BlockGenerators.cpp
66.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BlockGenerator and VectorBlockGenerator classes,
// which generate sequential code and vectorized code for a polyhedral
// statement, respectively.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "isl/ast.h"
#include <deque>
using namespace llvm;
using namespace polly;
static cl::opt<bool> Aligned("enable-polly-aligned",
cl::desc("Assumed aligned memory accesses."),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
bool PollyDebugPrinting;
static cl::opt<bool, true> DebugPrintingX(
"polly-codegen-add-debug-printing",
cl::desc("Add printf calls that show the values loaded/stored."),
cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false),
cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> TraceStmts(
"polly-codegen-trace-stmts",
cl::desc("Add printf calls that print the statement being executed"),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> TraceScalars(
"polly-codegen-trace-scalars",
cl::desc("Add printf calls that print the values of all scalar values "
"used in a statement. Requires -polly-codegen-trace-stmts."),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
BlockGenerator::BlockGenerator(
PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
: Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
GlobalMap(GlobalMap), StartBlock(StartBlock) {}
Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
ValueMapT &BBMap,
LoopToScevMapT <S,
Loop *L) const {
if (!SE.isSCEVable(Old->getType()))
return nullptr;
const SCEV *Scev = SE.getSCEVAtScope(Old, L);
if (!Scev)
return nullptr;
if (isa<SCEVCouldNotCompute>(Scev))
return nullptr;
const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
ValueMapT VTV;
VTV.insert(BBMap.begin(), BBMap.end());
VTV.insert(GlobalMap.begin(), GlobalMap.end());
Scop &S = *Stmt.getParent();
const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
auto IP = Builder.GetInsertPoint();
assert(IP != Builder.GetInsertBlock()->end() &&
"Only instructions can be insert points for SCEVExpander");
Value *Expanded =
expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
StartBlock->getSinglePredecessor());
BBMap[Old] = Expanded;
return Expanded;
}
Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
LoopToScevMapT <S, Loop *L) const {
auto lookupGlobally = [this](Value *Old) -> Value * {
Value *New = GlobalMap.lookup(Old);
if (!New)
return nullptr;
// Required by:
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
// * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
// * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
// * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
// GlobalMap should be a mapping from (value in original SCoP) to (copied
// value in generated SCoP), without intermediate mappings, which might
// easily require transitiveness as well.
if (Value *NewRemapped = GlobalMap.lookup(New))
New = NewRemapped;
// No test case for this code.
if (Old->getType()->getScalarSizeInBits() <
New->getType()->getScalarSizeInBits())
New = Builder.CreateTruncOrBitCast(New, Old->getType());
return New;
};
Value *New = nullptr;
auto VUse = VirtualUse::create(&Stmt, L, Old, true);
switch (VUse.getKind()) {
case VirtualUse::Block:
// BasicBlock are constants, but the BlockGenerator copies them.
New = BBMap.lookup(Old);
break;
case VirtualUse::Constant:
// Used by:
// * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
// Constants should not be redefined. In this case, the GlobalMap just
// contains a mapping to the same constant, which is unnecessary, but
// harmless.
if ((New = lookupGlobally(Old)))
break;
assert(!BBMap.count(Old));
New = Old;
break;
case VirtualUse::ReadOnly:
assert(!GlobalMap.count(Old));
// Required for:
// * Isl/CodeGen/MemAccess/create_arrays.ll
// * Isl/CodeGen/read-only-scalars.ll
// * ScheduleOptimizer/pattern-matching-based-opts_10.ll
// For some reason these reload a read-only value. The reloaded value ends
// up in BBMap, buts its value should be identical.
//
// Required for:
// * Isl/CodeGen/OpenMP/single_loop_with_param.ll
// The parallel subfunctions need to reference the read-only value from the
// parent function, this is done by reloading them locally.
if ((New = BBMap.lookup(Old)))
break;
New = Old;
break;
case VirtualUse::Synthesizable:
// Used by:
// * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
// * Isl/CodeGen/OpenMP/recomputed-srem.ll
// * Isl/CodeGen/OpenMP/reference-other-bb.ll
// * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
// For some reason synthesizable values end up in GlobalMap. Their values
// are the same as trySynthesizeNewValue would return. The legacy
// implementation prioritized GlobalMap, so this is what we do here as well.
// Ideally, synthesizable values should not end up in GlobalMap.
if ((New = lookupGlobally(Old)))
break;
// Required for:
// * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
// * Isl/CodeGen/getNumberOfIterations.ll
// * Isl/CodeGen/non_affine_float_compare.ll
// * ScheduleOptimizer/pattern-matching-based-opts_10.ll
// Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
// not precomputed (SCEVExpander has its own caching mechanism).
// These tests fail without this, but I think trySynthesizeNewValue would
// just re-synthesize the same instructions.
if ((New = BBMap.lookup(Old)))
break;
New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
break;
case VirtualUse::Hoisted:
// TODO: Hoisted invariant loads should be found in GlobalMap only, but not
// redefined locally (which will be ignored anyway). That is, the following
// assertion should apply: assert(!BBMap.count(Old))
New = lookupGlobally(Old);
break;
case VirtualUse::Intra:
case VirtualUse::Inter:
assert(!GlobalMap.count(Old) &&
"Intra and inter-stmt values are never global");
New = BBMap.lookup(Old);
break;
}
assert(New && "Unexpected scalar dependence in region!");
return New;
}
void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
ValueMapT &BBMap, LoopToScevMapT <S) {
// We do not generate debug intrinsics as we did not investigate how to
// copy them correctly. At the current state, they just crash the code
// generation as the meta-data operands are not correctly copied.
if (isa<DbgInfoIntrinsic>(Inst))
return;
Instruction *NewInst = Inst->clone();
// Replace old operands with the new ones.
for (Value *OldOperand : Inst->operands()) {
Value *NewOperand =
getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
if (!NewOperand) {
assert(!isa<StoreInst>(NewInst) &&
"Store instructions are always needed!");
NewInst->deleteValue();
return;
}
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
}
Builder.Insert(NewInst);
BBMap[Inst] = NewInst;
// When copying the instruction onto the Module meant for the GPU,
// debug metadata attached to an instruction causes all related
// metadata to be pulled into the Module. This includes the DICompileUnit,
// which will not be listed in llvm.dbg.cu of the Module since the Module
// doesn't contain one. This fails the verification of the Module and the
// subsequent generation of the ASM string.
if (NewInst->getModule() != Inst->getModule())
NewInst->setDebugLoc(llvm::DebugLoc());
if (!NewInst->getType()->isVoidTy())
NewInst->setName("p_" + Inst->getName());
}
Value *
BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
return generateLocationAccessed(
Stmt, getLoopForStmt(Stmt),
Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
}
Value *BlockGenerator::generateLocationAccessed(
ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
Type *ExpectedType) {
isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
if (AccessExpr) {
AccessExpr = isl_ast_expr_address_of(AccessExpr);
auto Address = ExprBuilder->create(AccessExpr);
// Cast the address of this memory access to a pointer type that has the
// same element type as the original access, but uses the address space of
// the newly generated pointer.
auto OldPtrTy = ExpectedType->getPointerTo();
auto NewPtrTy = Address->getType();
OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
NewPtrTy->getPointerAddressSpace());
if (OldPtrTy != NewPtrTy)
Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
return Address;
}
assert(
Pointer &&
"If expression was not generated, must use the original pointer value");
return getNewValue(Stmt, Pointer, BBMap, LTS, L);
}
Value *
BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
LoopToScevMapT <S, ValueMapT &BBMap,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
if (Access.isLatestArrayKind())
return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
LTS, NewAccesses, Access.getId().release(),
Access.getAccessValue()->getType());
return getOrCreateAlloca(Access);
}
Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
auto *StmtBB = Stmt.getEntryBlock();
return LI.getLoopFor(StmtBB);
}
Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
if (Value *PreloadLoad = GlobalMap.lookup(Load))
return PreloadLoad;
Value *NewPointer =
generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
Value *ScalarLoad = Builder.CreateAlignedLoad(
NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
": ", ScalarLoad, "\n");
return ScalarLoad;
}
void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
isl::set AccDom = MA.getAccessRelation().domain();
std::string Subject = MA.getId().get_name();
generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
Value *NewPointer =
generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
LTS, getLoopForStmt(Stmt));
if (PollyDebugPrinting)
RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer,
": ", ValueOperand, "\n");
Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
});
}
bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
Loop *L = getLoopForStmt(Stmt);
return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
canSynthesize(Inst, *Stmt.getParent(), &SE, L);
}
void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
// Terminator instructions control the control flow. They are explicitly
// expressed in the clast and do not need to be copied.
if (Inst->isTerminator())
return;
// Synthesizable statements will be generated on-demand.
if (canSyntheziseInStmt(Stmt, Inst))
return;
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
// Compute NewLoad before its insertion in BBMap to make the insertion
// deterministic.
BBMap[Load] = NewLoad;
return;
}
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
// Identified as redundant by -polly-simplify.
if (!Stmt.getArrayAccessOrNULLFor(Store))
return;
generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
return;
}
if (auto *PHI = dyn_cast<PHINode>(Inst)) {
copyPHIInstruction(Stmt, PHI, BBMap, LTS);
return;
}
// Skip some special intrinsics for which we do not adjust the semantics to
// the new schedule. All others are handled like every other instruction.
if (isIgnoredIntrinsic(Inst))
return;
copyInstScalar(Stmt, Inst, BBMap, LTS);
}
void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
auto NewBB = Builder.GetInsertBlock();
for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
Instruction *NewInst = &*I;
if (!isInstructionTriviallyDead(NewInst))
continue;
for (auto Pair : BBMap)
if (Pair.second == NewInst) {
BBMap.erase(Pair.first);
}
NewInst->eraseFromParent();
I = NewBB->rbegin();
}
}
void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
assert(Stmt.isBlockStmt() &&
"Only block statements can be copied by the block generator");
ValueMapT BBMap;
BasicBlock *BB = Stmt.getBasicBlock();
copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
removeDeadInstructions(BB, BBMap);
}
BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
CopyBB->setName("polly.stmt." + BB->getName());
return CopyBB;
}
BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
BasicBlock *CopyBB = splitBB(BB);
Builder.SetInsertPoint(&CopyBB->front());
generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
generateBeginStmtTrace(Stmt, LTS, BBMap);
copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
// After a basic block was copied store all scalars that escape this block in
// their alloca.
generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
return CopyBB;
}
void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
ValueMapT &BBMap, LoopToScevMapT <S,
isl_id_to_ast_expr *NewAccesses) {
EntryBB = &CopyBB->getParent()->getEntryBlock();
// Block statements and the entry blocks of region statement are code
// generated from instruction lists. This allow us to optimize the
// instructions that belong to a certain scop statement. As the code
// structure of region statements might be arbitrary complex, optimizing the
// instruction list is not yet supported.
if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB))
for (Instruction *Inst : Stmt.getInstructions())
copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
else
for (Instruction &Inst : *BB)
copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
}
Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");
return getOrCreateAlloca(Access.getLatestScopArrayInfo());
}
Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
auto &Addr = ScalarMap[Array];
if (Addr) {
// Allow allocas to be (temporarily) redirected once by adding a new
// old-alloca-addr to new-addr mapping to GlobalMap. This functionality
// is used for example by the OpenMP code generation where a first use
// of a scalar while still in the host code allocates a normal alloca with
// getOrCreateAlloca. When the values of this scalar are accessed during
// the generation of the parallel subfunction, these values are copied over
// to the parallel subfunction and each request for a scalar alloca slot
// must be forwarded to the temporary in-subfunction slot. This mapping is
// removed when the subfunction has been generated and again normal host
// code is generated. Due to the following reasons it is not possible to
// perform the GlobalMap lookup right after creating the alloca below, but
// instead we need to check GlobalMap at each call to getOrCreateAlloca:
//
// 1) GlobalMap may be changed multiple times (for each parallel loop),
// 2) The temporary mapping is commonly only known after the initial
// alloca has already been generated, and
// 3) The original alloca value must be restored after leaving the
// sub-function.
if (Value *NewAddr = GlobalMap.lookup(&*Addr))
return NewAddr;
return Addr;
}
Type *Ty = Array->getElementType();
Value *ScalarBase = Array->getBasePtr();
std::string NameExt;
if (Array->isPHIKind())
NameExt = ".phiops";
else
NameExt = ".s2a";
const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();
Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(),
ScalarBase->getName() + NameExt);
EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
Addr->insertBefore(&*EntryBB->getFirstInsertionPt());
return Addr;
}
void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
Instruction *Inst = cast<Instruction>(Array->getBasePtr());
// If there are escape users we get the alloca for this instruction and put it
// in the EscapeMap for later finalization. Lastly, if the instruction was
// copied multiple times we already did this and can exit.
if (EscapeMap.count(Inst))
return;
EscapeUserVectorTy EscapeUsers;
for (User *U : Inst->users()) {
// Non-instruction user will never escape.
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI)
continue;
if (S.contains(UI))
continue;
EscapeUsers.push_back(UI);
}
// Exit if no escape uses were found.
if (EscapeUsers.empty())
return;
// Get or create an escape alloca for this instruction.
auto *ScalarAddr = getOrCreateAlloca(Array);
// Remember that this instruction has escape uses and the escape alloca.
EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
}
void BlockGenerator::generateScalarLoads(
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
for (MemoryAccess *MA : Stmt) {
if (MA->isOriginalArrayKind() || MA->isWrite())
continue;
#ifndef NDEBUG
auto StmtDom =
Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
auto AccDom = MA->getAccessRelation().domain();
assert(!StmtDom.is_subset(AccDom).is_false() &&
"Scalar must be loaded in all statement instances");
#endif
auto *Address =
getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
assert((!isa<Instruction>(Address) ||
DT.dominates(cast<Instruction>(Address)->getParent(),
Builder.GetInsertBlock())) &&
"Domination violation");
BBMap[MA->getAccessValue()] =
Builder.CreateLoad(Address, Address->getName() + ".reload");
}
}
Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
const isl::set &Subdomain) {
isl::ast_build AstBuild = Stmt.getAstBuild();
isl::set Domain = Stmt.getDomain();
isl::union_map USchedule = AstBuild.get_schedule();
USchedule = USchedule.intersect_domain(Domain);
assert(!USchedule.is_empty());
isl::map Schedule = isl::map::from_union_map(USchedule);
isl::set ScheduledDomain = Schedule.range();
isl::set ScheduledSet = Subdomain.apply(Schedule);
isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);
isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
IsInSetExpr = Builder.CreateICmpNE(
IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));
return IsInSetExpr;
}
void BlockGenerator::generateConditionalExecution(
ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
const std::function<void()> &GenThenFunc) {
isl::set StmtDom = Stmt.getDomain();
// If the condition is a tautology, don't generate a condition around the
// code.
bool IsPartialWrite =
!StmtDom.intersect_params(Stmt.getParent()->getContext())
.is_subset(Subdomain);
if (!IsPartialWrite) {
GenThenFunc();
return;
}
// Generate the condition.
Value *Cond = buildContainsCondition(Stmt, Subdomain);
// Don't call GenThenFunc if it is never executed. An ast index expression
// might not be defined in this case.
if (auto *Const = dyn_cast<ConstantInt>(Cond))
if (Const->isZero())
return;
BasicBlock *HeadBlock = Builder.GetInsertBlock();
StringRef BlockName = HeadBlock->getName();
// Generate the conditional block.
SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
&DT, &LI);
BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
BasicBlock *ThenBlock = Branch->getSuccessor(0);
BasicBlock *TailBlock = Branch->getSuccessor(1);
// Assign descriptive names.
if (auto *CondInst = dyn_cast<Instruction>(Cond))
CondInst->setName("polly." + Subject + ".cond");
ThenBlock->setName(BlockName + "." + Subject + ".partial");
TailBlock->setName(BlockName + ".cont");
// Put the client code into the conditional block and continue in the merge
// block afterwards.
Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
GenThenFunc();
Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
}
static std::string getInstName(Value *Val) {
std::string Result;
raw_string_ostream OS(Result);
Val->printAsOperand(OS, false);
return OS.str();
}
void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S,
ValueMapT &BBMap) {
if (!TraceStmts)
return;
Scop *S = Stmt.getParent();
const char *BaseName = Stmt.getBaseName();
isl::ast_build AstBuild = Stmt.getAstBuild();
isl::set Domain = Stmt.getDomain();
isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain);
isl::map Schedule = isl::map::from_union_map(USchedule);
assert(Schedule.is_empty().is_false() &&
"The stmt must have a valid instance");
isl::multi_pw_aff ScheduleMultiPwAff =
isl::pw_multi_aff::from_map(Schedule.reverse());
isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range());
// Sequence of strings to print.
SmallVector<llvm::Value *, 8> Values;
// Print the name of the statement.
// TODO: Indent by the depth of the statement instance in the schedule tree.
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName));
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "("));
// Add the coordinate of the statement instance.
int DomDims = ScheduleMultiPwAff.dim(isl::dim::out);
for (int i = 0; i < DomDims; i += 1) {
if (i > 0)
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ","));
isl::ast_expr IsInSet =
RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i));
Values.push_back(ExprBuilder->create(IsInSet.copy()));
}
if (TraceScalars) {
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")"));
DenseSet<Instruction *> Encountered;
// Add the value of each scalar (and the result of PHIs) used in the
// statement.
// TODO: Values used in region-statements.
for (Instruction *Inst : Stmt.insts()) {
if (!RuntimeDebugBuilder::isPrintable(Inst->getType()))
continue;
if (isa<PHINode>(Inst)) {
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " "));
Values.push_back(RuntimeDebugBuilder::getPrintableString(
Builder, getInstName(Inst)));
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "="));
Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS,
LI.getLoopFor(Inst->getParent())));
} else {
for (Value *Op : Inst->operand_values()) {
// Do not print values that cannot change during the execution of the
// SCoP.
auto *OpInst = dyn_cast<Instruction>(Op);
if (!OpInst)
continue;
if (!S->contains(OpInst))
continue;
// Print each scalar at most once, and exclude values defined in the
// statement itself.
if (Encountered.count(OpInst))
continue;
Values.push_back(
RuntimeDebugBuilder::getPrintableString(Builder, " "));
Values.push_back(RuntimeDebugBuilder::getPrintableString(
Builder, getInstName(OpInst)));
Values.push_back(
RuntimeDebugBuilder::getPrintableString(Builder, "="));
Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS,
LI.getLoopFor(Inst->getParent())));
Encountered.insert(OpInst);
}
}
Encountered.insert(Inst);
}
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n"));
} else {
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n"));
}
RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values));
}
void BlockGenerator::generateScalarStores(
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
assert(Stmt.isBlockStmt() &&
"Region statements need to use the generateScalarStores() function in "
"the RegionGenerator");
for (MemoryAccess *MA : Stmt) {
if (MA->isOriginalArrayKind() || MA->isRead())
continue;
isl::set AccDom = MA->getAccessRelation().domain();
std::string Subject = MA->getId().get_name();
generateConditionalExecution(
Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
Value *Val = MA->getAccessValue();
if (MA->isAnyPHIKind()) {
assert(MA->getIncoming().size() >= 1 &&
"Block statements have exactly one exiting block, or "
"multiple but "
"with same incoming block and value");
assert(std::all_of(MA->getIncoming().begin(),
MA->getIncoming().end(),
[&](std::pair<BasicBlock *, Value *> p) -> bool {
return p.first == Stmt.getBasicBlock();
}) &&
"Incoming block must be statement's block");
Val = MA->getIncoming()[0].second;
}
auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
BBMap, NewAccesses);
Val = getNewValue(Stmt, Val, BBMap, LTS, L);
assert((!isa<Instruction>(Val) ||
DT.dominates(cast<Instruction>(Val)->getParent(),
Builder.GetInsertBlock())) &&
"Domination violation");
assert((!isa<Instruction>(Address) ||
DT.dominates(cast<Instruction>(Address)->getParent(),
Builder.GetInsertBlock())) &&
"Domination violation");
// The new Val might have a different type than the old Val due to
// ScalarEvolution looking through bitcasts.
if (Val->getType() != Address->getType()->getPointerElementType())
Address = Builder.CreateBitOrPointerCast(
Address, Val->getType()->getPointerTo());
Builder.CreateStore(Val, Address);
});
}
}
void BlockGenerator::createScalarInitialization(Scop &S) {
BasicBlock *ExitBB = S.getExit();
BasicBlock *PreEntryBB = S.getEnteringBlock();
Builder.SetInsertPoint(&*StartBlock->begin());
for (auto &Array : S.arrays()) {
if (Array->getNumberOfDimensions() != 0)
continue;
if (Array->isPHIKind()) {
// For PHI nodes, the only values we need to store are the ones that
// reach the PHI node from outside the region. In general there should
// only be one such incoming edge and this edge should enter through
// 'PreEntryBB'.
auto PHI = cast<PHINode>(Array->getBasePtr());
for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
if (!S.contains(*BI) && *BI != PreEntryBB)
llvm_unreachable("Incoming edges from outside the scop should always "
"come from PreEntryBB");
int Idx = PHI->getBasicBlockIndex(PreEntryBB);
if (Idx < 0)
continue;
Value *ScalarValue = PHI->getIncomingValue(Idx);
Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
continue;
}
auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
if (Inst && S.contains(Inst))
continue;
// PHI nodes that are not marked as such in their SAI object are either exit
// PHI nodes we model as common scalars but without initialization, or
// incoming phi nodes that need to be initialized. Check if the first is the
// case for Inst and do not create and initialize memory if so.
if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
continue;
Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
}
}
void BlockGenerator::createScalarFinalization(Scop &S) {
// The exit block of the __unoptimized__ region.
BasicBlock *ExitBB = S.getExitingBlock();
// The merge block __just after__ the region and the optimized region.
BasicBlock *MergeBB = S.getExit();
// The exit block of the __optimized__ region.
BasicBlock *OptExitBB = *(pred_begin(MergeBB));
if (OptExitBB == ExitBB)
OptExitBB = *(++pred_begin(MergeBB));
Builder.SetInsertPoint(OptExitBB->getTerminator());
for (const auto &EscapeMapping : EscapeMap) {
// Extract the escaping instruction and the escaping users as well as the
// alloca the instruction was demoted to.
Instruction *EscapeInst = EscapeMapping.first;
const auto &EscapeMappingValue = EscapeMapping.second;
const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
Value *ScalarAddr = EscapeMappingValue.first;
// Reload the demoted instruction in the optimized version of the SCoP.
Value *EscapeInstReload =
Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
EscapeInstReload =
Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
// Create the merge PHI that merges the optimized and unoptimized version.
PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
EscapeInst->getName() + ".merge");
MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
// Add the respective values to the merge PHI.
MergePHI->addIncoming(EscapeInstReload, OptExitBB);
MergePHI->addIncoming(EscapeInst, ExitBB);
// The information of scalar evolution about the escaping instruction needs
// to be revoked so the new merged instruction will be used.
if (SE.isSCEVable(EscapeInst->getType()))
SE.forgetValue(EscapeInst);
// Replace all uses of the demoted instruction with the merge PHI.
for (Instruction *EUser : EscapeUsers)
EUser->replaceUsesOfWith(EscapeInst, MergePHI);
}
}
void BlockGenerator::findOutsideUsers(Scop &S) {
for (auto &Array : S.arrays()) {
if (Array->getNumberOfDimensions() != 0)
continue;
if (Array->isPHIKind())
continue;
auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
if (!Inst)
continue;
// Scop invariant hoisting moves some of the base pointers out of the scop.
// We can ignore these, as the invariant load hoisting already registers the
// relevant outside users.
if (!S.contains(Inst))
continue;
handleOutsideUsers(S, Array);
}
}
void BlockGenerator::createExitPHINodeMerges(Scop &S) {
if (S.hasSingleExitEdge())
return;
auto *ExitBB = S.getExitingBlock();
auto *MergeBB = S.getExit();
auto *AfterMergeBB = MergeBB->getSingleSuccessor();
BasicBlock *OptExitBB = *(pred_begin(MergeBB));
if (OptExitBB == ExitBB)
OptExitBB = *(++pred_begin(MergeBB));
Builder.SetInsertPoint(OptExitBB->getTerminator());
for (auto &SAI : S.arrays()) {
auto *Val = SAI->getBasePtr();
// Only Value-like scalars need a merge PHI. Exit block PHIs receive either
// the original PHI's value or the reloaded incoming values from the
// generated code. An llvm::Value is merged between the original code's
// value or the generated one.
if (!SAI->isExitPHIKind())
continue;
PHINode *PHI = dyn_cast<PHINode>(Val);
if (!PHI)
continue;
if (PHI->getParent() != AfterMergeBB)
continue;
std::string Name = PHI->getName();
Value *ScalarAddr = getOrCreateAlloca(SAI);
Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
assert((!isa<Instruction>(OriginalValue) ||
cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
"Original value must no be one we just generated.");
auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
MergePHI->addIncoming(Reload, OptExitBB);
MergePHI->addIncoming(OriginalValue, ExitBB);
int Idx = PHI->getBasicBlockIndex(MergeBB);
PHI->setIncomingValue(Idx, MergePHI);
}
}
void BlockGenerator::invalidateScalarEvolution(Scop &S) {
for (auto &Stmt : S)
if (Stmt.isCopyStmt())
continue;
else if (Stmt.isBlockStmt())
for (auto &Inst : *Stmt.getBasicBlock())
SE.forgetValue(&Inst);
else if (Stmt.isRegionStmt())
for (auto *BB : Stmt.getRegion()->blocks())
for (auto &Inst : *BB)
SE.forgetValue(&Inst);
else
llvm_unreachable("Unexpected statement type found");
// Invalidate SCEV of loops surrounding the EscapeUsers.
for (const auto &EscapeMapping : EscapeMap) {
const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
for (Instruction *EUser : EscapeUsers) {
if (Loop *L = LI.getLoopFor(EUser->getParent()))
while (L) {
SE.forgetLoop(L);
L = L->getParentLoop();
}
}
}
}
void BlockGenerator::finalizeSCoP(Scop &S) {
findOutsideUsers(S);
createScalarInitialization(S);
createExitPHINodeMerges(S);
createScalarFinalization(S);
invalidateScalarEvolution(S);
}
VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
std::vector<LoopToScevMapT> &VLTS,
isl_map *Schedule)
: BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
assert(Schedule && "No statement domain provided");
}
Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps,
Loop *L) {
if (Value *NewValue = VectorMap.lookup(Old))
return NewValue;
int Width = getVectorWidth();
Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
for (int Lane = 0; Lane < Width; Lane++)
Vector = Builder.CreateInsertElement(
Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
Builder.getInt32(Lane));
VectorMap[Old] = Vector;
return Vector;
}
Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
assert(PointerTy && "PointerType expected");
Type *ScalarType = PointerTy->getElementType();
VectorType *VectorType = VectorType::get(ScalarType, Width);
return PointerType::getUnqual(VectorType);
}
Value *VectorBlockGenerator::generateStrideOneLoad(
ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
__isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
unsigned VectorWidth = getVectorWidth();
auto *Pointer = Load->getPointerOperand();
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
VLTS[Offset], NewAccesses);
Value *VectorPtr =
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
LoadInst *VecLoad =
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
if (!Aligned)
VecLoad->setAlignment(Align(8));
if (NegativeStride) {
SmallVector<Constant *, 16> Indices;
for (int i = VectorWidth - 1; i >= 0; i--)
Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
Constant *SV = llvm::ConstantVector::get(Indices);
Value *RevVecLoad = Builder.CreateShuffleVector(
VecLoad, VecLoad, SV, Load->getName() + "_reverse");
return RevVecLoad;
}
return VecLoad;
}
Value *VectorBlockGenerator::generateStrideZeroLoad(
ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
auto *Pointer = Load->getPointerOperand();
Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
Value *NewPointer =
generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
Load->getName() + "_p_vec_p");
LoadInst *ScalarLoad =
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
if (!Aligned)
ScalarLoad->setAlignment(Align(8));
Constant *SplatVector = Constant::getNullValue(
VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
Value *VectorLoad = Builder.CreateShuffleVector(
ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
return VectorLoad;
}
Value *VectorBlockGenerator::generateUnknownStrideLoad(
ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
int VectorWidth = getVectorWidth();
auto *Pointer = Load->getPointerOperand();
VectorType *VectorType = VectorType::get(
dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
Value *Vector = UndefValue::get(VectorType);
for (int i = 0; i < VectorWidth; i++) {
Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
VLTS[i], NewAccesses);
Value *ScalarLoad =
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
Vector = Builder.CreateInsertElement(
Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
}
return Vector;
}
void VectorBlockGenerator::generateLoad(
ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
Load->getName() + "_p");
return;
}
if (!VectorType::isValidElementType(Load->getType())) {
for (int i = 0; i < getVectorWidth(); i++)
ScalarMaps[i][Load] =
generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
return;
}
const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
// Make sure we have scalar values available to access the pointer to
// the data location.
extractScalarValues(Load, VectorMap, ScalarMaps);
Value *NewLoad;
if (Access.isStrideZero(isl::manage_copy(Schedule)))
NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
else if (Access.isStrideOne(isl::manage_copy(Schedule)))
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
else if (Access.isStrideX(isl::manage_copy(Schedule), -1))
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
else
NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
VectorMap[Load] = NewLoad;
}
void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
int VectorWidth = getVectorWidth();
Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
ScalarMaps, getLoopForStmt(Stmt));
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
const CastInst *Cast = dyn_cast<CastInst>(Inst);
VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
}
void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
Loop *L = getLoopForStmt(Stmt);
Value *OpZero = Inst->getOperand(0);
Value *OpOne = Inst->getOperand(1);
Value *NewOpZero, *NewOpOne;
NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
Inst->getName() + "p_vec");
VectorMap[Inst] = NewInst;
}
void VectorBlockGenerator::copyStore(
ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
auto *Pointer = Store->getPointerOperand();
Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
ScalarMaps, getLoopForStmt(Stmt));
// Make sure we have scalar values available to access the pointer to
// the data location.
extractScalarValues(Store, VectorMap, ScalarMaps);
if (Access.isStrideOne(isl::manage_copy(Schedule))) {
Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
VLTS[0], NewAccesses);
Value *VectorPtr =
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
if (!Aligned)
Store->setAlignment(Align(8));
} else {
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
VLTS[i], NewAccesses);
Builder.CreateStore(Scalar, NewPointer);
}
}
}
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
ValueMapT &VectorMap) {
for (Value *Operand : Inst->operands())
if (VectorMap.count(Operand))
return true;
return false;
}
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
bool HasVectorOperand = false;
int VectorWidth = getVectorWidth();
for (Value *Operand : Inst->operands()) {
ValueMapT::iterator VecOp = VectorMap.find(Operand);
if (VecOp == VectorMap.end())
continue;
HasVectorOperand = true;
Value *NewVector = VecOp->second;
for (int i = 0; i < VectorWidth; ++i) {
ValueMapT &SM = ScalarMaps[i];
// If there is one scalar extracted, all scalar elements should have
// already been extracted by the code here. So no need to check for the
// existence of all of them.
if (SM.count(Operand))
break;
SM[Operand] =
Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
}
}
return HasVectorOperand;
}
void VectorBlockGenerator::copyInstScalarized(
ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
bool HasVectorOperand;
int VectorWidth = getVectorWidth();
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
VLTS[VectorLane], NewAccesses);
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
return;
// Make the result available as vector value.
VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
Value *Vector = UndefValue::get(VectorType);
for (int i = 0; i < VectorWidth; i++)
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
Builder.getInt32(i));
VectorMap[Inst] = Vector;
}
int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
void VectorBlockGenerator::copyInstruction(
ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
// Terminator instructions control the control flow. They are explicitly
// expressed in the clast and do not need to be copied.
if (Inst->isTerminator())
return;
if (canSyntheziseInStmt(Stmt, Inst))
return;
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
return;
}
if (hasVectorOperands(Inst, VectorMap)) {
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
// Identified as redundant by -polly-simplify.
if (!Stmt.getArrayAccessOrNULLFor(Store))
return;
copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
return;
}
if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
return;
}
if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
return;
}
// Fallthrough: We generate scalar instructions, if we don't know how to
// generate vector code.
}
copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
}
void VectorBlockGenerator::generateScalarVectorLoads(
ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
for (MemoryAccess *MA : Stmt) {
if (MA->isArrayKind() || MA->isWrite())
continue;
auto *Address = getOrCreateAlloca(*MA);
Type *VectorPtrType = getVectorPtrTy(Address, 1);
Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
Address->getName() + "_p_vec_p");
auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
Constant *SplatVector = Constant::getNullValue(
VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
Value *VectorVal = Builder.CreateShuffleVector(
Val, Val, SplatVector, Address->getName() + "_p_splat");
VectorBlockMap[MA->getAccessValue()] = VectorVal;
}
}
void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
for (MemoryAccess *MA : Stmt) {
if (MA->isArrayKind() || MA->isRead())
continue;
llvm_unreachable("Scalar stores not expected in vector loop");
}
}
void VectorBlockGenerator::copyStmt(
ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
assert(Stmt.isBlockStmt() &&
"TODO: Only block statements can be copied by the vector block "
"generator");
BasicBlock *BB = Stmt.getBasicBlock();
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
CopyBB->setName("polly.stmt." + BB->getName());
Builder.SetInsertPoint(&CopyBB->front());
// Create two maps that store the mapping from the original instructions of
// the old basic block to their copies in the new basic block. Those maps
// are basic block local.
//
// As vector code generation is supported there is one map for scalar values
// and one for vector values.
//
// In case we just do scalar code generation, the vectorMap is not used and
// the scalarMap has just one dimension, which contains the mapping.
//
// In case vector code generation is done, an instruction may either appear
// in the vector map once (as it is calculating >vectorwidth< values at a
// time. Or (if the values are calculated using scalar operations), it
// appears once in every dimension of the scalarMap.
VectorValueMapT ScalarBlockMap(getVectorWidth());
ValueMapT VectorBlockMap;
generateScalarVectorLoads(Stmt, VectorBlockMap);
for (Instruction *Inst : Stmt.getInstructions())
copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
verifyNoScalarStores(Stmt);
}
BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
BasicBlock *BBCopy) {
BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);
if (BBCopyIDom)
DT.changeImmediateDominator(BBCopy, BBCopyIDom);
return StartBlockMap.lookup(BBIDom);
}
// This is to determine whether an llvm::Value (defined in @p BB) is usable when
// leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
// does not work in cases where the exit block has edges from outside the
// region. In that case the llvm::Value would never be usable in in the exit
// block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
// for the subregion's exiting edges only. We need to determine whether an
// llvm::Value is usable in there. We do this by checking whether it dominates
// all exiting blocks individually.
static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
BasicBlock *BB) {
for (auto ExitingBB : predecessors(R->getExit())) {
// Check for non-subregion incoming edges.
if (!R->contains(ExitingBB))
continue;
if (!DT.dominates(BB, ExitingBB))
return false;
}
return true;
}
// Find the direct dominator of the subregion's exit block if the subregion was
// simplified.
static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
BasicBlock *Common = nullptr;
for (auto ExitingBB : predecessors(R->getExit())) {
// Check for non-subregion incoming edges.
if (!R->contains(ExitingBB))
continue;
// First exiting edge.
if (!Common) {
Common = ExitingBB;
continue;
}
Common = DT.findNearestCommonDominator(Common, ExitingBB);
}
assert(Common && R->contains(Common));
return Common;
}
void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
isl_id_to_ast_expr *IdToAstExp) {
assert(Stmt.isRegionStmt() &&
"Only region statements can be copied by the region generator");
// Forget all old mappings.
StartBlockMap.clear();
EndBlockMap.clear();
RegionMaps.clear();
IncompletePHINodeMap.clear();
// Collection of all values related to this subregion.
ValueMapT ValueMap;
// The region represented by the statement.
Region *R = Stmt.getRegion();
// Create a dedicated entry for the region where we can reload all demoted
// inputs.
BasicBlock *EntryBB = R->getEntry();
BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
Builder.SetInsertPoint(&EntryBBCopy->front());
ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
generateBeginStmtTrace(Stmt, LTS, EntryBBMap);
for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
if (!R->contains(*PI)) {
StartBlockMap[*PI] = EntryBBCopy;
EndBlockMap[*PI] = EntryBBCopy;
}
// Iterate over all blocks in the region in a breadth-first search.
std::deque<BasicBlock *> Blocks;
SmallSetVector<BasicBlock *, 8> SeenBlocks;
Blocks.push_back(EntryBB);
SeenBlocks.insert(EntryBB);
while (!Blocks.empty()) {
BasicBlock *BB = Blocks.front();
Blocks.pop_front();
// First split the block and update dominance information.
BasicBlock *BBCopy = splitBB(BB);
BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
// Get the mapping for this block and initialize it with either the scalar
// loads from the generated entering block (which dominates all blocks of
// this subregion) or the maps of the immediate dominator, if part of the
// subregion. The latter necessarily includes the former.
ValueMapT *InitBBMap;
if (BBCopyIDom) {
assert(RegionMaps.count(BBCopyIDom));
InitBBMap = &RegionMaps[BBCopyIDom];
} else
InitBBMap = &EntryBBMap;
auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
ValueMapT &RegionMap = Inserted.first->second;
// Copy the block with the BlockGenerator.
Builder.SetInsertPoint(&BBCopy->front());
copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
// In order to remap PHI nodes we store also basic block mappings.
StartBlockMap[BB] = BBCopy;
EndBlockMap[BB] = Builder.GetInsertBlock();
// Add values to incomplete PHI nodes waiting for this block to be copied.
for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
IncompletePHINodeMap[BB].clear();
// And continue with new successors inside the region.
for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
if (R->contains(*SI) && SeenBlocks.insert(*SI))
Blocks.push_back(*SI);
// Remember value in case it is visible after this subregion.
if (isDominatingSubregionExit(DT, R, BB))
ValueMap.insert(RegionMap.begin(), RegionMap.end());
}
// Now create a new dedicated region exit block and add it to the region map.
BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
StartBlockMap[R->getExit()] = ExitBBCopy;
EndBlockMap[R->getExit()] = ExitBBCopy;
BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
assert(ExitDomBBCopy &&
"Common exit dominator must be within region; at least the entry node "
"must match");
DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
// As the block generator doesn't handle control flow we need to add the
// region control flow by hand after all blocks have been copied.
for (BasicBlock *BB : SeenBlocks) {
BasicBlock *BBCopyStart = StartBlockMap[BB];
BasicBlock *BBCopyEnd = EndBlockMap[BB];
Instruction *TI = BB->getTerminator();
if (isa<UnreachableInst>(TI)) {
while (!BBCopyEnd->empty())
BBCopyEnd->begin()->eraseFromParent();
new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
continue;
}
Instruction *BICopy = BBCopyEnd->getTerminator();
ValueMapT &RegionMap = RegionMaps[BBCopyStart];
RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());
Builder.SetInsertPoint(BICopy);
copyInstScalar(Stmt, TI, RegionMap, LTS);
BICopy->eraseFromParent();
}
// Add counting PHI nodes to all loops in the region that can be used as
// replacement for SCEVs referring to the old loop.
for (BasicBlock *BB : SeenBlocks) {
Loop *L = LI.getLoopFor(BB);
if (L == nullptr || L->getHeader() != BB || !R->contains(L))
continue;
BasicBlock *BBCopy = StartBlockMap[BB];
Value *NullVal = Builder.getInt32(0);
PHINode *LoopPHI =
PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
LoopPHI->insertBefore(&BBCopy->front());
LoopPHIInc->insertBefore(BBCopy->getTerminator());
for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
if (!R->contains(PredBB))
continue;
if (L->contains(PredBB))
LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
else
LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
}
for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
LoopPHI->addIncoming(NullVal, PredBBCopy);
LTS[L] = SE.getUnknown(LoopPHI);
}
// Continue generating code in the exit block.
Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
// Write values visible to other statements.
generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
StartBlockMap.clear();
EndBlockMap.clear();
RegionMaps.clear();
IncompletePHINodeMap.clear();
}
PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S,
ValueMapT &BBMap, Loop *L) {
ScopStmt *Stmt = MA->getStatement();
Region *SubR = Stmt->getRegion();
auto Incoming = MA->getIncoming();
PollyIRBuilder::InsertPointGuard IPGuard(Builder);
PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
// This can happen if the subregion is simplified after the ScopStmts
// have been created; simplification happens as part of CodeGeneration.
if (OrigPHI->getParent() != SubR->getExit()) {
BasicBlock *FormerExit = SubR->getExitingBlock();
if (FormerExit)
NewSubregionExit = StartBlockMap.lookup(FormerExit);
}
PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
"polly." + OrigPHI->getName(),
NewSubregionExit->getFirstNonPHI());
// Add the incoming values to the PHI.
for (auto &Pair : Incoming) {
BasicBlock *OrigIncomingBlock = Pair.first;
BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
assert(RegionMaps.count(NewIncomingBlockStart));
assert(RegionMaps.count(NewIncomingBlockEnd));
ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];
Value *OrigIncomingValue = Pair.second;
Value *NewIncomingValue =
getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
}
return NewPHI;
}
Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S,
ValueMapT &BBMap) {
ScopStmt *Stmt = MA->getStatement();
// TODO: Add some test cases that ensure this is really the right choice.
Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
if (MA->isAnyPHIKind()) {
auto Incoming = MA->getIncoming();
assert(!Incoming.empty() &&
"PHI WRITEs must have originate from at least one incoming block");
// If there is only one incoming value, we do not need to create a PHI.
if (Incoming.size() == 1) {
Value *OldVal = Incoming[0].second;
return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
}
return buildExitPHI(MA, LTS, BBMap, L);
}
// MemoryKind::Value accesses leaving the subregion must dominate the exit
// block; just pass the copied value.
Value *OldVal = MA->getAccessValue();
return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
}
void RegionGenerator::generateScalarStores(
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
__isl_keep isl_id_to_ast_expr *NewAccesses) {
assert(Stmt.getRegion() &&
"Block statements need to use the generateScalarStores() "
"function in the BlockGenerator");
// Get the exit scalar values before generating the writes.
// This is necessary because RegionGenerator::getExitScalar may insert
// PHINodes that depend on the region's exiting blocks. But
// BlockGenerator::generateConditionalExecution may insert a new basic block
// such that the current basic block is not a direct successor of the exiting
// blocks anymore. Hence, build the PHINodes while the current block is still
// the direct successor.
SmallDenseMap<MemoryAccess *, Value *> NewExitScalars;
for (MemoryAccess *MA : Stmt) {
if (MA->isOriginalArrayKind() || MA->isRead())
continue;
Value *NewVal = getExitScalar(MA, LTS, BBMap);
NewExitScalars[MA] = NewVal;
}
for (MemoryAccess *MA : Stmt) {
if (MA->isOriginalArrayKind() || MA->isRead())
continue;
isl::set AccDom = MA->getAccessRelation().domain();
std::string Subject = MA->getId().get_name();
generateConditionalExecution(
Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
Value *NewVal = NewExitScalars.lookup(MA);
assert(NewVal && "The exit scalar must be determined before");
Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
BBMap, NewAccesses);
assert((!isa<Instruction>(NewVal) ||
DT.dominates(cast<Instruction>(NewVal)->getParent(),
Builder.GetInsertBlock())) &&
"Domination violation");
assert((!isa<Instruction>(Address) ||
DT.dominates(cast<Instruction>(Address)->getParent(),
Builder.GetInsertBlock())) &&
"Domination violation");
Builder.CreateStore(NewVal, Address);
});
}
}
void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
PHINode *PHICopy, BasicBlock *IncomingBB,
LoopToScevMapT <S) {
// If the incoming block was not yet copied mark this PHI as incomplete.
// Once the block will be copied the incoming value will be added.
BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
if (!BBCopyStart) {
assert(!BBCopyEnd);
assert(Stmt.represents(IncomingBB) &&
"Bad incoming block for PHI in non-affine region");
IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
return;
}
assert(RegionMaps.count(BBCopyStart) &&
"Incoming PHI block did not have a BBMap");
ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];
Value *OpCopy = nullptr;
if (Stmt.represents(IncomingBB)) {
Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
// If the current insert block is different from the PHIs incoming block
// change it, otherwise do not.
auto IP = Builder.GetInsertPoint();
if (IP->getParent() != BBCopyEnd)
Builder.SetInsertPoint(BBCopyEnd->getTerminator());
OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
if (IP->getParent() != BBCopyEnd)
Builder.SetInsertPoint(&*IP);
} else {
// All edges from outside the non-affine region become a single edge
// in the new copy of the non-affine region. Make sure to only add the
// corresponding edge the first time we encounter a basic block from
// outside the non-affine region.
if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
return;
// Get the reloaded value.
OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
}
assert(OpCopy && "Incoming PHI value was not copied properly");
PHICopy->addIncoming(OpCopy, BBCopyEnd);
}
void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
ValueMapT &BBMap,
LoopToScevMapT <S) {
unsigned NumIncoming = PHI->getNumIncomingValues();
PHINode *PHICopy =
Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
BBMap[PHI] = PHICopy;
for (BasicBlock *IncomingBB : PHI->blocks())
addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
}