BlockGenerators.cpp 66.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BlockGenerator and VectorBlockGenerator classes,
// which generate sequential code and vectorized code for a polyhedral
// statement, respectively.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "isl/ast.h"
#include <deque>

using namespace llvm;
using namespace polly;

static cl::opt<bool> Aligned("enable-polly-aligned",
                             cl::desc("Assumed aligned memory accesses."),
                             cl::Hidden, cl::init(false), cl::ZeroOrMore,
                             cl::cat(PollyCategory));

bool PollyDebugPrinting;
static cl::opt<bool, true> DebugPrintingX(
    "polly-codegen-add-debug-printing",
    cl::desc("Add printf calls that show the values loaded/stored."),
    cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false),
    cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> TraceStmts(
    "polly-codegen-trace-stmts",
    cl::desc("Add printf calls that print the statement being executed"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> TraceScalars(
    "polly-codegen-trace-scalars",
    cl::desc("Add printf calls that print the values of all scalar values "
             "used in a statement. Requires -polly-codegen-trace-stmts."),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

BlockGenerator::BlockGenerator(
    PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
    AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
    ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
    : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
      EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
      GlobalMap(GlobalMap), StartBlock(StartBlock) {}

Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
                                             ValueMapT &BBMap,
                                             LoopToScevMapT &LTS,
                                             Loop *L) const {
  if (!SE.isSCEVable(Old->getType()))
    return nullptr;

  const SCEV *Scev = SE.getSCEVAtScope(Old, L);
  if (!Scev)
    return nullptr;

  if (isa<SCEVCouldNotCompute>(Scev))
    return nullptr;

  const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
  ValueMapT VTV;
  VTV.insert(BBMap.begin(), BBMap.end());
  VTV.insert(GlobalMap.begin(), GlobalMap.end());

  Scop &S = *Stmt.getParent();
  const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
  auto IP = Builder.GetInsertPoint();

  assert(IP != Builder.GetInsertBlock()->end() &&
         "Only instructions can be insert points for SCEVExpander");
  Value *Expanded =
      expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
                    StartBlock->getSinglePredecessor());

  BBMap[Old] = Expanded;
  return Expanded;
}

Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
                                   LoopToScevMapT &LTS, Loop *L) const {

  auto lookupGlobally = [this](Value *Old) -> Value * {
    Value *New = GlobalMap.lookup(Old);
    if (!New)
      return nullptr;

    // Required by:
    // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
    // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
    // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
    // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
    // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
    // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
    // GlobalMap should be a mapping from (value in original SCoP) to (copied
    // value in generated SCoP), without intermediate mappings, which might
    // easily require transitiveness as well.
    if (Value *NewRemapped = GlobalMap.lookup(New))
      New = NewRemapped;

    // No test case for this code.
    if (Old->getType()->getScalarSizeInBits() <
        New->getType()->getScalarSizeInBits())
      New = Builder.CreateTruncOrBitCast(New, Old->getType());

    return New;
  };

  Value *New = nullptr;
  auto VUse = VirtualUse::create(&Stmt, L, Old, true);
  switch (VUse.getKind()) {
  case VirtualUse::Block:
    // BasicBlock are constants, but the BlockGenerator copies them.
    New = BBMap.lookup(Old);
    break;

  case VirtualUse::Constant:
    // Used by:
    // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
    // Constants should not be redefined. In this case, the GlobalMap just
    // contains a mapping to the same constant, which is unnecessary, but
    // harmless.
    if ((New = lookupGlobally(Old)))
      break;

    assert(!BBMap.count(Old));
    New = Old;
    break;

  case VirtualUse::ReadOnly:
    assert(!GlobalMap.count(Old));

    // Required for:
    // * Isl/CodeGen/MemAccess/create_arrays.ll
    // * Isl/CodeGen/read-only-scalars.ll
    // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
    // For some reason these reload a read-only value. The reloaded value ends
    // up in BBMap, buts its value should be identical.
    //
    // Required for:
    // * Isl/CodeGen/OpenMP/single_loop_with_param.ll
    // The parallel subfunctions need to reference the read-only value from the
    // parent function, this is done by reloading them locally.
    if ((New = BBMap.lookup(Old)))
      break;

    New = Old;
    break;

  case VirtualUse::Synthesizable:
    // Used by:
    // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
    // * Isl/CodeGen/OpenMP/recomputed-srem.ll
    // * Isl/CodeGen/OpenMP/reference-other-bb.ll
    // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
    // For some reason synthesizable values end up in GlobalMap. Their values
    // are the same as trySynthesizeNewValue would return. The legacy
    // implementation prioritized GlobalMap, so this is what we do here as well.
    // Ideally, synthesizable values should not end up in GlobalMap.
    if ((New = lookupGlobally(Old)))
      break;

    // Required for:
    // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
    // * Isl/CodeGen/getNumberOfIterations.ll
    // * Isl/CodeGen/non_affine_float_compare.ll
    // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
    // Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
    // not precomputed (SCEVExpander has its own caching mechanism).
    // These tests fail without this, but I think trySynthesizeNewValue would
    // just re-synthesize the same instructions.
    if ((New = BBMap.lookup(Old)))
      break;

    New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
    break;

  case VirtualUse::Hoisted:
    // TODO: Hoisted invariant loads should be found in GlobalMap only, but not
    // redefined locally (which will be ignored anyway). That is, the following
    // assertion should apply: assert(!BBMap.count(Old))

    New = lookupGlobally(Old);
    break;

  case VirtualUse::Intra:
  case VirtualUse::Inter:
    assert(!GlobalMap.count(Old) &&
           "Intra and inter-stmt values are never global");
    New = BBMap.lookup(Old);
    break;
  }
  assert(New && "Unexpected scalar dependence in region!");
  return New;
}

void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
                                    ValueMapT &BBMap, LoopToScevMapT &LTS) {
  // We do not generate debug intrinsics as we did not investigate how to
  // copy them correctly. At the current state, they just crash the code
  // generation as the meta-data operands are not correctly copied.
  if (isa<DbgInfoIntrinsic>(Inst))
    return;

  Instruction *NewInst = Inst->clone();

  // Replace old operands with the new ones.
  for (Value *OldOperand : Inst->operands()) {
    Value *NewOperand =
        getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));

    if (!NewOperand) {
      assert(!isa<StoreInst>(NewInst) &&
             "Store instructions are always needed!");
      NewInst->deleteValue();
      return;
    }

    NewInst->replaceUsesOfWith(OldOperand, NewOperand);
  }

  Builder.Insert(NewInst);
  BBMap[Inst] = NewInst;

  // When copying the instruction onto the Module meant for the GPU,
  // debug metadata attached to an instruction causes all related
  // metadata to be pulled into the Module. This includes the DICompileUnit,
  // which will not be listed in llvm.dbg.cu of the Module since the Module
  // doesn't contain one. This fails the verification of the Module and the
  // subsequent generation of the ASM string.
  if (NewInst->getModule() != Inst->getModule())
    NewInst->setDebugLoc(llvm::DebugLoc());

  if (!NewInst->getType()->isVoidTy())
    NewInst->setName("p_" + Inst->getName());
}

Value *
BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
                                         ValueMapT &BBMap, LoopToScevMapT &LTS,
                                         isl_id_to_ast_expr *NewAccesses) {
  const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
  return generateLocationAccessed(
      Stmt, getLoopForStmt(Stmt),
      Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
      NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
}

Value *BlockGenerator::generateLocationAccessed(
    ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
    LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
    Type *ExpectedType) {
  isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);

  if (AccessExpr) {
    AccessExpr = isl_ast_expr_address_of(AccessExpr);
    auto Address = ExprBuilder->create(AccessExpr);

    // Cast the address of this memory access to a pointer type that has the
    // same element type as the original access, but uses the address space of
    // the newly generated pointer.
    auto OldPtrTy = ExpectedType->getPointerTo();
    auto NewPtrTy = Address->getType();
    OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
                                NewPtrTy->getPointerAddressSpace());

    if (OldPtrTy != NewPtrTy)
      Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
    return Address;
  }
  assert(
      Pointer &&
      "If expression was not generated, must use the original pointer value");
  return getNewValue(Stmt, Pointer, BBMap, LTS, L);
}

Value *
BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
                                   LoopToScevMapT &LTS, ValueMapT &BBMap,
                                   __isl_keep isl_id_to_ast_expr *NewAccesses) {
  if (Access.isLatestArrayKind())
    return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
                                    LTS, NewAccesses, Access.getId().release(),
                                    Access.getAccessValue()->getType());

  return getOrCreateAlloca(Access);
}

Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
  auto *StmtBB = Stmt.getEntryBlock();
  return LI.getLoopFor(StmtBB);
}

Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
                                         ValueMapT &BBMap, LoopToScevMapT &LTS,
                                         isl_id_to_ast_expr *NewAccesses) {
  if (Value *PreloadLoad = GlobalMap.lookup(Load))
    return PreloadLoad;

  Value *NewPointer =
      generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
  Value *ScalarLoad = Builder.CreateAlignedLoad(
      NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");

  if (PollyDebugPrinting)
    RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
                                          ": ", ScalarLoad, "\n");

  return ScalarLoad;
}

void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
                                        ValueMapT &BBMap, LoopToScevMapT &LTS,
                                        isl_id_to_ast_expr *NewAccesses) {
  MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
  isl::set AccDom = MA.getAccessRelation().domain();
  std::string Subject = MA.getId().get_name();

  generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
    Value *NewPointer =
        generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
    Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
                                      LTS, getLoopForStmt(Stmt));

    if (PollyDebugPrinting)
      RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
                                            ": ", ValueOperand, "\n");

    Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
  });
}

bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
  Loop *L = getLoopForStmt(Stmt);
  return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
         canSynthesize(Inst, *Stmt.getParent(), &SE, L);
}

void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
                                     ValueMapT &BBMap, LoopToScevMapT &LTS,
                                     isl_id_to_ast_expr *NewAccesses) {
  // Terminator instructions control the control flow. They are explicitly
  // expressed in the clast and do not need to be copied.
  if (Inst->isTerminator())
    return;

  // Synthesizable statements will be generated on-demand.
  if (canSyntheziseInStmt(Stmt, Inst))
    return;

  if (auto *Load = dyn_cast<LoadInst>(Inst)) {
    Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
    // Compute NewLoad before its insertion in BBMap to make the insertion
    // deterministic.
    BBMap[Load] = NewLoad;
    return;
  }

  if (auto *Store = dyn_cast<StoreInst>(Inst)) {
    // Identified as redundant by -polly-simplify.
    if (!Stmt.getArrayAccessOrNULLFor(Store))
      return;

    generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
    return;
  }

  if (auto *PHI = dyn_cast<PHINode>(Inst)) {
    copyPHIInstruction(Stmt, PHI, BBMap, LTS);
    return;
  }

  // Skip some special intrinsics for which we do not adjust the semantics to
  // the new schedule. All others are handled like every other instruction.
  if (isIgnoredIntrinsic(Inst))
    return;

  copyInstScalar(Stmt, Inst, BBMap, LTS);
}

void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
  auto NewBB = Builder.GetInsertBlock();
  for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
    Instruction *NewInst = &*I;

    if (!isInstructionTriviallyDead(NewInst))
      continue;

    for (auto Pair : BBMap)
      if (Pair.second == NewInst) {
        BBMap.erase(Pair.first);
      }

    NewInst->eraseFromParent();
    I = NewBB->rbegin();
  }
}

void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                              isl_id_to_ast_expr *NewAccesses) {
  assert(Stmt.isBlockStmt() &&
         "Only block statements can be copied by the block generator");

  ValueMapT BBMap;

  BasicBlock *BB = Stmt.getBasicBlock();
  copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
  removeDeadInstructions(BB, BBMap);
}

BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
  BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CopyBB->setName("polly.stmt." + BB->getName());
  return CopyBB;
}

BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
                                   ValueMapT &BBMap, LoopToScevMapT &LTS,
                                   isl_id_to_ast_expr *NewAccesses) {
  BasicBlock *CopyBB = splitBB(BB);
  Builder.SetInsertPoint(&CopyBB->front());
  generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
  generateBeginStmtTrace(Stmt, LTS, BBMap);

  copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);

  // After a basic block was copied store all scalars that escape this block in
  // their alloca.
  generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
  return CopyBB;
}

void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
                            ValueMapT &BBMap, LoopToScevMapT &LTS,
                            isl_id_to_ast_expr *NewAccesses) {
  EntryBB = &CopyBB->getParent()->getEntryBlock();

  // Block statements and the entry blocks of region statement are code
  // generated from instruction lists. This allow us to optimize the
  // instructions that belong to a certain scop statement. As the code
  // structure of region statements might be arbitrary complex, optimizing the
  // instruction list is not yet supported.
  if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB))
    for (Instruction *Inst : Stmt.getInstructions())
      copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
  else
    for (Instruction &Inst : *BB)
      copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
}

Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
  assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");

  return getOrCreateAlloca(Access.getLatestScopArrayInfo());
}

Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
  assert(!Array->isArrayKind() && "Trying to get alloca for array kind");

  auto &Addr = ScalarMap[Array];

  if (Addr) {
    // Allow allocas to be (temporarily) redirected once by adding a new
    // old-alloca-addr to new-addr mapping to GlobalMap. This functionality
    // is used for example by the OpenMP code generation where a first use
    // of a scalar while still in the host code allocates a normal alloca with
    // getOrCreateAlloca. When the values of this scalar are accessed during
    // the generation of the parallel subfunction, these values are copied over
    // to the parallel subfunction and each request for a scalar alloca slot
    // must be forwarded to the temporary in-subfunction slot. This mapping is
    // removed when the subfunction has been generated and again normal host
    // code is generated. Due to the following reasons it is not possible to
    // perform the GlobalMap lookup right after creating the alloca below, but
    // instead we need to check GlobalMap at each call to getOrCreateAlloca:
    //
    //   1) GlobalMap may be changed multiple times (for each parallel loop),
    //   2) The temporary mapping is commonly only known after the initial
    //      alloca has already been generated, and
    //   3) The original alloca value must be restored after leaving the
    //      sub-function.
    if (Value *NewAddr = GlobalMap.lookup(&*Addr))
      return NewAddr;
    return Addr;
  }

  Type *Ty = Array->getElementType();
  Value *ScalarBase = Array->getBasePtr();
  std::string NameExt;
  if (Array->isPHIKind())
    NameExt = ".phiops";
  else
    NameExt = ".s2a";

  const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();

  Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(),
                        ScalarBase->getName() + NameExt);
  EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
  Addr->insertBefore(&*EntryBB->getFirstInsertionPt());

  return Addr;
}

void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
  Instruction *Inst = cast<Instruction>(Array->getBasePtr());

  // If there are escape users we get the alloca for this instruction and put it
  // in the EscapeMap for later finalization. Lastly, if the instruction was
  // copied multiple times we already did this and can exit.
  if (EscapeMap.count(Inst))
    return;

  EscapeUserVectorTy EscapeUsers;
  for (User *U : Inst->users()) {

    // Non-instruction user will never escape.
    Instruction *UI = dyn_cast<Instruction>(U);
    if (!UI)
      continue;

    if (S.contains(UI))
      continue;

    EscapeUsers.push_back(UI);
  }

  // Exit if no escape uses were found.
  if (EscapeUsers.empty())
    return;

  // Get or create an escape alloca for this instruction.
  auto *ScalarAddr = getOrCreateAlloca(Array);

  // Remember that this instruction has escape uses and the escape alloca.
  EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
}

void BlockGenerator::generateScalarLoads(
    ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
    __isl_keep isl_id_to_ast_expr *NewAccesses) {
  for (MemoryAccess *MA : Stmt) {
    if (MA->isOriginalArrayKind() || MA->isWrite())
      continue;

#ifndef NDEBUG
    auto StmtDom =
        Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
    auto AccDom = MA->getAccessRelation().domain();
    assert(!StmtDom.is_subset(AccDom).is_false() &&
           "Scalar must be loaded in all statement instances");
#endif

    auto *Address =
        getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
    assert((!isa<Instruction>(Address) ||
            DT.dominates(cast<Instruction>(Address)->getParent(),
                         Builder.GetInsertBlock())) &&
           "Domination violation");
    BBMap[MA->getAccessValue()] =
        Builder.CreateLoad(Address, Address->getName() + ".reload");
  }
}

Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
                                              const isl::set &Subdomain) {
  isl::ast_build AstBuild = Stmt.getAstBuild();
  isl::set Domain = Stmt.getDomain();

  isl::union_map USchedule = AstBuild.get_schedule();
  USchedule = USchedule.intersect_domain(Domain);

  assert(!USchedule.is_empty());
  isl::map Schedule = isl::map::from_union_map(USchedule);

  isl::set ScheduledDomain = Schedule.range();
  isl::set ScheduledSet = Subdomain.apply(Schedule);

  isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);

  isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
  Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
  IsInSetExpr = Builder.CreateICmpNE(
      IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));

  return IsInSetExpr;
}

void BlockGenerator::generateConditionalExecution(
    ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
    const std::function<void()> &GenThenFunc) {
  isl::set StmtDom = Stmt.getDomain();

  // If the condition is a tautology, don't generate a condition around the
  // code.
  bool IsPartialWrite =
      !StmtDom.intersect_params(Stmt.getParent()->getContext())
           .is_subset(Subdomain);
  if (!IsPartialWrite) {
    GenThenFunc();
    return;
  }

  // Generate the condition.
  Value *Cond = buildContainsCondition(Stmt, Subdomain);

  // Don't call GenThenFunc if it is never executed. An ast index expression
  // might not be defined in this case.
  if (auto *Const = dyn_cast<ConstantInt>(Cond))
    if (Const->isZero())
      return;

  BasicBlock *HeadBlock = Builder.GetInsertBlock();
  StringRef BlockName = HeadBlock->getName();

  // Generate the conditional block.
  SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
                            &DT, &LI);
  BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
  BasicBlock *ThenBlock = Branch->getSuccessor(0);
  BasicBlock *TailBlock = Branch->getSuccessor(1);

  // Assign descriptive names.
  if (auto *CondInst = dyn_cast<Instruction>(Cond))
    CondInst->setName("polly." + Subject + ".cond");
  ThenBlock->setName(BlockName + "." + Subject + ".partial");
  TailBlock->setName(BlockName + ".cont");

  // Put the client code into the conditional block and continue in the merge
  // block afterwards.
  Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
  GenThenFunc();
  Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
}

static std::string getInstName(Value *Val) {
  std::string Result;
  raw_string_ostream OS(Result);
  Val->printAsOperand(OS, false);
  return OS.str();
}

void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT &LTS,
                                            ValueMapT &BBMap) {
  if (!TraceStmts)
    return;

  Scop *S = Stmt.getParent();
  const char *BaseName = Stmt.getBaseName();

  isl::ast_build AstBuild = Stmt.getAstBuild();
  isl::set Domain = Stmt.getDomain();

  isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain);
  isl::map Schedule = isl::map::from_union_map(USchedule);
  assert(Schedule.is_empty().is_false() &&
         "The stmt must have a valid instance");

  isl::multi_pw_aff ScheduleMultiPwAff =
      isl::pw_multi_aff::from_map(Schedule.reverse());
  isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range());

  // Sequence of strings to print.
  SmallVector<llvm::Value *, 8> Values;

  // Print the name of the statement.
  // TODO: Indent by the depth of the statement instance in the schedule tree.
  Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName));
  Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "("));

  // Add the coordinate of the statement instance.
  int DomDims = ScheduleMultiPwAff.dim(isl::dim::out);
  for (int i = 0; i < DomDims; i += 1) {
    if (i > 0)
      Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ","));

    isl::ast_expr IsInSet =
        RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i));
    Values.push_back(ExprBuilder->create(IsInSet.copy()));
  }

  if (TraceScalars) {
    Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")"));
    DenseSet<Instruction *> Encountered;

    // Add the value of each scalar (and the result of PHIs) used in the
    // statement.
    // TODO: Values used in region-statements.
    for (Instruction *Inst : Stmt.insts()) {
      if (!RuntimeDebugBuilder::isPrintable(Inst->getType()))
        continue;

      if (isa<PHINode>(Inst)) {
        Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " "));
        Values.push_back(RuntimeDebugBuilder::getPrintableString(
            Builder, getInstName(Inst)));
        Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "="));
        Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS,
                                     LI.getLoopFor(Inst->getParent())));
      } else {
        for (Value *Op : Inst->operand_values()) {
          // Do not print values that cannot change during the execution of the
          // SCoP.
          auto *OpInst = dyn_cast<Instruction>(Op);
          if (!OpInst)
            continue;
          if (!S->contains(OpInst))
            continue;

          // Print each scalar at most once, and exclude values defined in the
          // statement itself.
          if (Encountered.count(OpInst))
            continue;

          Values.push_back(
              RuntimeDebugBuilder::getPrintableString(Builder, " "));
          Values.push_back(RuntimeDebugBuilder::getPrintableString(
              Builder, getInstName(OpInst)));
          Values.push_back(
              RuntimeDebugBuilder::getPrintableString(Builder, "="));
          Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS,
                                       LI.getLoopFor(Inst->getParent())));
          Encountered.insert(OpInst);
        }
      }

      Encountered.insert(Inst);
    }

    Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n"));
  } else {
    Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n"));
  }

  RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values));
}

void BlockGenerator::generateScalarStores(
    ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
    __isl_keep isl_id_to_ast_expr *NewAccesses) {
  Loop *L = LI.getLoopFor(Stmt.getBasicBlock());

  assert(Stmt.isBlockStmt() &&
         "Region statements need to use the generateScalarStores() function in "
         "the RegionGenerator");

  for (MemoryAccess *MA : Stmt) {
    if (MA->isOriginalArrayKind() || MA->isRead())
      continue;

    isl::set AccDom = MA->getAccessRelation().domain();
    std::string Subject = MA->getId().get_name();

    generateConditionalExecution(
        Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
          Value *Val = MA->getAccessValue();
          if (MA->isAnyPHIKind()) {
            assert(MA->getIncoming().size() >= 1 &&
                   "Block statements have exactly one exiting block, or "
                   "multiple but "
                   "with same incoming block and value");
            assert(std::all_of(MA->getIncoming().begin(),
                               MA->getIncoming().end(),
                               [&](std::pair<BasicBlock *, Value *> p) -> bool {
                                 return p.first == Stmt.getBasicBlock();
                               }) &&
                   "Incoming block must be statement's block");
            Val = MA->getIncoming()[0].second;
          }
          auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
                                            BBMap, NewAccesses);

          Val = getNewValue(Stmt, Val, BBMap, LTS, L);
          assert((!isa<Instruction>(Val) ||
                  DT.dominates(cast<Instruction>(Val)->getParent(),
                               Builder.GetInsertBlock())) &&
                 "Domination violation");
          assert((!isa<Instruction>(Address) ||
                  DT.dominates(cast<Instruction>(Address)->getParent(),
                               Builder.GetInsertBlock())) &&
                 "Domination violation");

          // The new Val might have a different type than the old Val due to
          // ScalarEvolution looking through bitcasts.
          if (Val->getType() != Address->getType()->getPointerElementType())
            Address = Builder.CreateBitOrPointerCast(
                Address, Val->getType()->getPointerTo());

          Builder.CreateStore(Val, Address);
        });
  }
}

void BlockGenerator::createScalarInitialization(Scop &S) {
  BasicBlock *ExitBB = S.getExit();
  BasicBlock *PreEntryBB = S.getEnteringBlock();

  Builder.SetInsertPoint(&*StartBlock->begin());

  for (auto &Array : S.arrays()) {
    if (Array->getNumberOfDimensions() != 0)
      continue;
    if (Array->isPHIKind()) {
      // For PHI nodes, the only values we need to store are the ones that
      // reach the PHI node from outside the region. In general there should
      // only be one such incoming edge and this edge should enter through
      // 'PreEntryBB'.
      auto PHI = cast<PHINode>(Array->getBasePtr());

      for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
        if (!S.contains(*BI) && *BI != PreEntryBB)
          llvm_unreachable("Incoming edges from outside the scop should always "
                           "come from PreEntryBB");

      int Idx = PHI->getBasicBlockIndex(PreEntryBB);
      if (Idx < 0)
        continue;

      Value *ScalarValue = PHI->getIncomingValue(Idx);

      Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
      continue;
    }

    auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());

    if (Inst && S.contains(Inst))
      continue;

    // PHI nodes that are not marked as such in their SAI object are either exit
    // PHI nodes we model as common scalars but without initialization, or
    // incoming phi nodes that need to be initialized. Check if the first is the
    // case for Inst and do not create and initialize memory if so.
    if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
      if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
        continue;

    Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
  }
}

void BlockGenerator::createScalarFinalization(Scop &S) {
  // The exit block of the __unoptimized__ region.
  BasicBlock *ExitBB = S.getExitingBlock();
  // The merge block __just after__ the region and the optimized region.
  BasicBlock *MergeBB = S.getExit();

  // The exit block of the __optimized__ region.
  BasicBlock *OptExitBB = *(pred_begin(MergeBB));
  if (OptExitBB == ExitBB)
    OptExitBB = *(++pred_begin(MergeBB));

  Builder.SetInsertPoint(OptExitBB->getTerminator());
  for (const auto &EscapeMapping : EscapeMap) {
    // Extract the escaping instruction and the escaping users as well as the
    // alloca the instruction was demoted to.
    Instruction *EscapeInst = EscapeMapping.first;
    const auto &EscapeMappingValue = EscapeMapping.second;
    const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
    Value *ScalarAddr = EscapeMappingValue.first;

    // Reload the demoted instruction in the optimized version of the SCoP.
    Value *EscapeInstReload =
        Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
    EscapeInstReload =
        Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());

    // Create the merge PHI that merges the optimized and unoptimized version.
    PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
                                        EscapeInst->getName() + ".merge");
    MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());

    // Add the respective values to the merge PHI.
    MergePHI->addIncoming(EscapeInstReload, OptExitBB);
    MergePHI->addIncoming(EscapeInst, ExitBB);

    // The information of scalar evolution about the escaping instruction needs
    // to be revoked so the new merged instruction will be used.
    if (SE.isSCEVable(EscapeInst->getType()))
      SE.forgetValue(EscapeInst);

    // Replace all uses of the demoted instruction with the merge PHI.
    for (Instruction *EUser : EscapeUsers)
      EUser->replaceUsesOfWith(EscapeInst, MergePHI);
  }
}

void BlockGenerator::findOutsideUsers(Scop &S) {
  for (auto &Array : S.arrays()) {

    if (Array->getNumberOfDimensions() != 0)
      continue;

    if (Array->isPHIKind())
      continue;

    auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());

    if (!Inst)
      continue;

    // Scop invariant hoisting moves some of the base pointers out of the scop.
    // We can ignore these, as the invariant load hoisting already registers the
    // relevant outside users.
    if (!S.contains(Inst))
      continue;

    handleOutsideUsers(S, Array);
  }
}

void BlockGenerator::createExitPHINodeMerges(Scop &S) {
  if (S.hasSingleExitEdge())
    return;

  auto *ExitBB = S.getExitingBlock();
  auto *MergeBB = S.getExit();
  auto *AfterMergeBB = MergeBB->getSingleSuccessor();
  BasicBlock *OptExitBB = *(pred_begin(MergeBB));
  if (OptExitBB == ExitBB)
    OptExitBB = *(++pred_begin(MergeBB));

  Builder.SetInsertPoint(OptExitBB->getTerminator());

  for (auto &SAI : S.arrays()) {
    auto *Val = SAI->getBasePtr();

    // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
    // the original PHI's value or the reloaded incoming values from the
    // generated code. An llvm::Value is merged between the original code's
    // value or the generated one.
    if (!SAI->isExitPHIKind())
      continue;

    PHINode *PHI = dyn_cast<PHINode>(Val);
    if (!PHI)
      continue;

    if (PHI->getParent() != AfterMergeBB)
      continue;

    std::string Name = PHI->getName();
    Value *ScalarAddr = getOrCreateAlloca(SAI);
    Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
    Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
    Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
    assert((!isa<Instruction>(OriginalValue) ||
            cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
           "Original value must no be one we just generated.");
    auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
    MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
    MergePHI->addIncoming(Reload, OptExitBB);
    MergePHI->addIncoming(OriginalValue, ExitBB);
    int Idx = PHI->getBasicBlockIndex(MergeBB);
    PHI->setIncomingValue(Idx, MergePHI);
  }
}

void BlockGenerator::invalidateScalarEvolution(Scop &S) {
  for (auto &Stmt : S)
    if (Stmt.isCopyStmt())
      continue;
    else if (Stmt.isBlockStmt())
      for (auto &Inst : *Stmt.getBasicBlock())
        SE.forgetValue(&Inst);
    else if (Stmt.isRegionStmt())
      for (auto *BB : Stmt.getRegion()->blocks())
        for (auto &Inst : *BB)
          SE.forgetValue(&Inst);
    else
      llvm_unreachable("Unexpected statement type found");

  // Invalidate SCEV of loops surrounding the EscapeUsers.
  for (const auto &EscapeMapping : EscapeMap) {
    const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
    for (Instruction *EUser : EscapeUsers) {
      if (Loop *L = LI.getLoopFor(EUser->getParent()))
        while (L) {
          SE.forgetLoop(L);
          L = L->getParentLoop();
        }
    }
  }
}

void BlockGenerator::finalizeSCoP(Scop &S) {
  findOutsideUsers(S);
  createScalarInitialization(S);
  createExitPHINodeMerges(S);
  createScalarFinalization(S);
  invalidateScalarEvolution(S);
}

VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
                                           std::vector<LoopToScevMapT> &VLTS,
                                           isl_map *Schedule)
    : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
  assert(Schedule && "No statement domain provided");
}

Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
                                            ValueMapT &VectorMap,
                                            VectorValueMapT &ScalarMaps,
                                            Loop *L) {
  if (Value *NewValue = VectorMap.lookup(Old))
    return NewValue;

  int Width = getVectorWidth();

  Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));

  for (int Lane = 0; Lane < Width; Lane++)
    Vector = Builder.CreateInsertElement(
        Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
        Builder.getInt32(Lane));

  VectorMap[Old] = Vector;

  return Vector;
}

Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
  PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
  assert(PointerTy && "PointerType expected");

  Type *ScalarType = PointerTy->getElementType();
  VectorType *VectorType = VectorType::get(ScalarType, Width);

  return PointerType::getUnqual(VectorType);
}

Value *VectorBlockGenerator::generateStrideOneLoad(
    ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
    __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
  unsigned VectorWidth = getVectorWidth();
  auto *Pointer = Load->getPointerOperand();
  Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
  unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;

  Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
                                               VLTS[Offset], NewAccesses);
  Value *VectorPtr =
      Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
  LoadInst *VecLoad =
      Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
  if (!Aligned)
    VecLoad->setAlignment(Align(8));

  if (NegativeStride) {
    SmallVector<Constant *, 16> Indices;
    for (int i = VectorWidth - 1; i >= 0; i--)
      Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
    Constant *SV = llvm::ConstantVector::get(Indices);
    Value *RevVecLoad = Builder.CreateShuffleVector(
        VecLoad, VecLoad, SV, Load->getName() + "_reverse");
    return RevVecLoad;
  }

  return VecLoad;
}

Value *VectorBlockGenerator::generateStrideZeroLoad(
    ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
    __isl_keep isl_id_to_ast_expr *NewAccesses) {
  auto *Pointer = Load->getPointerOperand();
  Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
  Value *NewPointer =
      generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
  Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
                                           Load->getName() + "_p_vec_p");
  LoadInst *ScalarLoad =
      Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");

  if (!Aligned)
    ScalarLoad->setAlignment(Align(8));

  Constant *SplatVector = Constant::getNullValue(
      VectorType::get(Builder.getInt32Ty(), getVectorWidth()));

  Value *VectorLoad = Builder.CreateShuffleVector(
      ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
  return VectorLoad;
}

Value *VectorBlockGenerator::generateUnknownStrideLoad(
    ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
    __isl_keep isl_id_to_ast_expr *NewAccesses) {
  int VectorWidth = getVectorWidth();
  auto *Pointer = Load->getPointerOperand();
  VectorType *VectorType = VectorType::get(
      dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);

  Value *Vector = UndefValue::get(VectorType);

  for (int i = 0; i < VectorWidth; i++) {
    Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
                                                 VLTS[i], NewAccesses);
    Value *ScalarLoad =
        Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
    Vector = Builder.CreateInsertElement(
        Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
  }

  return Vector;
}

void VectorBlockGenerator::generateLoad(
    ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
    VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
    VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
                                                Load->getName() + "_p");
    return;
  }

  if (!VectorType::isValidElementType(Load->getType())) {
    for (int i = 0; i < getVectorWidth(); i++)
      ScalarMaps[i][Load] =
          generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
    return;
  }

  const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);

  // Make sure we have scalar values available to access the pointer to
  // the data location.
  extractScalarValues(Load, VectorMap, ScalarMaps);

  Value *NewLoad;
  if (Access.isStrideZero(isl::manage_copy(Schedule)))
    NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
  else if (Access.isStrideOne(isl::manage_copy(Schedule)))
    NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
  else if (Access.isStrideX(isl::manage_copy(Schedule), -1))
    NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
  else
    NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);

  VectorMap[Load] = NewLoad;
}

void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
                                         ValueMapT &VectorMap,
                                         VectorValueMapT &ScalarMaps) {
  int VectorWidth = getVectorWidth();
  Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
                                     ScalarMaps, getLoopForStmt(Stmt));

  assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");

  const CastInst *Cast = dyn_cast<CastInst>(Inst);
  VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
  VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
}

void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
                                          ValueMapT &VectorMap,
                                          VectorValueMapT &ScalarMaps) {
  Loop *L = getLoopForStmt(Stmt);
  Value *OpZero = Inst->getOperand(0);
  Value *OpOne = Inst->getOperand(1);

  Value *NewOpZero, *NewOpOne;
  NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
  NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);

  Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
                                       Inst->getName() + "p_vec");
  VectorMap[Inst] = NewInst;
}

void VectorBlockGenerator::copyStore(
    ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
    VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);

  auto *Pointer = Store->getPointerOperand();
  Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
                                 ScalarMaps, getLoopForStmt(Stmt));

  // Make sure we have scalar values available to access the pointer to
  // the data location.
  extractScalarValues(Store, VectorMap, ScalarMaps);

  if (Access.isStrideOne(isl::manage_copy(Schedule))) {
    Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
    Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
                                                 VLTS[0], NewAccesses);

    Value *VectorPtr =
        Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
    StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);

    if (!Aligned)
      Store->setAlignment(Align(8));
  } else {
    for (unsigned i = 0; i < ScalarMaps.size(); i++) {
      Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
      Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
                                                   VLTS[i], NewAccesses);
      Builder.CreateStore(Scalar, NewPointer);
    }
  }
}

bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
                                             ValueMapT &VectorMap) {
  for (Value *Operand : Inst->operands())
    if (VectorMap.count(Operand))
      return true;
  return false;
}

bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
                                               ValueMapT &VectorMap,
                                               VectorValueMapT &ScalarMaps) {
  bool HasVectorOperand = false;
  int VectorWidth = getVectorWidth();

  for (Value *Operand : Inst->operands()) {
    ValueMapT::iterator VecOp = VectorMap.find(Operand);

    if (VecOp == VectorMap.end())
      continue;

    HasVectorOperand = true;
    Value *NewVector = VecOp->second;

    for (int i = 0; i < VectorWidth; ++i) {
      ValueMapT &SM = ScalarMaps[i];

      // If there is one scalar extracted, all scalar elements should have
      // already been extracted by the code here. So no need to check for the
      // existence of all of them.
      if (SM.count(Operand))
        break;

      SM[Operand] =
          Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
    }
  }

  return HasVectorOperand;
}

void VectorBlockGenerator::copyInstScalarized(
    ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
    VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  bool HasVectorOperand;
  int VectorWidth = getVectorWidth();

  HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);

  for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
    BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
                                    VLTS[VectorLane], NewAccesses);

  if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
    return;

  // Make the result available as vector value.
  VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
  Value *Vector = UndefValue::get(VectorType);

  for (int i = 0; i < VectorWidth; i++)
    Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
                                         Builder.getInt32(i));

  VectorMap[Inst] = Vector;
}

int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }

void VectorBlockGenerator::copyInstruction(
    ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
    VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  // Terminator instructions control the control flow. They are explicitly
  // expressed in the clast and do not need to be copied.
  if (Inst->isTerminator())
    return;

  if (canSyntheziseInStmt(Stmt, Inst))
    return;

  if (auto *Load = dyn_cast<LoadInst>(Inst)) {
    generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
    return;
  }

  if (hasVectorOperands(Inst, VectorMap)) {
    if (auto *Store = dyn_cast<StoreInst>(Inst)) {
      // Identified as redundant by -polly-simplify.
      if (!Stmt.getArrayAccessOrNULLFor(Store))
        return;

      copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
      return;
    }

    if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
      copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
      return;
    }

    if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
      copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
      return;
    }

    // Fallthrough: We generate scalar instructions, if we don't know how to
    // generate vector code.
  }

  copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
}

void VectorBlockGenerator::generateScalarVectorLoads(
    ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
  for (MemoryAccess *MA : Stmt) {
    if (MA->isArrayKind() || MA->isWrite())
      continue;

    auto *Address = getOrCreateAlloca(*MA);
    Type *VectorPtrType = getVectorPtrTy(Address, 1);
    Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
                                             Address->getName() + "_p_vec_p");
    auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
    Constant *SplatVector = Constant::getNullValue(
        VectorType::get(Builder.getInt32Ty(), getVectorWidth()));

    Value *VectorVal = Builder.CreateShuffleVector(
        Val, Val, SplatVector, Address->getName() + "_p_splat");
    VectorBlockMap[MA->getAccessValue()] = VectorVal;
  }
}

void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
  for (MemoryAccess *MA : Stmt) {
    if (MA->isArrayKind() || MA->isRead())
      continue;

    llvm_unreachable("Scalar stores not expected in vector loop");
  }
}

void VectorBlockGenerator::copyStmt(
    ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  assert(Stmt.isBlockStmt() &&
         "TODO: Only block statements can be copied by the vector block "
         "generator");

  BasicBlock *BB = Stmt.getBasicBlock();
  BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CopyBB->setName("polly.stmt." + BB->getName());
  Builder.SetInsertPoint(&CopyBB->front());

  // Create two maps that store the mapping from the original instructions of
  // the old basic block to their copies in the new basic block. Those maps
  // are basic block local.
  //
  // As vector code generation is supported there is one map for scalar values
  // and one for vector values.
  //
  // In case we just do scalar code generation, the vectorMap is not used and
  // the scalarMap has just one dimension, which contains the mapping.
  //
  // In case vector code generation is done, an instruction may either appear
  // in the vector map once (as it is calculating >vectorwidth< values at a
  // time. Or (if the values are calculated using scalar operations), it
  // appears once in every dimension of the scalarMap.
  VectorValueMapT ScalarBlockMap(getVectorWidth());
  ValueMapT VectorBlockMap;

  generateScalarVectorLoads(Stmt, VectorBlockMap);

  for (Instruction *Inst : Stmt.getInstructions())
    copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);

  verifyNoScalarStores(Stmt);
}

BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
                                             BasicBlock *BBCopy) {

  BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
  BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);

  if (BBCopyIDom)
    DT.changeImmediateDominator(BBCopy, BBCopyIDom);

  return StartBlockMap.lookup(BBIDom);
}

// This is to determine whether an llvm::Value (defined in @p BB) is usable when
// leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
// does not work in cases where the exit block has edges from outside the
// region. In that case the llvm::Value would never be usable in in the exit
// block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
// for the subregion's exiting edges only. We need to determine whether an
// llvm::Value is usable in there. We do this by checking whether it dominates
// all exiting blocks individually.
static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
                                      BasicBlock *BB) {
  for (auto ExitingBB : predecessors(R->getExit())) {
    // Check for non-subregion incoming edges.
    if (!R->contains(ExitingBB))
      continue;

    if (!DT.dominates(BB, ExitingBB))
      return false;
  }

  return true;
}

// Find the direct dominator of the subregion's exit block if the subregion was
// simplified.
static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
  BasicBlock *Common = nullptr;
  for (auto ExitingBB : predecessors(R->getExit())) {
    // Check for non-subregion incoming edges.
    if (!R->contains(ExitingBB))
      continue;

    // First exiting edge.
    if (!Common) {
      Common = ExitingBB;
      continue;
    }

    Common = DT.findNearestCommonDominator(Common, ExitingBB);
  }

  assert(Common && R->contains(Common));
  return Common;
}

void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
                               isl_id_to_ast_expr *IdToAstExp) {
  assert(Stmt.isRegionStmt() &&
         "Only region statements can be copied by the region generator");

  // Forget all old mappings.
  StartBlockMap.clear();
  EndBlockMap.clear();
  RegionMaps.clear();
  IncompletePHINodeMap.clear();

  // Collection of all values related to this subregion.
  ValueMapT ValueMap;

  // The region represented by the statement.
  Region *R = Stmt.getRegion();

  // Create a dedicated entry for the region where we can reload all demoted
  // inputs.
  BasicBlock *EntryBB = R->getEntry();
  BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
                                       &*Builder.GetInsertPoint(), &DT, &LI);
  EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
  Builder.SetInsertPoint(&EntryBBCopy->front());

  ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
  generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
  generateBeginStmtTrace(Stmt, LTS, EntryBBMap);

  for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
    if (!R->contains(*PI)) {
      StartBlockMap[*PI] = EntryBBCopy;
      EndBlockMap[*PI] = EntryBBCopy;
    }

  // Iterate over all blocks in the region in a breadth-first search.
  std::deque<BasicBlock *> Blocks;
  SmallSetVector<BasicBlock *, 8> SeenBlocks;
  Blocks.push_back(EntryBB);
  SeenBlocks.insert(EntryBB);

  while (!Blocks.empty()) {
    BasicBlock *BB = Blocks.front();
    Blocks.pop_front();

    // First split the block and update dominance information.
    BasicBlock *BBCopy = splitBB(BB);
    BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);

    // Get the mapping for this block and initialize it with either the scalar
    // loads from the generated entering block (which dominates all blocks of
    // this subregion) or the maps of the immediate dominator, if part of the
    // subregion. The latter necessarily includes the former.
    ValueMapT *InitBBMap;
    if (BBCopyIDom) {
      assert(RegionMaps.count(BBCopyIDom));
      InitBBMap = &RegionMaps[BBCopyIDom];
    } else
      InitBBMap = &EntryBBMap;
    auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
    ValueMapT &RegionMap = Inserted.first->second;

    // Copy the block with the BlockGenerator.
    Builder.SetInsertPoint(&BBCopy->front());
    copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);

    // In order to remap PHI nodes we store also basic block mappings.
    StartBlockMap[BB] = BBCopy;
    EndBlockMap[BB] = Builder.GetInsertBlock();

    // Add values to incomplete PHI nodes waiting for this block to be copied.
    for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
      addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
    IncompletePHINodeMap[BB].clear();

    // And continue with new successors inside the region.
    for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
      if (R->contains(*SI) && SeenBlocks.insert(*SI))
        Blocks.push_back(*SI);

    // Remember value in case it is visible after this subregion.
    if (isDominatingSubregionExit(DT, R, BB))
      ValueMap.insert(RegionMap.begin(), RegionMap.end());
  }

  // Now create a new dedicated region exit block and add it to the region map.
  BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
                                      &*Builder.GetInsertPoint(), &DT, &LI);
  ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
  StartBlockMap[R->getExit()] = ExitBBCopy;
  EndBlockMap[R->getExit()] = ExitBBCopy;

  BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
  assert(ExitDomBBCopy &&
         "Common exit dominator must be within region; at least the entry node "
         "must match");
  DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);

  // As the block generator doesn't handle control flow we need to add the
  // region control flow by hand after all blocks have been copied.
  for (BasicBlock *BB : SeenBlocks) {

    BasicBlock *BBCopyStart = StartBlockMap[BB];
    BasicBlock *BBCopyEnd = EndBlockMap[BB];
    Instruction *TI = BB->getTerminator();
    if (isa<UnreachableInst>(TI)) {
      while (!BBCopyEnd->empty())
        BBCopyEnd->begin()->eraseFromParent();
      new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
      continue;
    }

    Instruction *BICopy = BBCopyEnd->getTerminator();

    ValueMapT &RegionMap = RegionMaps[BBCopyStart];
    RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());

    Builder.SetInsertPoint(BICopy);
    copyInstScalar(Stmt, TI, RegionMap, LTS);
    BICopy->eraseFromParent();
  }

  // Add counting PHI nodes to all loops in the region that can be used as
  // replacement for SCEVs referring to the old loop.
  for (BasicBlock *BB : SeenBlocks) {
    Loop *L = LI.getLoopFor(BB);
    if (L == nullptr || L->getHeader() != BB || !R->contains(L))
      continue;

    BasicBlock *BBCopy = StartBlockMap[BB];
    Value *NullVal = Builder.getInt32(0);
    PHINode *LoopPHI =
        PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
    Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
        LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
    LoopPHI->insertBefore(&BBCopy->front());
    LoopPHIInc->insertBefore(BBCopy->getTerminator());

    for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
      if (!R->contains(PredBB))
        continue;
      if (L->contains(PredBB))
        LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
      else
        LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
    }

    for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
      if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
        LoopPHI->addIncoming(NullVal, PredBBCopy);

    LTS[L] = SE.getUnknown(LoopPHI);
  }

  // Continue generating code in the exit block.
  Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());

  // Write values visible to other statements.
  generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
  StartBlockMap.clear();
  EndBlockMap.clear();
  RegionMaps.clear();
  IncompletePHINodeMap.clear();
}

PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
                                       ValueMapT &BBMap, Loop *L) {
  ScopStmt *Stmt = MA->getStatement();
  Region *SubR = Stmt->getRegion();
  auto Incoming = MA->getIncoming();

  PollyIRBuilder::InsertPointGuard IPGuard(Builder);
  PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
  BasicBlock *NewSubregionExit = Builder.GetInsertBlock();

  // This can happen if the subregion is simplified after the ScopStmts
  // have been created; simplification happens as part of CodeGeneration.
  if (OrigPHI->getParent() != SubR->getExit()) {
    BasicBlock *FormerExit = SubR->getExitingBlock();
    if (FormerExit)
      NewSubregionExit = StartBlockMap.lookup(FormerExit);
  }

  PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
                                    "polly." + OrigPHI->getName(),
                                    NewSubregionExit->getFirstNonPHI());

  // Add the incoming values to the PHI.
  for (auto &Pair : Incoming) {
    BasicBlock *OrigIncomingBlock = Pair.first;
    BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
    BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
    Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
    assert(RegionMaps.count(NewIncomingBlockStart));
    assert(RegionMaps.count(NewIncomingBlockEnd));
    ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];

    Value *OrigIncomingValue = Pair.second;
    Value *NewIncomingValue =
        getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
    NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
  }

  return NewPHI;
}

Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
                                      ValueMapT &BBMap) {
  ScopStmt *Stmt = MA->getStatement();

  // TODO: Add some test cases that ensure this is really the right choice.
  Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());

  if (MA->isAnyPHIKind()) {
    auto Incoming = MA->getIncoming();
    assert(!Incoming.empty() &&
           "PHI WRITEs must have originate from at least one incoming block");

    // If there is only one incoming value, we do not need to create a PHI.
    if (Incoming.size() == 1) {
      Value *OldVal = Incoming[0].second;
      return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
    }

    return buildExitPHI(MA, LTS, BBMap, L);
  }

  // MemoryKind::Value accesses leaving the subregion must dominate the exit
  // block; just pass the copied value.
  Value *OldVal = MA->getAccessValue();
  return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
}

void RegionGenerator::generateScalarStores(
    ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
    __isl_keep isl_id_to_ast_expr *NewAccesses) {
  assert(Stmt.getRegion() &&
         "Block statements need to use the generateScalarStores() "
         "function in the BlockGenerator");

  // Get the exit scalar values before generating the writes.
  // This is necessary because RegionGenerator::getExitScalar may insert
  // PHINodes that depend on the region's exiting blocks. But
  // BlockGenerator::generateConditionalExecution may insert a new basic block
  // such that the current basic block is not a direct successor of the exiting
  // blocks anymore. Hence, build the PHINodes while the current block is still
  // the direct successor.
  SmallDenseMap<MemoryAccess *, Value *> NewExitScalars;
  for (MemoryAccess *MA : Stmt) {
    if (MA->isOriginalArrayKind() || MA->isRead())
      continue;

    Value *NewVal = getExitScalar(MA, LTS, BBMap);
    NewExitScalars[MA] = NewVal;
  }

  for (MemoryAccess *MA : Stmt) {
    if (MA->isOriginalArrayKind() || MA->isRead())
      continue;

    isl::set AccDom = MA->getAccessRelation().domain();
    std::string Subject = MA->getId().get_name();
    generateConditionalExecution(
        Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
          Value *NewVal = NewExitScalars.lookup(MA);
          assert(NewVal && "The exit scalar must be determined before");
          Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
                                              BBMap, NewAccesses);
          assert((!isa<Instruction>(NewVal) ||
                  DT.dominates(cast<Instruction>(NewVal)->getParent(),
                               Builder.GetInsertBlock())) &&
                 "Domination violation");
          assert((!isa<Instruction>(Address) ||
                  DT.dominates(cast<Instruction>(Address)->getParent(),
                               Builder.GetInsertBlock())) &&
                 "Domination violation");
          Builder.CreateStore(NewVal, Address);
        });
  }
}

void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
                                      PHINode *PHICopy, BasicBlock *IncomingBB,
                                      LoopToScevMapT &LTS) {
  // If the incoming block was not yet copied mark this PHI as incomplete.
  // Once the block will be copied the incoming value will be added.
  BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
  BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
  if (!BBCopyStart) {
    assert(!BBCopyEnd);
    assert(Stmt.represents(IncomingBB) &&
           "Bad incoming block for PHI in non-affine region");
    IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
    return;
  }

  assert(RegionMaps.count(BBCopyStart) &&
         "Incoming PHI block did not have a BBMap");
  ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];

  Value *OpCopy = nullptr;

  if (Stmt.represents(IncomingBB)) {
    Value *Op = PHI->getIncomingValueForBlock(IncomingBB);

    // If the current insert block is different from the PHIs incoming block
    // change it, otherwise do not.
    auto IP = Builder.GetInsertPoint();
    if (IP->getParent() != BBCopyEnd)
      Builder.SetInsertPoint(BBCopyEnd->getTerminator());
    OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
    if (IP->getParent() != BBCopyEnd)
      Builder.SetInsertPoint(&*IP);
  } else {
    // All edges from outside the non-affine region become a single edge
    // in the new copy of the non-affine region. Make sure to only add the
    // corresponding edge the first time we encounter a basic block from
    // outside the non-affine region.
    if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
      return;

    // Get the reloaded value.
    OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
  }

  assert(OpCopy && "Incoming PHI value was not copied properly");
  PHICopy->addIncoming(OpCopy, BBCopyEnd);
}

void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
                                         ValueMapT &BBMap,
                                         LoopToScevMapT &LTS) {
  unsigned NumIncoming = PHI->getNumIncomingValues();
  PHINode *PHICopy =
      Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
  PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
  BBMap[PHI] = PHICopy;

  for (BasicBlock *IncomingBB : PHI->blocks())
    addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
}