ManagedMemoryRewrite.cpp 16.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
//===---- ManagedMemoryRewrite.cpp - Rewrite global & malloc'd memory -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Take a module and rewrite:
// 1. `malloc` -> `polly_mallocManaged`
// 2. `free` -> `polly_freeManaged`
// 3. global arrays with initializers -> global arrays that are initialized
//                                       with a constructor call to
//                                       `polly_mallocManaged`.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/IRBuilder.h"
#include "polly/CodeGen/PPCGCodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"

using namespace polly;

static cl::opt<bool> RewriteAllocas(
    "polly-acc-rewrite-allocas",
    cl::desc(
        "Ask the managed memory rewriter to also rewrite alloca instructions"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> IgnoreLinkageForGlobals(
    "polly-acc-rewrite-ignore-linkage-for-globals",
    cl::desc(
        "By default, we only rewrite globals with internal linkage. This flag "
        "enables rewriting of globals regardless of linkage"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

#define DEBUG_TYPE "polly-acc-rewrite-managed-memory"
namespace {

static llvm::Function *getOrCreatePollyMallocManaged(Module &M) {
  const char *Name = "polly_mallocManaged";
  Function *F = M.getFunction(Name);

  // If F is not available, declare it.
  if (!F) {
    GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
    PollyIRBuilder Builder(M.getContext());
    // TODO: How do I get `size_t`? I assume from DataLayout?
    FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(),
                                         {Builder.getInt64Ty()}, false);
    F = Function::Create(Ty, Linkage, Name, &M);
  }

  return F;
}

static llvm::Function *getOrCreatePollyFreeManaged(Module &M) {
  const char *Name = "polly_freeManaged";
  Function *F = M.getFunction(Name);

  // If F is not available, declare it.
  if (!F) {
    GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
    PollyIRBuilder Builder(M.getContext());
    // TODO: How do I get `size_t`? I assume from DataLayout?
    FunctionType *Ty =
        FunctionType::get(Builder.getVoidTy(), {Builder.getInt8PtrTy()}, false);
    F = Function::Create(Ty, Linkage, Name, &M);
  }

  return F;
}

// Expand a constant expression `Cur`, which is used at instruction `Parent`
// at index `index`.
// Since a constant expression can expand to multiple instructions, store all
// the expands into a set called `Expands`.
// Note that this goes inorder on the constant expression tree.
// A * ((B * D) + C)
// will be processed with first A, then B * D, then B, then D, and then C.
// Though ConstantExprs are not treated as "trees" but as DAGs, since you can
// have something like this:
//    *
//   /  \
//   \  /
//    (D)
//
// For the purposes of this expansion, we expand the two occurences of D
// separately. Therefore, we expand the DAG into the tree:
//  *
// / \
// D  D
// TODO: We don't _have_to do this, but this is the simplest solution.
// We can write a solution that keeps track of which constants have been
// already expanded.
static void expandConstantExpr(ConstantExpr *Cur, PollyIRBuilder &Builder,
                               Instruction *Parent, int index,
                               SmallPtrSet<Instruction *, 4> &Expands) {
  assert(Cur && "invalid constant expression passed");
  Instruction *I = Cur->getAsInstruction();
  assert(I && "unable to convert ConstantExpr to Instruction");

  LLVM_DEBUG(dbgs() << "Expanding ConstantExpression: (" << *Cur
                    << ") in Instruction: (" << *I << ")\n";);

  // Invalidate `Cur` so that no one after this point uses `Cur`. Rather,
  // they should mutate `I`.
  Cur = nullptr;

  Expands.insert(I);
  Parent->setOperand(index, I);

  // The things that `Parent` uses (its operands) should be created
  // before `Parent`.
  Builder.SetInsertPoint(Parent);
  Builder.Insert(I);

  for (unsigned i = 0; i < I->getNumOperands(); i++) {
    Value *Op = I->getOperand(i);
    assert(isa<Constant>(Op) && "constant must have a constant operand");

    if (ConstantExpr *CExprOp = dyn_cast<ConstantExpr>(Op))
      expandConstantExpr(CExprOp, Builder, I, i, Expands);
  }
}

// Edit all uses of `OldVal` to NewVal` in `Inst`. This will rewrite
// `ConstantExpr`s that are used in the `Inst`.
// Note that `replaceAllUsesWith` is insufficient for this purpose because it
// does not rewrite values in `ConstantExpr`s.
static void rewriteOldValToNew(Instruction *Inst, Value *OldVal, Value *NewVal,
                               PollyIRBuilder &Builder) {

  // This contains a set of instructions in which OldVal must be replaced.
  // We start with `Inst`, and we fill it up with the expanded `ConstantExpr`s
  // from `Inst`s arguments.
  // We need to go through this process because `replaceAllUsesWith` does not
  // actually edit `ConstantExpr`s.
  SmallPtrSet<Instruction *, 4> InstsToVisit = {Inst};

  // Expand all `ConstantExpr`s and place it in `InstsToVisit`.
  for (unsigned i = 0; i < Inst->getNumOperands(); i++) {
    Value *Operand = Inst->getOperand(i);
    if (ConstantExpr *ValueConstExpr = dyn_cast<ConstantExpr>(Operand))
      expandConstantExpr(ValueConstExpr, Builder, Inst, i, InstsToVisit);
  }

  // Now visit each instruction and use `replaceUsesOfWith`. We know that
  // will work because `I` cannot have any `ConstantExpr` within it.
  for (Instruction *I : InstsToVisit)
    I->replaceUsesOfWith(OldVal, NewVal);
}

// Given a value `Current`, return all Instructions that may contain `Current`
// in an expression.
// We need this auxiliary function, because if we have a
// `Constant` that is a user of `V`, we need to recurse into the
// `Constant`s uses to gather the root instruciton.
static void getInstructionUsersOfValue(Value *V,
                                       SmallVector<Instruction *, 4> &Owners) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    Owners.push_back(I);
  } else {
    // Anything that is a `User` must be a constant or an instruction.
    auto *C = cast<Constant>(V);
    for (Use &CUse : C->uses())
      getInstructionUsersOfValue(CUse.getUser(), Owners);
  }
}

static void
replaceGlobalArray(Module &M, const DataLayout &DL, GlobalVariable &Array,
                   SmallPtrSet<GlobalVariable *, 4> &ReplacedGlobals) {
  // We only want arrays.
  ArrayType *ArrayTy = dyn_cast<ArrayType>(Array.getType()->getElementType());
  if (!ArrayTy)
    return;
  Type *ElemTy = ArrayTy->getElementType();
  PointerType *ElemPtrTy = ElemTy->getPointerTo();

  // We only wish to replace arrays that are visible in the module they
  // inhabit. Otherwise, our type edit from [T] to T* would be illegal across
  // modules.
  const bool OnlyVisibleInsideModule = Array.hasPrivateLinkage() ||
                                       Array.hasInternalLinkage() ||
                                       IgnoreLinkageForGlobals;
  if (!OnlyVisibleInsideModule) {
    LLVM_DEBUG(
        dbgs() << "Not rewriting (" << Array
               << ") to managed memory "
                  "because it could be visible externally. To force rewrite, "
                  "use -polly-acc-rewrite-ignore-linkage-for-globals.\n");
    return;
  }

  if (!Array.hasInitializer() ||
      !isa<ConstantAggregateZero>(Array.getInitializer())) {
    LLVM_DEBUG(dbgs() << "Not rewriting (" << Array
                      << ") to managed memory "
                         "because it has an initializer which is "
                         "not a zeroinitializer.\n");
    return;
  }

  // At this point, we have committed to replacing this array.
  ReplacedGlobals.insert(&Array);

  std::string NewName = Array.getName();
  NewName += ".toptr";
  GlobalVariable *ReplacementToArr =
      cast<GlobalVariable>(M.getOrInsertGlobal(NewName, ElemPtrTy));
  ReplacementToArr->setInitializer(ConstantPointerNull::get(ElemPtrTy));

  Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
  std::string FnName = Array.getName();
  FnName += ".constructor";
  PollyIRBuilder Builder(M.getContext());
  FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
  const GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
  Function *F = Function::Create(Ty, Linkage, FnName, &M);
  BasicBlock *Start = BasicBlock::Create(M.getContext(), "entry", F);
  Builder.SetInsertPoint(Start);

  const uint64_t ArraySizeInt = DL.getTypeAllocSize(ArrayTy);
  Value *ArraySize = Builder.getInt64(ArraySizeInt);
  ArraySize->setName("array.size");

  Value *AllocatedMemRaw =
      Builder.CreateCall(PollyMallocManaged, {ArraySize}, "mem.raw");
  Value *AllocatedMemTyped =
      Builder.CreatePointerCast(AllocatedMemRaw, ElemPtrTy, "mem.typed");
  Builder.CreateStore(AllocatedMemTyped, ReplacementToArr);
  Builder.CreateRetVoid();

  const int Priority = 0;
  appendToGlobalCtors(M, F, Priority, ReplacementToArr);

  SmallVector<Instruction *, 4> ArrayUserInstructions;
  // Get all instructions that use array. We need to do this weird thing
  // because `Constant`s that contain this array neeed to be expanded into
  // instructions so that we can replace their parameters. `Constant`s cannot
  // be edited easily, so we choose to convert all `Constant`s to
  // `Instruction`s and handle all of the uses of `Array` uniformly.
  for (Use &ArrayUse : Array.uses())
    getInstructionUsersOfValue(ArrayUse.getUser(), ArrayUserInstructions);

  for (Instruction *UserOfArrayInst : ArrayUserInstructions) {

    Builder.SetInsertPoint(UserOfArrayInst);
    // <ty>** -> <ty>*
    Value *ArrPtrLoaded = Builder.CreateLoad(ReplacementToArr, "arrptr.load");
    // <ty>* -> [ty]*
    Value *ArrPtrLoadedBitcasted = Builder.CreateBitCast(
        ArrPtrLoaded, ArrayTy->getPointerTo(), "arrptr.bitcast");
    rewriteOldValToNew(UserOfArrayInst, &Array, ArrPtrLoadedBitcasted, Builder);
  }
}

// We return all `allocas` that may need to be converted to a call to
// cudaMallocManaged.
static void getAllocasToBeManaged(Function &F,
                                  SmallSet<AllocaInst *, 4> &Allocas) {
  for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      auto *Alloca = dyn_cast<AllocaInst>(&I);
      if (!Alloca)
        continue;
      LLVM_DEBUG(dbgs() << "Checking if (" << *Alloca << ") may be captured: ");

      if (PointerMayBeCaptured(Alloca, /* ReturnCaptures */ false,
                               /* StoreCaptures */ true)) {
        Allocas.insert(Alloca);
        LLVM_DEBUG(dbgs() << "YES (captured).\n");
      } else {
        LLVM_DEBUG(dbgs() << "NO (not captured).\n");
      }
    }
  }
}

static void rewriteAllocaAsManagedMemory(AllocaInst *Alloca,
                                         const DataLayout &DL) {
  LLVM_DEBUG(dbgs() << "rewriting: (" << *Alloca << ") to managed mem.\n");
  Module *M = Alloca->getModule();
  assert(M && "Alloca does not have a module");

  PollyIRBuilder Builder(M->getContext());
  Builder.SetInsertPoint(Alloca);

  Function *MallocManagedFn =
      getOrCreatePollyMallocManaged(*Alloca->getModule());
  const uint64_t Size =
      DL.getTypeAllocSize(Alloca->getType()->getElementType());
  Value *SizeVal = Builder.getInt64(Size);
  Value *RawManagedMem = Builder.CreateCall(MallocManagedFn, {SizeVal});
  Value *Bitcasted = Builder.CreateBitCast(RawManagedMem, Alloca->getType());

  Function *F = Alloca->getFunction();
  assert(F && "Alloca has invalid function");

  Bitcasted->takeName(Alloca);
  Alloca->replaceAllUsesWith(Bitcasted);
  Alloca->eraseFromParent();

  for (BasicBlock &BB : *F) {
    ReturnInst *Return = dyn_cast<ReturnInst>(BB.getTerminator());
    if (!Return)
      continue;
    Builder.SetInsertPoint(Return);

    Function *FreeManagedFn = getOrCreatePollyFreeManaged(*M);
    Builder.CreateCall(FreeManagedFn, {RawManagedMem});
  }
}

// Replace all uses of `Old` with `New`, even inside `ConstantExpr`.
//
// `replaceAllUsesWith` does replace values in `ConstantExpr`. This function
// actually does replace it in `ConstantExpr`. The caveat is that if there is
// a use that is *outside* a function (say, at global declarations), we fail.
// So, this is meant to be used on values which we know will only be used
// within functions.
//
// This process works by looking through the uses of `Old`. If it finds a
// `ConstantExpr`, it recursively looks for the owning instruction.
// Then, it expands all the `ConstantExpr` to instructions and replaces
// `Old` with `New` in the expanded instructions.
static void replaceAllUsesAndConstantUses(Value *Old, Value *New,
                                          PollyIRBuilder &Builder) {
  SmallVector<Instruction *, 4> UserInstructions;
  // Get all instructions that use array. We need to do this weird thing
  // because `Constant`s that contain this array neeed to be expanded into
  // instructions so that we can replace their parameters. `Constant`s cannot
  // be edited easily, so we choose to convert all `Constant`s to
  // `Instruction`s and handle all of the uses of `Array` uniformly.
  for (Use &ArrayUse : Old->uses())
    getInstructionUsersOfValue(ArrayUse.getUser(), UserInstructions);

  for (Instruction *I : UserInstructions)
    rewriteOldValToNew(I, Old, New, Builder);
}

class ManagedMemoryRewritePass : public ModulePass {
public:
  static char ID;
  GPUArch Architecture;
  GPURuntime Runtime;

  ManagedMemoryRewritePass() : ModulePass(ID) {}
  virtual bool runOnModule(Module &M) {
    const DataLayout &DL = M.getDataLayout();

    Function *Malloc = M.getFunction("malloc");

    if (Malloc) {
      PollyIRBuilder Builder(M.getContext());
      Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
      assert(PollyMallocManaged && "unable to create polly_mallocManaged");

      replaceAllUsesAndConstantUses(Malloc, PollyMallocManaged, Builder);
      Malloc->eraseFromParent();
    }

    Function *Free = M.getFunction("free");

    if (Free) {
      PollyIRBuilder Builder(M.getContext());
      Function *PollyFreeManaged = getOrCreatePollyFreeManaged(M);
      assert(PollyFreeManaged && "unable to create polly_freeManaged");

      replaceAllUsesAndConstantUses(Free, PollyFreeManaged, Builder);
      Free->eraseFromParent();
    }

    SmallPtrSet<GlobalVariable *, 4> GlobalsToErase;
    for (GlobalVariable &Global : M.globals())
      replaceGlobalArray(M, DL, Global, GlobalsToErase);
    for (GlobalVariable *G : GlobalsToErase)
      G->eraseFromParent();

    // Rewrite allocas to cudaMallocs if we are asked to do so.
    if (RewriteAllocas) {
      SmallSet<AllocaInst *, 4> AllocasToBeManaged;
      for (Function &F : M.functions())
        getAllocasToBeManaged(F, AllocasToBeManaged);

      for (AllocaInst *Alloca : AllocasToBeManaged)
        rewriteAllocaAsManagedMemory(Alloca, DL);
    }

    return true;
  }
};
} // namespace
char ManagedMemoryRewritePass::ID = 42;

Pass *polly::createManagedMemoryRewritePassPass(GPUArch Arch,
                                                GPURuntime Runtime) {
  ManagedMemoryRewritePass *pass = new ManagedMemoryRewritePass();
  pass->Runtime = Runtime;
  pass->Architecture = Arch;
  return pass;
}

INITIALIZE_PASS_BEGIN(
    ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
    "Polly - Rewrite all allocations in heap & data section to managed memory",
    false, false)
INITIALIZE_PASS_DEPENDENCY(PPCGCodeGeneration);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_END(
    ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
    "Polly - Rewrite all allocations in heap & data section to managed memory",
    false, false)