Dialect.cpp 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
//===- Dialect.cpp - Toy IR Dialect registration in MLIR ------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the dialect for the Toy IR: custom type parsing and
// operation verification.
//
//===----------------------------------------------------------------------===//

#include "toy/Dialect.h"

#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Transforms/InliningUtils.h"

using namespace mlir;
using namespace mlir::toy;

//===----------------------------------------------------------------------===//
// ToyInlinerInterface
//===----------------------------------------------------------------------===//

/// This class defines the interface for handling inlining with Toy
/// operations.
struct ToyInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;

  //===--------------------------------------------------------------------===//
  // Analysis Hooks
  //===--------------------------------------------------------------------===//

  /// All operations within toy can be inlined.
  bool isLegalToInline(Operation *, Region *,
                       BlockAndValueMapping &) const final {
    return true;
  }

  //===--------------------------------------------------------------------===//
  // Transformation Hooks
  //===--------------------------------------------------------------------===//

  /// Handle the given inlined terminator(toy.return) by replacing it with a new
  /// operation as necessary.
  void handleTerminator(Operation *op,
                        ArrayRef<Value> valuesToRepl) const final {
    // Only "toy.return" needs to be handled here.
    auto returnOp = cast<ReturnOp>(op);

    // Replace the values directly with the return operands.
    assert(returnOp.getNumOperands() == valuesToRepl.size());
    for (const auto &it : llvm::enumerate(returnOp.getOperands()))
      valuesToRepl[it.index()].replaceAllUsesWith(it.value());
  }

  /// Attempts to materialize a conversion for a type mismatch between a call
  /// from this dialect, and a callable region. This method should generate an
  /// operation that takes 'input' as the only operand, and produces a single
  /// result of 'resultType'. If a conversion can not be generated, nullptr
  /// should be returned.
  Operation *materializeCallConversion(OpBuilder &builder, Value input,
                                       Type resultType,
                                       Location conversionLoc) const final {
    return builder.create<CastOp>(conversionLoc, resultType, input);
  }
};

//===----------------------------------------------------------------------===//
// ToyDialect
//===----------------------------------------------------------------------===//

/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
  addOperations<
#define GET_OP_LIST
#include "toy/Ops.cpp.inc"
      >();
  addInterfaces<ToyInlinerInterface>();
  addTypes<StructType>();
}

mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
                                                 mlir::Attribute value,
                                                 mlir::Type type,
                                                 mlir::Location loc) {
  if (type.isa<StructType>())
    return builder.create<StructConstantOp>(loc, type,
                                            value.cast<mlir::ArrayAttr>());
  return builder.create<ConstantOp>(loc, type,
                                    value.cast<mlir::DenseElementsAttr>());
}

//===----------------------------------------------------------------------===//
// Toy Operations
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// ConstantOp

/// Build a constant operation.
/// The builder is passed as an argument, so is the state that this method is
/// expected to fill in order to build the operation.
void ConstantOp::build(mlir::Builder *builder, mlir::OperationState &state,
                       double value) {
  auto dataType = RankedTensorType::get({}, builder->getF64Type());
  auto dataAttribute = DenseElementsAttr::get(dataType, value);
  ConstantOp::build(builder, state, dataType, dataAttribute);
}

/// Verify that the given attribute value is valid for the given type.
static mlir::LogicalResult verifyConstantForType(mlir::Type type,
                                                 mlir::Attribute opaqueValue,
                                                 mlir::Operation *op) {
  if (type.isa<mlir::TensorType>()) {
    // Check that the value is a elements attribute.
    auto attrValue = opaqueValue.dyn_cast<mlir::DenseFPElementsAttr>();
    if (!attrValue)
      return op->emitError("constant of TensorType must be initialized by "
                           "a DenseFPElementsAttr, got ")
             << opaqueValue;

    // If the return type of the constant is not an unranked tensor, the shape
    // must match the shape of the attribute holding the data.
    auto resultType = type.dyn_cast<mlir::RankedTensorType>();
    if (!resultType)
      return success();

    // Check that the rank of the attribute type matches the rank of the
    // constant result type.
    auto attrType = attrValue.getType().cast<mlir::TensorType>();
    if (attrType.getRank() != resultType.getRank()) {
      return op->emitOpError("return type must match the one of the attached "
                             "value attribute: ")
             << attrType.getRank() << " != " << resultType.getRank();
    }

    // Check that each of the dimensions match between the two types.
    for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim) {
      if (attrType.getShape()[dim] != resultType.getShape()[dim]) {
        return op->emitOpError(
                   "return type shape mismatches its attribute at dimension ")
               << dim << ": " << attrType.getShape()[dim]
               << " != " << resultType.getShape()[dim];
      }
    }
    return mlir::success();
  }
  auto resultType = type.cast<StructType>();
  llvm::ArrayRef<mlir::Type> resultElementTypes = resultType.getElementTypes();

  // Verify that the initializer is an Array.
  auto attrValue = opaqueValue.dyn_cast<ArrayAttr>();
  if (!attrValue || attrValue.getValue().size() != resultElementTypes.size())
    return op->emitError("constant of StructType must be initialized by an "
                         "ArrayAttr with the same number of elements, got ")
           << opaqueValue;

  // Check that each of the elements are valid.
  llvm::ArrayRef<mlir::Attribute> attrElementValues = attrValue.getValue();
  for (const auto &it : llvm::zip(resultElementTypes, attrElementValues))
    if (failed(verifyConstantForType(std::get<0>(it), std::get<1>(it), op)))
      return mlir::failure();
  return mlir::success();
}

/// Verifier for the constant operation. This corresponds to the `::verify(...)`
/// in the op definition.
static mlir::LogicalResult verify(ConstantOp op) {
  return verifyConstantForType(op.getResult().getType(), op.value(), op);
}

static mlir::LogicalResult verify(StructConstantOp op) {
  return verifyConstantForType(op.getResult().getType(), op.value(), op);
}

/// Infer the output shape of the ConstantOp, this is required by the shape
/// inference interface.
void ConstantOp::inferShapes() { getResult().setType(value().getType()); }

//===----------------------------------------------------------------------===//
// AddOp

void AddOp::build(mlir::Builder *builder, mlir::OperationState &state,
                  mlir::Value lhs, mlir::Value rhs) {
  state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
  state.addOperands({lhs, rhs});
}

/// Infer the output shape of the AddOp, this is required by the shape inference
/// interface.
void AddOp::inferShapes() { getResult().setType(getOperand(0).getType()); }

//===----------------------------------------------------------------------===//
// CastOp

/// Infer the output shape of the CastOp, this is required by the shape
/// inference interface.
void CastOp::inferShapes() { getResult().setType(getOperand().getType()); }

//===----------------------------------------------------------------------===//
// GenericCallOp

void GenericCallOp::build(mlir::Builder *builder, mlir::OperationState &state,
                          StringRef callee, ArrayRef<mlir::Value> arguments) {
  // Generic call always returns an unranked Tensor initially.
  state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
  state.addOperands(arguments);
  state.addAttribute("callee", builder->getSymbolRefAttr(callee));
}

/// Return the callee of the generic call operation, this is required by the
/// call interface.
CallInterfaceCallable GenericCallOp::getCallableForCallee() {
  return getAttrOfType<SymbolRefAttr>("callee");
}

/// Get the argument operands to the called function, this is required by the
/// call interface.
Operation::operand_range GenericCallOp::getArgOperands() { return inputs(); }

//===----------------------------------------------------------------------===//
// MulOp

void MulOp::build(mlir::Builder *builder, mlir::OperationState &state,
                  mlir::Value lhs, mlir::Value rhs) {
  state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
  state.addOperands({lhs, rhs});
}

/// Infer the output shape of the MulOp, this is required by the shape inference
/// interface.
void MulOp::inferShapes() { getResult().setType(getOperand(0).getType()); }

//===----------------------------------------------------------------------===//
// ReturnOp

static mlir::LogicalResult verify(ReturnOp op) {
  // We know that the parent operation is a function, because of the 'HasParent'
  // trait attached to the operation definition.
  auto function = cast<FuncOp>(op.getParentOp());

  /// ReturnOps can only have a single optional operand.
  if (op.getNumOperands() > 1)
    return op.emitOpError() << "expects at most 1 return operand";

  // The operand number and types must match the function signature.
  const auto &results = function.getType().getResults();
  if (op.getNumOperands() != results.size())
    return op.emitOpError()
           << "does not return the same number of values ("
           << op.getNumOperands() << ") as the enclosing function ("
           << results.size() << ")";

  // If the operation does not have an input, we are done.
  if (!op.hasOperand())
    return mlir::success();

  auto inputType = *op.operand_type_begin();
  auto resultType = results.front();

  // Check that the result type of the function matches the operand type.
  if (inputType == resultType || inputType.isa<mlir::UnrankedTensorType>() ||
      resultType.isa<mlir::UnrankedTensorType>())
    return mlir::success();

  return op.emitError() << "type of return operand ("
                        << *op.operand_type_begin()
                        << ") doesn't match function result type ("
                        << results.front() << ")";
}

//===----------------------------------------------------------------------===//
// StructAccessOp

void StructAccessOp::build(mlir::Builder *b, mlir::OperationState &state,
                           mlir::Value input, size_t index) {
  // Extract the result type from the input type.
  StructType structTy = input.getType().cast<StructType>();
  assert(index < structTy.getNumElementTypes());
  mlir::Type resultType = structTy.getElementTypes()[index];

  // Call into the auto-generated build method.
  build(b, state, resultType, input, b->getI64IntegerAttr(index));
}

static mlir::LogicalResult verify(StructAccessOp op) {
  StructType structTy = op.input().getType().cast<StructType>();
  size_t index = op.index().getZExtValue();
  if (index >= structTy.getNumElementTypes())
    return op.emitOpError()
           << "index should be within the range of the input struct type";
  mlir::Type resultType = op.getResult().getType();
  if (resultType != structTy.getElementTypes()[index])
    return op.emitOpError() << "must have the same result type as the struct "
                               "element referred to by the index";
  return mlir::success();
}

//===----------------------------------------------------------------------===//
// TransposeOp

void TransposeOp::build(mlir::Builder *builder, mlir::OperationState &state,
                        mlir::Value value) {
  state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
  state.addOperands(value);
}

void TransposeOp::inferShapes() {
  auto arrayTy = getOperand().getType().cast<RankedTensorType>();
  SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape()));
  getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
}

static mlir::LogicalResult verify(TransposeOp op) {
  auto inputType = op.getOperand().getType().dyn_cast<RankedTensorType>();
  auto resultType = op.getType().dyn_cast<RankedTensorType>();
  if (!inputType || !resultType)
    return mlir::success();

  auto inputShape = inputType.getShape();
  if (!std::equal(inputShape.begin(), inputShape.end(),
                  resultType.getShape().rbegin())) {
    return op.emitError()
           << "expected result shape to be a transpose of the input";
  }
  return mlir::success();
}

//===----------------------------------------------------------------------===//
// Toy Types
//===----------------------------------------------------------------------===//

namespace mlir {
namespace toy {
namespace detail {
/// This class represents the internal storage of the Toy `StructType`.
struct StructTypeStorage : public mlir::TypeStorage {
  /// The `KeyTy` is a required type that provides an interface for the storage
  /// instance. This type will be used when uniquing an instance of the type
  /// storage. For our struct type, we will unique each instance structurally on
  /// the elements that it contains.
  using KeyTy = llvm::ArrayRef<mlir::Type>;

  /// A constructor for the type storage instance.
  StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
      : elementTypes(elementTypes) {}

  /// Define the comparison function for the key type with the current storage
  /// instance. This is used when constructing a new instance to ensure that we
  /// haven't already uniqued an instance of the given key.
  bool operator==(const KeyTy &key) const { return key == elementTypes; }

  /// Define a hash function for the key type. This is used when uniquing
  /// instances of the storage, see the `StructType::get` method.
  /// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
  /// have hash functions available, so we could just omit this entirely.
  static llvm::hash_code hashKey(const KeyTy &key) {
    return llvm::hash_value(key);
  }

  /// Define a construction function for the key type from a set of parameters.
  /// These parameters will be provided when constructing the storage instance
  /// itself.
  /// Note: This method isn't necessary because KeyTy can be directly
  /// constructed with the given parameters.
  static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
    return KeyTy(elementTypes);
  }

  /// Define a construction method for creating a new instance of this storage.
  /// This method takes an instance of a storage allocator, and an instance of a
  /// `KeyTy`. The given allocator must be used for *all* necessary dynamic
  /// allocations used to create the type storage and its internal.
  static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
                                      const KeyTy &key) {
    // Copy the elements from the provided `KeyTy` into the allocator.
    llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);

    // Allocate the storage instance and construct it.
    return new (allocator.allocate<StructTypeStorage>())
        StructTypeStorage(elementTypes);
  }

  /// The following field contains the element types of the struct.
  llvm::ArrayRef<mlir::Type> elementTypes;
};
} // end namespace detail
} // end namespace toy
} // end namespace mlir

/// Create an instance of a `StructType` with the given element types. There
/// *must* be at least one element type.
StructType StructType::get(llvm::ArrayRef<mlir::Type> elementTypes) {
  assert(!elementTypes.empty() && "expected at least 1 element type");

  // Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
  // of this type. The first two parameters are the context to unique in and the
  // kind of the type. The parameters after the type kind are forwarded to the
  // storage instance.
  mlir::MLIRContext *ctx = elementTypes.front().getContext();
  return Base::get(ctx, ToyTypes::Struct, elementTypes);
}

/// Returns the element types of this struct type.
llvm::ArrayRef<mlir::Type> StructType::getElementTypes() {
  // 'getImpl' returns a pointer to the internal storage instance.
  return getImpl()->elementTypes;
}

/// Parse an instance of a type registered to the toy dialect.
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
  // Parse a struct type in the following form:
  //   struct-type ::= `struct` `<` type (`,` type)* `>`

  // NOTE: All MLIR parser function return a ParseResult. This is a
  // specialization of LogicalResult that auto-converts to a `true` boolean
  // value on failure to allow for chaining, but may be used with explicit
  // `mlir::failed/mlir::succeeded` as desired.

  // Parse: `struct` `<`
  if (parser.parseKeyword("struct") || parser.parseLess())
    return Type();

  // Parse the element types of the struct.
  SmallVector<mlir::Type, 1> elementTypes;
  do {
    // Parse the current element type.
    llvm::SMLoc typeLoc = parser.getCurrentLocation();
    mlir::Type elementType;
    if (parser.parseType(elementType))
      return nullptr;

    // Check that the type is either a TensorType or another StructType.
    if (!elementType.isa<mlir::TensorType>() &&
        !elementType.isa<StructType>()) {
      parser.emitError(typeLoc, "element type for a struct must either "
                                "be a TensorType or a StructType, got: ")
          << elementType;
      return Type();
    }
    elementTypes.push_back(elementType);

    // Parse the optional: `,`
  } while (succeeded(parser.parseOptionalComma()));

  // Parse: `>`
  if (parser.parseGreater())
    return Type();
  return StructType::get(elementTypes);
}

/// Print an instance of a type registered to the toy dialect.
void ToyDialect::printType(mlir::Type type,
                           mlir::DialectAsmPrinter &printer) const {
  // Currently the only toy type is a struct type.
  StructType structType = type.cast<StructType>();

  // Print the struct type according to the parser format.
  printer << "struct<";
  mlir::interleaveComma(structType.getElementTypes(), printer);
  printer << '>';
}

//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "toy/Ops.cpp.inc"