LoopPassManagerTest.cpp
68.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
using testing::DoDefault;
using testing::Return;
using testing::Expectation;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::_;
template <typename DerivedT, typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
class MockAnalysisHandleBase {
public:
class Analysis : public AnalysisInfoMixin<Analysis> {
friend AnalysisInfoMixin<Analysis>;
friend MockAnalysisHandleBase;
static AnalysisKey Key;
DerivedT *Handle;
Analysis(DerivedT &Handle) : Handle(&Handle) {
static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
"Must pass the derived type to this template!");
}
public:
class Result {
friend MockAnalysisHandleBase;
DerivedT *Handle;
Result(DerivedT &Handle) : Handle(&Handle) {}
public:
// Forward invalidation events to the mock handle.
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
typename AnalysisManagerT::Invalidator &Inv) {
return Handle->invalidate(IR, PA, Inv);
}
};
Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
return Handle->run(IR, AM, ExtraArgs...);
}
};
Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
typename Analysis::Result getResult() {
return typename Analysis::Result(static_cast<DerivedT &>(*this));
}
protected:
// FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
// the template, so we use a boring static function.
static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
typename AnalysisManagerT::Invalidator &Inv) {
auto PAC = PA.template getChecker<Analysis>();
return !PAC.preserved() &&
!PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
}
/// Derived classes should call this in their constructor to set up default
/// mock actions. (We can't do this in our constructor because this has to
/// run after the DerivedT is constructed.)
void setDefaults() {
ON_CALL(static_cast<DerivedT &>(*this),
run(_, _, testing::Matcher<ExtraArgTs>(_)...))
.WillByDefault(Return(this->getResult()));
ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
.WillByDefault(Invoke(&invalidateCallback));
}
};
template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
typename... ExtraArgTs>
AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
ExtraArgTs...>::Analysis::Key;
/// Mock handle for loop analyses.
///
/// This is provided as a template accepting an (optional) integer. Because
/// analyses are identified and queried by type, this allows constructing
/// multiple handles with distinctly typed nested 'Analysis' types that can be
/// registered and queried. If you want to register multiple loop analysis
/// passes, you'll need to instantiate this type with different values for I.
/// For example:
///
/// MockLoopAnalysisHandleTemplate<0> h0;
/// MockLoopAnalysisHandleTemplate<1> h1;
/// typedef decltype(h0)::Analysis Analysis0;
/// typedef decltype(h1)::Analysis Analysis1;
template <size_t I = static_cast<size_t>(-1)>
struct MockLoopAnalysisHandleTemplate
: MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
LoopAnalysisManager,
LoopStandardAnalysisResults &> {
typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
LoopStandardAnalysisResults &));
MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
LoopAnalysisManager::Invalidator &));
MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
};
typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
struct MockFunctionAnalysisHandle
: MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &));
MockFunctionAnalysisHandle() { setDefaults(); }
};
template <typename DerivedT, typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
class MockPassHandleBase {
public:
class Pass : public PassInfoMixin<Pass> {
friend MockPassHandleBase;
DerivedT *Handle;
Pass(DerivedT &Handle) : Handle(&Handle) {
static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
"Must pass the derived type to this template!");
}
public:
PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
ExtraArgTs... ExtraArgs) {
return Handle->run(IR, AM, ExtraArgs...);
}
};
Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
protected:
/// Derived classes should call this in their constructor to set up default
/// mock actions. (We can't do this in our constructor because this has to
/// run after the DerivedT is constructed.)
void setDefaults() {
ON_CALL(static_cast<DerivedT &>(*this),
run(_, _, testing::Matcher<ExtraArgTs>(_)...))
.WillByDefault(Return(PreservedAnalyses::all()));
}
};
struct MockLoopPassHandle
: MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
LoopStandardAnalysisResults &, LPMUpdater &> {
MOCK_METHOD4(run,
PreservedAnalyses(Loop &, LoopAnalysisManager &,
LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle() { setDefaults(); }
};
struct MockFunctionPassHandle
: MockPassHandleBase<MockFunctionPassHandle, Function> {
MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
MockFunctionPassHandle() { setDefaults(); }
};
struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
MockModulePassHandle() { setDefaults(); }
};
/// Define a custom matcher for objects which support a 'getName' method
/// returning a StringRef.
///
/// LLVM often has IR objects or analysis objects which expose a StringRef name
/// and in tests it is convenient to match these by name for readability. This
/// matcher supports any type exposing a getName() method of this form.
///
/// It should be used as:
///
/// HasName("my_function")
///
/// No namespace or other qualification is required.
MATCHER_P(HasName, Name, "") {
// The matcher's name and argument are printed in the case of failure, but we
// also want to print out the name of the argument. This uses an implicitly
// avaiable std::ostream, so we have to construct a std::string.
*result_listener << "has name '" << arg.getName().str() << "'";
return Name == arg.getName();
}
std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
return parseAssemblyString(IR, Err, C);
}
class LoopPassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
std::unique_ptr<Module> M;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
ModuleAnalysisManager MAM;
MockLoopAnalysisHandle MLAHandle;
MockLoopPassHandle MLPHandle;
MockFunctionPassHandle MFPHandle;
MockModulePassHandle MMPHandle;
static PreservedAnalyses
getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
return PreservedAnalyses::all();
};
public:
LoopPassManagerTest()
: M(parseIR(Context,
"define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n"
"\n"
"define void @g(i1* %ptr) {\n"
"entry:\n"
" br label %loop.g.0\n"
"loop.g.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.g.0, label %end\n"
"end:\n"
" ret void\n"
"}\n")),
LAM(true), FAM(true), MAM(true) {
// Register our mock analysis.
LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
// We need DominatorTreeAnalysis for LoopAnalysis.
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return LoopAnalysis(); });
// We also allow loop passes to assume a set of other analyses and so need
// those.
FAM.registerPass([&] { return AAManager(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
FAM.registerPass([&] { return MemorySSAAnalysis(); });
FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
// Register required pass instrumentation analysis.
LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
// Cross-register proxies.
LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
}
};
TEST_F(LoopPassManagerTest, Basic) {
ModulePassManager MPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First we just visit all the loops in all the functions and get their
// analysis results. This will run the analysis a total of four times,
// once for each loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
// Wire the loop pass through pass managers into the module pipeline.
{
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
FunctionPassManager FPM(true);
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// Next we run two passes over the loops. The first one invalidates the
// analyses for one loop, the second ones try to get the analysis results.
// This should force only one analysis to re-run within the loop PM, but will
// also invalidate everything after the loop pass manager finishes.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
// Wire two loop pass runs into the module pipeline.
{
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FunctionPassManager FPM(true);
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// And now run the pipeline across the module.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
// We process each function completely in sequence.
::testing::Sequence FSequence, GSequence;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// No need to re-run if we require again from a fresh loop pass manager.
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// For 'f', preserve most things but not the specific loop analyses.
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.InSequence(FSequence)
.WillOnce(Return(PA));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// On one loop, skip the invalidation (as though we did an internal update).
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
.InSequence(FSequence)
.WillOnce(Return(false));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// Now two loops still have to be recomputed.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// Preserve things in the second function to ensure invalidation remains
// isolated to one function.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// For 'g', fail to preserve anything, causing the loops themselves to be
// cleared. We don't get an invalidation event here as the loop is gone, but
// we should still have to recompute the analysis.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.InSequence(GSequence)
.WillOnce(Return(PreservedAnalyses::none()));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// Verify with a separate function pass run that we didn't mess up 'f's
// cache. No analysis runs should be necessary here.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
ModulePassManager MPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Walking all the way out and all the way back in doesn't re-run the
// analysis.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// But a module pass that doesn't preserve the actual mock loop analysis
// invalidates all the way down and forces recomputing.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
return PA;
}));
// All the loop analyses from both functions get invalidated before we
// recompute anything.
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
// On one loop, again skip the invalidation (as though we did an internal
// update).
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
.WillOnce(Return(false));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
// Now all but one of the loops gets re-analyzed.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Verify that the cached values persist.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Now we fail to preserve the loop analysis and observe that the loop
// analyses are cleared (so no invalidation event) as the loops themselves
// are no longer valid.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Verify that the cached values persist.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Next, check that even if we preserve everything within the function itelf,
// if the function's module pass proxy isn't preserved and the potential set
// of functions changes, the clear reaches the loop analyses as well. This
// will again trigger re-runs but not invalidation events.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
MPM.run(*M, MAM);
}
// Test that if any of the bundled analyses provided in the LPM's signature
// become invalid, the analysis proxy itself becomes invalid and we clear all
// loop analysis results.
TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// No need to re-run if we require again from a fresh loop pass manager.
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// Preserving everything but the loop analyses themselves results in
// invalidation and running.
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.WillOnce(Return(getLoopPassPreservedAnalyses()));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// The rest don't invalidate analyses, they only trigger re-runs because we
// clear the cache completely.
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
// Not preserving `AAManager`.
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
// Not preserving `DominatorTreeAnalysis`.
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
// Not preserving the `LoopAnalysis`.
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
// Not preserving the `LoopAnalysisManagerFunctionProxy`.
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
// Not preserving `ScalarEvolutionAnalysis`.
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// After all the churn on 'f', we'll compute the loop analysis results for
// 'g' once with a requires pass and then run our mock pass over g a bunch
// but just get cached results each time.
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, IndirectInvalidation) {
// We need two distinct analysis types and handles.
enum { A, B };
MockLoopAnalysisHandleTemplate<A> MLAHandleA;
MockLoopAnalysisHandleTemplate<B> MLAHandleB;
LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
typedef decltype(MLAHandleA)::Analysis AnalysisA;
typedef decltype(MLAHandleB)::Analysis AnalysisB;
// Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
// need to get the AnalysisB results in AnalysisA's run method and check if
// AnalysisB gets invalidated in AnalysisA's invalidate method.
ON_CALL(MLAHandleA, run(_, _, _))
.WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
(void)AM.getResult<AnalysisB>(L, AR);
return MLAHandleA.getResult();
}));
ON_CALL(MLAHandleA, invalidate(_, _, _))
.WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
LoopAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<AnalysisA>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
Inv.invalidate<AnalysisB>(L, PA);
}));
::testing::InSequence MakeExpectationsSequenced;
// Compute the analyses across all of 'f' first.
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
// Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
// preserve everything for the rest. This in turn triggers that one loop to
// recompute both AnalysisB *and* AnalysisA if indirect invalidation is
// working.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
// Specifically preserve AnalysisA so that it would survive if it
// didn't depend on AnalysisB.
PA.preserve<AnalysisA>();
return PA;
}));
// It happens that AnalysisB is invalidated first. That shouldn't matter
// though, and we should still call AnalysisA's invalidation.
EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
// The rest of the loops should run and get cached results.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
// The run over 'g' should be boring, with us just computing the analyses once
// up front and then running loop passes and getting cached results.
EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
// Build the pipeline and run it.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
typedef decltype(MLAHandle)::Analysis LoopAnalysis;
MockFunctionAnalysisHandle MFAHandle;
FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
// Set up the loop analysis to depend on both the function and module
// analysis.
ON_CALL(MLAHandle, run(_, _, _))
.WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
auto &FAM = FAMP.getManager();
Function &F = *L.getHeader()->getParent();
if (FAM.getCachedResult<FunctionAnalysis>(F))
FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
LoopAnalysis>();
return MLAHandle.getResult();
}));
::testing::InSequence MakeExpectationsSequenced;
// Compute the analyses across all of 'f' first.
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
// Force the computing of the function analysis so it is available in
// this function.
(void)AM.getResult<FunctionAnalysis>(F);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// Now invalidate the function analysis but preserve the loop analyses.
// This should trigger immediate invalidation of the loop analyses, despite
// the fact that they were preserved.
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
// And re-running a requires pass recomputes them.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// When we run over 'g' we don't populate the cache with the function
// analysis.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.WillOnce(Return(PreservedAnalyses::all()));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
// Which means that no extra invalidation occurs and cached values are used.
EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
// Build the pipeline and run it.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
FPM.addPass(MFPHandle.getPass());
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopChildInsertion) {
// Super boring module with three loops in a single loop nest.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop01PHBB = *BBI++;
ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
BasicBlock &Loop01BB = *BBI++;
ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
const char *Name, BasicBlock *BB) {
auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
/*isVolatile*/ true, BB);
BranchInst::Create(TrueBB, FalseBB, Cond, BB);
};
// Build the pass managers and register our pipeline. We build a single loop
// pass pipeline consisting of three mock pass runs over each loop. After
// this we run both domtree and loop verification passes to make sure that
// the IR remained valid during our mutations.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// All the visit orders are deterministic, so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run loop passes three times over each of the loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
// When running over the middle loop, the second run inserts two new child
// loops, inserting them and itself into the worklist.
BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.addChildLoop(NewLoop);
auto *NewLoop010PHBB =
BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
NewLoop010BB =
BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
NewLoop01LatchBB =
BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
NewLoop010BB);
BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
EXPECT_TRUE(AR.DT.verify());
L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
NewLoop->verifyLoop();
L.verifyLoop();
Updater.addChildLoops({NewLoop});
return PreservedAnalyses::all();
}));
// We should immediately drop down to fully visit the new inner loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// After visiting the inner loop, we should re-visit the second loop
// reflecting its new loop nest structure.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// In the second run over the middle loop after we've visited the new child,
// we add another child to check that we can repeatedly add children, and add
// children to a loop that already has children.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.addChildLoop(NewLoop);
auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
NewLoop011PHBB);
BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
NewLoop011BB);
AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
NewLoop->verifyLoop();
L.verifyLoop();
Updater.addChildLoops({NewLoop});
return PreservedAnalyses::all();
}));
// Again, we should immediately drop down to visit the new, unvisited child
// loop. We don't need to revisit the other child though.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// And now we should pop back up to the second loop and do a full pipeline of
// three passes on its current form.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Now that all the expected actions are registered, run the pipeline over
// our module. All of our expectations are verified when the test finishes.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
// Super boring module with two loop nests and loop nest with two child
// loops.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"loop.2.ph:\n"
" br label %loop.2\n"
"loop.2:\n"
" %cond.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.2, label %loop.2, label %end\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &Loop2PHBB = *BBI++;
ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
BasicBlock &Loop2BB = *BBI++;
ASSERT_THAT(Loop2BB, HasName("loop.2"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
const char *Name, BasicBlock *BB) {
auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
/*isVolatile*/ true, BB);
BranchInst::Create(TrueBB, FalseBB, Cond, BB);
};
// Build the pass managers and register our pipeline. We build a single loop
// pass pipeline consisting of three mock pass runs over each loop. After
// this we run both domtree and loop verification passes to make sure that
// the IR remained valid during our mutations.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// All the visit orders are deterministic, so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run loop passes three times over each of the loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
// On the second run, we insert a sibling loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.getParentLoop()->addChildLoop(NewLoop);
auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
L.getParentLoop()->verifyLoop();
Updater.addSiblingLoops({NewLoop});
return PreservedAnalyses::all();
}));
// We finish processing this loop as sibling loops don't perturb the
// postorder walk.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// We visit the inserted sibling next.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// Next, on the third pass run on the last inner loop we add more new
// siblings, more than one, and one with nested child loops. By doing this at
// the end we make sure that edge case works well.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
AR.LI.AllocateLoop()};
L.getParentLoop()->addChildLoop(NewLoops[0]);
L.getParentLoop()->addChildLoop(NewLoops[1]);
NewLoops[1]->addChildLoop(NewLoops[2]);
auto *NewLoop03PHBB =
BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
auto *NewLoop03BB =
BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
auto *NewLoop04PHBB =
BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
auto *NewLoop04BB =
BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
auto *NewLoop040PHBB =
BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
auto *NewLoop040BB =
BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
auto *NewLoop04LatchBB =
BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
EXPECT_TRUE(AR.DT.verify());
L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
L.getParentLoop()->verifyLoop();
Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Note that we need to visit the inner loop of this added sibling before the
// sibling itself!
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// And only now do we visit the outermost loop of the nest.
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// On the second pass, we add sibling loops which become new top-level loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
AR.LI.addTopLevelLoop(NewLoop);
auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
NewLoop->verifyLoop();
Updater.addSiblingLoops({NewLoop});
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Now that all the expected actions are registered, run the pipeline over
// our module. All of our expectations are verified when the test finishes.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopDeletion) {
// Build a module with a single loop nest that contains one outer loop with
// three subloops, and one of those with its own subloop. We will
// incrementally delete all of these to test different deletion scenarios.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
"loop.0.2.0.ph:\n"
" br label %loop.0.2.0\n"
"loop.0.2.0:\n"
" %cond.0.2.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
"loop.0.2.latch:\n"
" br label %loop.0.2\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop01PHBB = *BBI++;
ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
BasicBlock &Loop01BB = *BBI++;
ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop020PHBB = *BBI++;
ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
BasicBlock &Loop020BB = *BBI++;
ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
BasicBlock &Loop02LatchBB = *BBI++;
ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
// Helper to do the actual deletion of a loop. We directly encode this here
// to isolate ourselves from the rest of LLVM and for simplicity. Here we can
// egregiously cheat based on knowledge of the test case. For example, we
// have no PHI nodes and there is always a single i-dom.
auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
assert(L.empty() && "Can only delete leaf loops with this routine!");
SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
Updater.markLoopAsDeleted(L, L.getName());
IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
L.getUniqueExitBlock());
for (BasicBlock *LoopBB : LoopBBs) {
SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
AR.DT[LoopBB]->end());
for (DomTreeNode *ChildNode : ChildNodes)
AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
AR.DT.eraseNode(LoopBB);
AR.LI.removeBlock(LoopBB);
LoopBB->dropAllReferences();
}
for (BasicBlock *LoopBB : LoopBBs)
LoopBB->eraseFromParent();
AR.LI.erase(&L);
};
// Build up the pass managers.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
// We run several loop pass pipelines across the loop nest, but they all take
// the same form of three mock pass runs in a loop pipeline followed by
// domtree and loop verification. We use a lambda to stamp this out each
// time.
auto AddLoopPipelineAndVerificationPasses = [&] {
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
};
// All the visit orders are deterministic so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run the loop pipeline with three passes over each of the loops. When
// running over the middle loop, the second pass in the pipeline deletes it.
// This should prevent the third pass from visiting it but otherwise leave
// the process unimpacted.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
Loop *ParentL = L.getParentLoop();
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop01PHBB, AR, Updater);
ParentL->verifyLoop();
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Run the loop pipeline again. This time we delete the last loop, which
// contains a nested loop within it and insert a new loop into the nest. This
// makes sure we can handle nested loop deletion.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
BasicBlock *NewLoop03PHBB;
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(*L.begin());
EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
auto *ParentL = L.getParentLoop();
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop02PHBB, AR, Updater);
// Now insert a new sibling loop.
auto *NewSibling = AR.LI.AllocateLoop();
ParentL->addChildLoop(NewSibling);
NewLoop03PHBB =
BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
auto *NewLoop03BB =
BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
auto *Cond =
new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
/*isVolatile*/ true, NewLoop03BB);
BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
NewLoop03PHBB);
AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
AR.DT[NewLoop03BB]);
EXPECT_TRUE(AR.DT.verify());
ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
NewSibling->verifyLoop();
ParentL->verifyLoop();
Updater.addSiblingLoops({NewSibling});
return PreservedAnalyses::all();
}));
// To respect our inner-to-outer traversal order, we must visit the
// newly-inserted sibling of the loop we just deleted before we visit the
// outer loop. When we do so, this must compute a fresh analysis result, even
// though our new loop has the same pointer value as the loop we deleted.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// In the final loop pipeline run we delete every loop, including the last
// loop of the nest. We do this again in the second pass in the pipeline, and
// as a consequence we never make it to three runs on any loop. We also cover
// deleting multiple loops in a single pipeline, deleting the first loop and
// deleting the (last) top level loop.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop00PHBB, AR, Updater);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, *NewLoop03PHBB, AR, Updater);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, EntryBB, AR, Updater);
return PreservedAnalyses::all();
}));
// Add the function pass pipeline now that it is fully built up and run it
// over the module's one function.
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
}