Dialect.cpp
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
//===- Dialect.cpp - Toy IR Dialect registration in MLIR ------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the dialect for the Toy IR: custom type parsing and
// operation verification.
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Transforms/InliningUtils.h"
using namespace mlir;
using namespace mlir::toy;
//===----------------------------------------------------------------------===//
// ToyInlinerInterface
//===----------------------------------------------------------------------===//
/// This class defines the interface for handling inlining with Toy
/// operations.
struct ToyInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All operations within toy can be inlined.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator(toy.return) by replacing it with a new
/// operation as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "toy.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
/// Attempts to materialize a conversion for a type mismatch between a call
/// from this dialect, and a callable region. This method should generate an
/// operation that takes 'input' as the only operand, and produces a single
/// result of 'resultType'. If a conversion can not be generated, nullptr
/// should be returned.
Operation *materializeCallConversion(OpBuilder &builder, Value input,
Type resultType,
Location conversionLoc) const final {
return builder.create<CastOp>(conversionLoc, resultType, input);
}
};
//===----------------------------------------------------------------------===//
// ToyDialect
//===----------------------------------------------------------------------===//
/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
addOperations<
#define GET_OP_LIST
#include "toy/Ops.cpp.inc"
>();
addInterfaces<ToyInlinerInterface>();
addTypes<StructType>();
}
mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
mlir::Attribute value,
mlir::Type type,
mlir::Location loc) {
if (type.isa<StructType>())
return builder.create<StructConstantOp>(loc, type,
value.cast<mlir::ArrayAttr>());
return builder.create<ConstantOp>(loc, type,
value.cast<mlir::DenseElementsAttr>());
}
//===----------------------------------------------------------------------===//
// Toy Operations
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ConstantOp
/// Build a constant operation.
/// The builder is passed as an argument, so is the state that this method is
/// expected to fill in order to build the operation.
void ConstantOp::build(mlir::Builder *builder, mlir::OperationState &state,
double value) {
auto dataType = RankedTensorType::get({}, builder->getF64Type());
auto dataAttribute = DenseElementsAttr::get(dataType, value);
ConstantOp::build(builder, state, dataType, dataAttribute);
}
/// Verify that the given attribute value is valid for the given type.
static mlir::LogicalResult verifyConstantForType(mlir::Type type,
mlir::Attribute opaqueValue,
mlir::Operation *op) {
if (type.isa<mlir::TensorType>()) {
// Check that the value is a elements attribute.
auto attrValue = opaqueValue.dyn_cast<mlir::DenseFPElementsAttr>();
if (!attrValue)
return op->emitError("constant of TensorType must be initialized by "
"a DenseFPElementsAttr, got ")
<< opaqueValue;
// If the return type of the constant is not an unranked tensor, the shape
// must match the shape of the attribute holding the data.
auto resultType = type.dyn_cast<mlir::RankedTensorType>();
if (!resultType)
return success();
// Check that the rank of the attribute type matches the rank of the
// constant result type.
auto attrType = attrValue.getType().cast<mlir::TensorType>();
if (attrType.getRank() != resultType.getRank()) {
return op->emitOpError("return type must match the one of the attached "
"value attribute: ")
<< attrType.getRank() << " != " << resultType.getRank();
}
// Check that each of the dimensions match between the two types.
for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim) {
if (attrType.getShape()[dim] != resultType.getShape()[dim]) {
return op->emitOpError(
"return type shape mismatches its attribute at dimension ")
<< dim << ": " << attrType.getShape()[dim]
<< " != " << resultType.getShape()[dim];
}
}
return mlir::success();
}
auto resultType = type.cast<StructType>();
llvm::ArrayRef<mlir::Type> resultElementTypes = resultType.getElementTypes();
// Verify that the initializer is an Array.
auto attrValue = opaqueValue.dyn_cast<ArrayAttr>();
if (!attrValue || attrValue.getValue().size() != resultElementTypes.size())
return op->emitError("constant of StructType must be initialized by an "
"ArrayAttr with the same number of elements, got ")
<< opaqueValue;
// Check that each of the elements are valid.
llvm::ArrayRef<mlir::Attribute> attrElementValues = attrValue.getValue();
for (const auto &it : llvm::zip(resultElementTypes, attrElementValues))
if (failed(verifyConstantForType(std::get<0>(it), std::get<1>(it), op)))
return mlir::failure();
return mlir::success();
}
/// Verifier for the constant operation. This corresponds to the `::verify(...)`
/// in the op definition.
static mlir::LogicalResult verify(ConstantOp op) {
return verifyConstantForType(op.getResult().getType(), op.value(), op);
}
static mlir::LogicalResult verify(StructConstantOp op) {
return verifyConstantForType(op.getResult().getType(), op.value(), op);
}
/// Infer the output shape of the ConstantOp, this is required by the shape
/// inference interface.
void ConstantOp::inferShapes() { getResult().setType(value().getType()); }
//===----------------------------------------------------------------------===//
// AddOp
void AddOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands({lhs, rhs});
}
/// Infer the output shape of the AddOp, this is required by the shape inference
/// interface.
void AddOp::inferShapes() { getResult().setType(getOperand(0).getType()); }
//===----------------------------------------------------------------------===//
// CastOp
/// Infer the output shape of the CastOp, this is required by the shape
/// inference interface.
void CastOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// GenericCallOp
void GenericCallOp::build(mlir::Builder *builder, mlir::OperationState &state,
StringRef callee, ArrayRef<mlir::Value> arguments) {
// Generic call always returns an unranked Tensor initially.
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands(arguments);
state.addAttribute("callee", builder->getSymbolRefAttr(callee));
}
/// Return the callee of the generic call operation, this is required by the
/// call interface.
CallInterfaceCallable GenericCallOp::getCallableForCallee() {
return getAttrOfType<SymbolRefAttr>("callee");
}
/// Get the argument operands to the called function, this is required by the
/// call interface.
Operation::operand_range GenericCallOp::getArgOperands() { return inputs(); }
//===----------------------------------------------------------------------===//
// MulOp
void MulOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands({lhs, rhs});
}
/// Infer the output shape of the MulOp, this is required by the shape inference
/// interface.
void MulOp::inferShapes() { getResult().setType(getOperand(0).getType()); }
//===----------------------------------------------------------------------===//
// ReturnOp
static mlir::LogicalResult verify(ReturnOp op) {
// We know that the parent operation is a function, because of the 'HasParent'
// trait attached to the operation definition.
auto function = cast<FuncOp>(op.getParentOp());
/// ReturnOps can only have a single optional operand.
if (op.getNumOperands() > 1)
return op.emitOpError() << "expects at most 1 return operand";
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError()
<< "does not return the same number of values ("
<< op.getNumOperands() << ") as the enclosing function ("
<< results.size() << ")";
// If the operation does not have an input, we are done.
if (!op.hasOperand())
return mlir::success();
auto inputType = *op.operand_type_begin();
auto resultType = results.front();
// Check that the result type of the function matches the operand type.
if (inputType == resultType || inputType.isa<mlir::UnrankedTensorType>() ||
resultType.isa<mlir::UnrankedTensorType>())
return mlir::success();
return op.emitError() << "type of return operand ("
<< *op.operand_type_begin()
<< ") doesn't match function result type ("
<< results.front() << ")";
}
//===----------------------------------------------------------------------===//
// StructAccessOp
void StructAccessOp::build(mlir::Builder *b, mlir::OperationState &state,
mlir::Value input, size_t index) {
// Extract the result type from the input type.
StructType structTy = input.getType().cast<StructType>();
assert(index < structTy.getNumElementTypes());
mlir::Type resultType = structTy.getElementTypes()[index];
// Call into the auto-generated build method.
build(b, state, resultType, input, b->getI64IntegerAttr(index));
}
static mlir::LogicalResult verify(StructAccessOp op) {
StructType structTy = op.input().getType().cast<StructType>();
size_t index = op.index().getZExtValue();
if (index >= structTy.getNumElementTypes())
return op.emitOpError()
<< "index should be within the range of the input struct type";
mlir::Type resultType = op.getResult().getType();
if (resultType != structTy.getElementTypes()[index])
return op.emitOpError() << "must have the same result type as the struct "
"element referred to by the index";
return mlir::success();
}
//===----------------------------------------------------------------------===//
// TransposeOp
void TransposeOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value value) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands(value);
}
void TransposeOp::inferShapes() {
auto arrayTy = getOperand().getType().cast<RankedTensorType>();
SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape()));
getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
}
static mlir::LogicalResult verify(TransposeOp op) {
auto inputType = op.getOperand().getType().dyn_cast<RankedTensorType>();
auto resultType = op.getType().dyn_cast<RankedTensorType>();
if (!inputType || !resultType)
return mlir::success();
auto inputShape = inputType.getShape();
if (!std::equal(inputShape.begin(), inputShape.end(),
resultType.getShape().rbegin())) {
return op.emitError()
<< "expected result shape to be a transpose of the input";
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// Toy Types
//===----------------------------------------------------------------------===//
namespace mlir {
namespace toy {
namespace detail {
/// This class represents the internal storage of the Toy `StructType`.
struct StructTypeStorage : public mlir::TypeStorage {
/// The `KeyTy` is a required type that provides an interface for the storage
/// instance. This type will be used when uniquing an instance of the type
/// storage. For our struct type, we will unique each instance structurally on
/// the elements that it contains.
using KeyTy = llvm::ArrayRef<mlir::Type>;
/// A constructor for the type storage instance.
StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
: elementTypes(elementTypes) {}
/// Define the comparison function for the key type with the current storage
/// instance. This is used when constructing a new instance to ensure that we
/// haven't already uniqued an instance of the given key.
bool operator==(const KeyTy &key) const { return key == elementTypes; }
/// Define a hash function for the key type. This is used when uniquing
/// instances of the storage, see the `StructType::get` method.
/// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
/// have hash functions available, so we could just omit this entirely.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Define a construction function for the key type from a set of parameters.
/// These parameters will be provided when constructing the storage instance
/// itself.
/// Note: This method isn't necessary because KeyTy can be directly
/// constructed with the given parameters.
static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
return KeyTy(elementTypes);
}
/// Define a construction method for creating a new instance of this storage.
/// This method takes an instance of a storage allocator, and an instance of a
/// `KeyTy`. The given allocator must be used for *all* necessary dynamic
/// allocations used to create the type storage and its internal.
static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
const KeyTy &key) {
// Copy the elements from the provided `KeyTy` into the allocator.
llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);
// Allocate the storage instance and construct it.
return new (allocator.allocate<StructTypeStorage>())
StructTypeStorage(elementTypes);
}
/// The following field contains the element types of the struct.
llvm::ArrayRef<mlir::Type> elementTypes;
};
} // end namespace detail
} // end namespace toy
} // end namespace mlir
/// Create an instance of a `StructType` with the given element types. There
/// *must* be at least one element type.
StructType StructType::get(llvm::ArrayRef<mlir::Type> elementTypes) {
assert(!elementTypes.empty() && "expected at least 1 element type");
// Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
// of this type. The first two parameters are the context to unique in and the
// kind of the type. The parameters after the type kind are forwarded to the
// storage instance.
mlir::MLIRContext *ctx = elementTypes.front().getContext();
return Base::get(ctx, ToyTypes::Struct, elementTypes);
}
/// Returns the element types of this struct type.
llvm::ArrayRef<mlir::Type> StructType::getElementTypes() {
// 'getImpl' returns a pointer to the internal storage instance.
return getImpl()->elementTypes;
}
/// Parse an instance of a type registered to the toy dialect.
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
// Parse a struct type in the following form:
// struct-type ::= `struct` `<` type (`,` type)* `>`
// NOTE: All MLIR parser function return a ParseResult. This is a
// specialization of LogicalResult that auto-converts to a `true` boolean
// value on failure to allow for chaining, but may be used with explicit
// `mlir::failed/mlir::succeeded` as desired.
// Parse: `struct` `<`
if (parser.parseKeyword("struct") || parser.parseLess())
return Type();
// Parse the element types of the struct.
SmallVector<mlir::Type, 1> elementTypes;
do {
// Parse the current element type.
llvm::SMLoc typeLoc = parser.getCurrentLocation();
mlir::Type elementType;
if (parser.parseType(elementType))
return nullptr;
// Check that the type is either a TensorType or another StructType.
if (!elementType.isa<mlir::TensorType>() &&
!elementType.isa<StructType>()) {
parser.emitError(typeLoc, "element type for a struct must either "
"be a TensorType or a StructType, got: ")
<< elementType;
return Type();
}
elementTypes.push_back(elementType);
// Parse the optional: `,`
} while (succeeded(parser.parseOptionalComma()));
// Parse: `>`
if (parser.parseGreater())
return Type();
return StructType::get(elementTypes);
}
/// Print an instance of a type registered to the toy dialect.
void ToyDialect::printType(mlir::Type type,
mlir::DialectAsmPrinter &printer) const {
// Currently the only toy type is a struct type.
StructType structType = type.cast<StructType>();
// Print the struct type according to the parser format.
printer << "struct<";
mlir::interleaveComma(structType.getElementTypes(), printer);
printer << '>';
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "toy/Ops.cpp.inc"