         FD_CanForwardProfitably if @p Inst is forwardable.
  ///         FD_DidForwardTree if @p DoIt was true.
  ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst,
                                      ScopStmt *UseStmt, Loop *UseLoop,
                                      ScopStmt *DefStmt, Loop *DefLoop,
                                      bool DoIt) {
    // Cannot do anything without successful known analysis.
    if (Known.is_null() || Translator.is_null() ||
        MaxOpGuard.hasQuotaExceeded())
      return FD_NotApplicable;

    LoadInst *LI = dyn_cast<LoadInst>(Inst);
    if (!LI)
      return FD_NotApplicable;

    // If the load is already in the statement, no forwarding is necessary.
    // However, it might happen that the LoadInst is already present in the
    // statement's instruction list. In that case we do as follows:
    // - For the evaluation (DoIt==false), we can trivially forward it as it is
    //   benefit of forwarding an already present instruction.
    // - For the execution (DoIt==true), prepend the instruction (to make it
    //   available to all instructions following in the instruction list), but
    //   do not add another MemoryAccess.
    MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI);
    if (Access && !DoIt)
      return FD_CanForwardProfitably;

    ForwardingDecision OpDecision = forwardTree(
        TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop, DoIt);
    switch (OpDecision) {
    case FD_CannotForward:
      assert(!DoIt);
      return OpDecision;

    case FD_CanForwardLeaf:
    case FD_CanForwardProfitably:
      assert(!DoIt);
      break;

    case FD_DidForwardLeaf:
    case FD_DidForwardTree:
      assert(DoIt);
      break;

    default:
      llvm_unreachable("Shouldn't return this");
    }

    IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);

    // { DomainDef[] -> ValInst[] }
    isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop);
    assert(!isNormalized(ExpectedVal).is_false() &&
           "LoadInsts are always normalized");

    // { DomainUse[] -> DomainTarget[] }
    isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);

    // { DomainTarget[] -> ValInst[] }
    isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
    isl::union_map TranslatedExpectedVal =
        isl::union_map(TargetExpectedVal).apply_range(Translator);

    // { DomainTarget[] -> Element[] }
    isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);

    isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
    if (!SameVal)
      return FD_NotApplicable;

    if (DoIt)
      TargetStmt->prependInstruction(LI);

    if (!DoIt)
      return FD_CanForwardProfitably;

    if (Access) {
      LLVM_DEBUG(
          dbgs() << "    forwarded known load with preexisting MemoryAccess"
                 << Access << "\n");
    } else {
      Access = makeReadArrayAccess(TargetStmt, LI, SameVal);
      LLVM_DEBUG(dbgs() << "    forwarded known load with new MemoryAccess"
                        << Access << "\n");

      // { ValInst[] }
      isl::space ValInstSpace = ExpectedVal.get_space().range();

      // After adding a new load to the SCoP, also update the Known content
      // about it. The new load will have a known ValInst of
      // { [DomainTarget[] -> Value[]] }
      // but which -- because it is a copy of it -- has same value as the
      // { [DomainDef[] -> Value[]] }
      // that it replicates. Instead of  cloning the known content of
      // [DomainDef[] -> Value[]]
      // for DomainTarget[], we add a 'translator' that maps
      // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]]
      // before comparing to the known content.
      // TODO: 'Translator' could also be used to map PHINodes to their incoming
      // ValInsts.
      if (ValInstSpace.is_wrapping()) {
        // { DefDomain[] -> Value[] }
        isl::map ValInsts = ExpectedVal.range().unwrap();

        // { DefDomain[] }
        isl::set DefDomain = ValInsts.domain();

        // { Value[] }
        isl::space ValSpace = ValInstSpace.unwrap().range();

        // { Value[] -> Value[] }
        isl::map ValToVal =
            isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace));

        // { DomainDef[] -> DomainTarget[] }
        isl::map DefToTarget = getDefToTarget(DefStmt, TargetStmt);

        // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] }
        isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal);

        Translator = Translator.add_map(LocalTranslator);
        LLVM_DEBUG(dbgs() << "      local translator is " << LocalTranslator
                          << "\n");
      }
    }
    LLVM_DEBUG(dbgs() << "      expected values where " << TargetExpectedVal
                      << "\n");
    LLVM_DEBUG(dbgs() << "      candidate elements where " << Candidates
                      << "\n");
    assert(Access);

    NumKnownLoadsForwarded++;
    TotalKnownLoadsForwarded++;
    return FD_DidForwardTree;
  }

  /// Forward a scalar by redirecting the access to an array element that stores
  /// the same value.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param Inst        The scalar to forward.
  /// @param UseStmt     The statement that uses @p Inst.
  /// @param UseLoop     The loop @p Inst is used in.
  /// @param DefStmt     The statement @p Inst is defined in.
  /// @param DefLoop     The loop which contains @p Inst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable        if @p Inst cannot be reloaded.
  ///         FD_CanForwardLeaf       if @p Inst can be reloaded.
  ///         FD_CanForwardProfitably if @p Inst has been reloaded.
  ///         FD_DidForwardLeaf       if @p DoIt was true.
  ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst,
                                        ScopStmt *UseStmt, Loop *UseLoop,
                                        ScopStmt *DefStmt, Loop *DefLoop,
                                        bool DoIt) {
    // Cannot do anything without successful known analysis.
    if (Known.is_null() || Translator.is_null() ||
        MaxOpGuard.hasQuotaExceeded())
      return FD_NotApplicable;

    MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst);
    if (Access && Access->isLatestArrayKind()) {
      if (DoIt)
        return FD_DidForwardLeaf;
      return FD_CanForwardLeaf;
    }

    // Don't spend too much time analyzing whether it can be reloaded. When
    // carrying-out the forwarding, we cannot bail-out in the middle of the
    // transformation. It also shouldn't take as long because some results are
    // cached.
    IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);

    // { DomainDef[] -> ValInst[] }
    isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop);

    // { DomainUse[] -> DomainTarget[] }
    isl::map UseToTarget = getDefToTarget(UseStmt, TargetStmt);

    // { DomainTarget[] -> ValInst[] }
    isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
    isl::union_map TranslatedExpectedVal =
        TargetExpectedVal.apply_range(Translator);

    // { DomainTarget[] -> Element[] }
    isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);

    isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
    if (!SameVal)
      return FD_NotApplicable;

    if (!DoIt)
      return FD_CanForwardProfitably;

    if (!Access)
      Access = TargetStmt->ensureValueRead(Inst);

    simplify(SameVal);
    Access->setNewAccessRelation(SameVal);

    TotalReloads++;
    NumReloads++;
    return FD_DidForwardLeaf;
  }

  /// Forwards a speculatively executable instruction.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param UseInst     The (possibly speculatable) instruction to forward.
  /// @param DefStmt     The statement @p UseInst is defined in.
  /// @param DefLoop     The loop which contains @p UseInst.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return FD_NotApplicable  if @p UseInst is not speculatable.
  ///         FD_CannotForward  if one of @p UseInst's operands is not
  ///                           forwardable.
  ///         FD_CanForwardTree if @p UseInst is forwardable.
  ///         FD_DidForward     if @p DoIt was true.
  ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt,
                                         Instruction *UseInst,
                                         ScopStmt *DefStmt, Loop *DefLoop,
                                         bool DoIt) {
    // PHIs, unless synthesizable, are not yet supported.
    if (isa<PHINode>(UseInst))
      return FD_NotApplicable;

    // Compatible instructions must satisfy the following conditions:
    // 1. Idempotent (instruction will be copied, not moved; although its
    //    original instance might be removed by simplification)
    // 2. Not access memory (There might be memory writes between)
    // 3. Not cause undefined behaviour (we might copy to a location when the
    //    original instruction was no executed; this is currently not possible
    //    because we do not forward PHINodes)
    // 4. Not leak memory if executed multiple times (i.e. malloc)
    //
    // Instruction::mayHaveSideEffects is not sufficient because it considers
    // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is
    // not sufficient because it allows memory accesses.
    if (mayBeMemoryDependent(*UseInst))
      return FD_NotApplicable;

    if (DoIt) {
      // To ensure the right order, prepend this instruction before its
      // operands. This ensures that its operands are inserted before the
      // instruction using them.
      // TODO: The operand tree is not really a tree, but a DAG. We should be
      // able to handle DAGs without duplication.
      TargetStmt->prependInstruction(UseInst);
      NumInstructionsCopied++;
      TotalInstructionsCopied++;
    }

    for (Value *OpVal : UseInst->operand_values()) {
      ForwardingDecision OpDecision =
          forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DoIt);
      switch (OpDecision) {
      case FD_CannotForward:
        assert(!DoIt);
        return FD_CannotForward;

      case FD_CanForwardLeaf:
      case FD_CanForwardProfitably:
        assert(!DoIt);
        break;

      case FD_DidForwardLeaf:
      case FD_DidForwardTree:
        assert(DoIt);
        break;

      case FD_NotApplicable:
        llvm_unreachable("forwardTree should never return FD_NotApplicable");
      }
    }

    if (DoIt)
      return FD_DidForwardTree;
    return FD_CanForwardProfitably;
  }

  /// Determines whether an operand tree can be forwarded or carries out a
  /// forwarding, depending on the @p DoIt flag.
  ///
  /// @param TargetStmt  The statement the operand tree will be copied to.
  /// @param UseVal      The value (usually an instruction) which is root of an
  ///                    operand tree.
  /// @param UseStmt     The statement that uses @p UseVal.
  /// @param UseLoop     The loop @p UseVal is used in.
  /// @param DoIt        If false, only determine whether an operand tree can be
  ///                    forwarded. If true, carry out the forwarding. Do not
  ///                    use DoIt==true if an operand tree is not known to be
  ///                    forwardable.
  ///
  /// @return If DoIt==false, return whether the operand tree can be forwarded.
  ///         If DoIt==true, return FD_DidForward.
  ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal,
                                 ScopStmt *UseStmt, Loop *UseLoop, bool DoIt) {
    ScopStmt *DefStmt = nullptr;
    Loop *DefLoop = nullptr;

    // { DefDomain[] -> TargetDomain[] }
    isl::map DefToTarget;

    VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true);
    switch (VUse.getKind()) {
    case VirtualUse::Constant:
    case VirtualUse::Block:
    case VirtualUse::Hoisted:
      // These can be used anywhere without special considerations.
      if (DoIt)
        return FD_DidForwardTree;
      return FD_CanForwardLeaf;

    case VirtualUse::Synthesizable: {
      // ScopExpander will take care for of generating the code at the new
      // location.
      if (DoIt)
        return FD_DidForwardTree;

      // Check if the value is synthesizable at the new location as well. This
      // might be possible when leaving a loop for which ScalarEvolution is
      // unable to derive the exit value for.
      // TODO: If there is a LCSSA PHI at the loop exit, use that one.
      // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we
      // do not forward past its loop header. This would require us to use a
      // previous loop induction variable instead the current one. We currently
      // do not allow forwarding PHI nodes, thus this should never occur (the
      // only exception where no phi is necessary being an unreachable loop
      // without edge from the outside).
      VirtualUse TargetUse = VirtualUse::create(
          S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true);
      if (TargetUse.getKind() == VirtualUse::Synthesizable)
        return FD_CanForwardLeaf;

      LLVM_DEBUG(
          dbgs() << "    Synthesizable would not be synthesizable anymore: "
                 << *UseVal << "\n");
      return FD_CannotForward;
    }

    case VirtualUse::ReadOnly:
      // Note that we cannot return FD_CanForwardTree here. With a operand tree
      // depth of 0, UseVal is the use in TargetStmt that we try to replace.
      // With -polly-analyze-read-only-scalars=true we would ensure the
      // existence of a MemoryAccess (which already exists for a leaf) and be
      // removed again by tryForwardTree because it's goal is to remove this
      // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission
      // to do so.
      if (!DoIt)
        return FD_CanForwardLeaf;

      // If we model read-only scalars, we need to create a MemoryAccess for it.
      if (ModelReadOnlyScalars)
        TargetStmt->ensureValueRead(UseVal);

      NumReadOnlyCopied++;
      TotalReadOnlyCopied++;
      return FD_DidForwardLeaf;

    case VirtualUse::Intra:
      // Knowing that UseStmt and DefStmt are the same statement instance, just
      // reuse the information about UseStmt for DefStmt
      DefStmt = UseStmt;

      LLVM_FALLTHROUGH;
    case VirtualUse::Inter:
      Instruction *Inst = cast<Instruction>(UseVal);

      if (!DefStmt) {
        DefStmt = S->getStmtFor(Inst);
        if (!DefStmt)
          return FD_CannotForward;
      }

      DefLoop = LI->getLoopFor(Inst->getParent());

      ForwardingDecision SpeculativeResult =
          forwardSpeculatable(TargetStmt, Inst, DefStmt, DefLoop, DoIt);
      if (SpeculativeResult != FD_NotApplicable)
        return SpeculativeResult;

      ForwardingDecision KnownResult = forwardKnownLoad(
          TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
      if (KnownResult != FD_NotApplicable)
        return KnownResult;

      ForwardingDecision ReloadResult = reloadKnownContent(
          TargetStmt, Inst, UseStmt, UseLoop, DefStmt, DefLoop, DoIt);
      if (ReloadResult != FD_NotApplicable)
        return ReloadResult;

      // When no method is found to forward the operand tree, we effectively
      // cannot handle it.
      LLVM_DEBUG(dbgs() << "    Cannot forward instruction: " << *Inst << "\n");
      return FD_CannotForward;
    }

    llvm_unreachable("Case unhandled");
  }

  /// Try to forward an operand tree rooted in @p RA.
  bool tryForwardTree(MemoryAccess *RA) {
    assert(RA->isLatestScalarKind());
    LLVM_DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n");

    ScopStmt *Stmt = RA->getStatement();
    Loop *InLoop = Stmt->getSurroundingLoop();

    isl::map TargetToUse;
    if (!Known.is_null()) {
      isl::space DomSpace = Stmt->getDomainSpace();
      TargetToUse =
          isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace));
    }

    ForwardingDecision Assessment =
        forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, false);
    assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf);
    if (Assessment != FD_CanForwardProfitably)
      return false;

    ForwardingDecision Execution =
        forwardTree(Stmt, RA->getAccessValue(), Stmt, InLoop, true);
    assert(((Execution == FD_DidForwardTree) ||
            (Execution == FD_DidForwardLeaf)) &&
           "A previous positive assessment must also be executable");

    if (Execution == FD_DidForwardTree)
      Stmt->removeSingleMemoryAccess(RA);
    return true;
  }

  /// Return which SCoP this instance is processing.
  Scop *getScop() const { return S; }

  /// Run the algorithm: Use value read accesses as operand tree roots and try
  /// to forward them into the statement.
  bool forwardOperandTrees() {
    for (ScopStmt &Stmt : *S) {
      bool StmtModified = false;

      // Because we are modifying the MemoryAccess list, collect them first to
      // avoid iterator invalidation.
      SmallVector<MemoryAccess *, 16> Accs;
      for (MemoryAccess *RA : Stmt) {
        if (!RA->isRead())
          continue;
        if (!RA->isLatestScalarKind())
          continue;

        Accs.push_back(RA);
      }

      for (MemoryAccess *RA : Accs) {
        if (tryForwardTree(RA)) {
          Modified = true;
          StmtModified = true;
          NumForwardedTrees++;
          TotalForwardedTrees++;
        }
      }

      if (StmtModified) {
        NumModifiedStmts++;
        TotalModifiedStmts++;
      }
    }

    if (Modified)
      ScopsModified++;
    return Modified;
  }

  /// Print the pass result, performed transformations and the SCoP after the
  /// transformation.
  void print(raw_ostream &OS, int Indent = 0) {
    printStatistics(OS, Indent);

    if (!Modified) {
      // This line can easily be checked in regression tests.
      OS << "ForwardOpTree executed, but did not modify anything\n";
      return;
    }

    printStatements(OS, Indent);
  }
};

/// Pass that redirects scalar reads to array elements that are known to contain
/// the same value.
///
/// This reduces the number of scalar accesses and therefore potentially
/// increases the freedom of the scheduler. In the ideal case, all reads of a
/// scalar definition are redirected (We currently do not care about removing
/// the write in this case).  This is also useful for the main DeLICM pass as
/// there are less scalars to be mapped.
class ForwardOpTree : public ScopPass {
private:
  /// The pass implementation, also holding per-scop data.
  std::unique_ptr<ForwardOpTreeImpl> Impl;

public:
  static char ID;

  explicit ForwardOpTree() : ScopPass(ID) {}
  ForwardOpTree(const ForwardOpTree &) = delete;
  ForwardOpTree &operator=(const ForwardOpTree &) = delete;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredTransitive<ScopInfoRegionPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
  }

  bool runOnScop(Scop &S) override {
    // Free resources for previous SCoP's computation, if not yet done.
    releaseMemory();

    LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

    {
      IslMaxOperationsGuard MaxOpGuard(S.getIslCtx().get(), MaxOps, false);
      Impl = std::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard);

      if (AnalyzeKnown) {
        LLVM_DEBUG(dbgs() << "Prepare forwarders...\n");
        Impl->computeKnownValues();
      }

      LLVM_DEBUG(dbgs() << "Forwarding operand trees...\n");
      Impl->forwardOperandTrees();

      if (MaxOpGuard.hasQuotaExceeded()) {
        LLVM_DEBUG(dbgs() << "Not all operations completed because of "
                             "max_operations exceeded\n");
        KnownOutOfQuota++;
      }
    }

    LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
    LLVM_DEBUG(dbgs() << S);

    // Update statistics
    auto ScopStats = S.getStatistics();
    NumValueWrites += ScopStats.NumValueWrites;
    NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
    NumPHIWrites += ScopStats.NumPHIWrites;
    NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
    NumSingletonWrites += ScopStats.NumSingletonWrites;
    NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;

    return false;
  }

  void printScop(raw_ostream &OS, Scop &S) const override {
    if (!Impl)
      return;

    assert(Impl->getScop() == &S);
    Impl->print(OS);
  }

  void releaseMemory() override { Impl.reset(); }
}; // class ForwardOpTree

char ForwardOpTree::ID;
} // namespace

ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); }

INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree",
                      "Polly - Forward operand tree", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(ForwardOpTree, "polly-optree",
                    "Polly - Forward operand tree", false, false)