PassManagerTest.cpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
//===- llvm/unittest/IR/PassManager.cpp - PassManager tests ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/PassManager.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"

using namespace llvm;

namespace {

class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
  struct Result {
    Result(int Count) : InstructionCount(Count) {}
    int InstructionCount;
  };

  TestFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    int Count = 0;
    for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
           ++II)
        ++Count;
    return Result(Count);
  }

private:
  friend AnalysisInfoMixin<TestFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestFunctionAnalysis::Key;

class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
public:
  struct Result {
    Result(int Count) : FunctionCount(Count) {}
    int FunctionCount;
  };

  TestModuleAnalysis(int &Runs) : Runs(Runs) {}

  Result run(Module &M, ModuleAnalysisManager &AM) {
    ++Runs;
    int Count = 0;
    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
      ++Count;
    return Result(Count);
  }

private:
  friend AnalysisInfoMixin<TestModuleAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestModuleAnalysis::Key;

struct TestModulePass : PassInfoMixin<TestModulePass> {
  TestModulePass(int &RunCount) : RunCount(RunCount) {}

  PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
    ++RunCount;
    return PreservedAnalyses::none();
  }

  int &RunCount;
};

struct TestPreservingModulePass : PassInfoMixin<TestPreservingModulePass> {
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
    return PreservedAnalyses::all();
  }
};

struct TestFunctionPass : PassInfoMixin<TestFunctionPass> {
  TestFunctionPass(int &RunCount, int &AnalyzedInstrCount,
                   int &AnalyzedFunctionCount,
                   bool OnlyUseCachedResults = false)
      : RunCount(RunCount), AnalyzedInstrCount(AnalyzedInstrCount),
        AnalyzedFunctionCount(AnalyzedFunctionCount),
        OnlyUseCachedResults(OnlyUseCachedResults) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    ++RunCount;

    const ModuleAnalysisManager &MAM =
        AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
    if (TestModuleAnalysis::Result *TMA =
            MAM.getCachedResult<TestModuleAnalysis>(*F.getParent()))
      AnalyzedFunctionCount += TMA->FunctionCount;

    if (OnlyUseCachedResults) {
      // Hack to force the use of the cached interface.
      if (TestFunctionAnalysis::Result *AR =
              AM.getCachedResult<TestFunctionAnalysis>(F))
        AnalyzedInstrCount += AR->InstructionCount;
    } else {
      // Typical path just runs the analysis as needed.
      TestFunctionAnalysis::Result &AR = AM.getResult<TestFunctionAnalysis>(F);
      AnalyzedInstrCount += AR.InstructionCount;
    }

    return PreservedAnalyses::all();
  }

  int &RunCount;
  int &AnalyzedInstrCount;
  int &AnalyzedFunctionCount;
  bool OnlyUseCachedResults;
};

// A test function pass that invalidates all function analyses for a function
// with a specific name.
struct TestInvalidationFunctionPass
    : PassInfoMixin<TestInvalidationFunctionPass> {
  TestInvalidationFunctionPass(StringRef FunctionName) : Name(FunctionName) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    return F.getName() == Name ? PreservedAnalyses::none()
                               : PreservedAnalyses::all();
  }

  StringRef Name;
};

std::unique_ptr<Module> parseIR(LLVMContext &Context, const char *IR) {
  SMDiagnostic Err;
  return parseAssemblyString(IR, Err, Context);
}

class PassManagerTest : public ::testing::Test {
protected:
  LLVMContext Context;
  std::unique_ptr<Module> M;

public:
  PassManagerTest()
      : M(parseIR(Context, "define void @f() {\n"
                           "entry:\n"
                           "  call void @g()\n"
                           "  call void @h()\n"
                           "  ret void\n"
                           "}\n"
                           "define void @g() {\n"
                           "  ret void\n"
                           "}\n"
                           "define void @h() {\n"
                           "  ret void\n"
                           "}\n")) {}
};

TEST(PreservedAnalysesTest, Basic) {
  PreservedAnalyses PA1 = PreservedAnalyses();
  {
    auto PAC = PA1.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  {
    auto PAC = PA1.getChecker<TestModuleAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
  }
  auto PA2 = PreservedAnalyses::none();
  {
    auto PAC = PA2.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  auto PA3 = PreservedAnalyses::all();
  {
    auto PAC = PA3.getChecker<TestFunctionAnalysis>();
    EXPECT_TRUE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PreservedAnalyses PA4 = PA1;
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PA4 = PA3;
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_TRUE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PA4 = std::move(PA2);
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  auto PA5 = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
  {
    auto PAC = PA5.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
  }
}

TEST(PreservedAnalysesTest, Preserve) {
  auto PA = PreservedAnalyses::none();
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());
  PA.preserve<TestModuleAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());

  // Redundant calls are fine.
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());
}

TEST(PreservedAnalysesTest, PreserveSets) {
  auto PA = PreservedAnalyses::none();
  PA.preserveSet<AllAnalysesOn<Function>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Mixing is fine.
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Redundant calls are fine.
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
}

TEST(PreservedAnalysisTest, Intersect) {
  // Setup the initial sets.
  auto PA1 = PreservedAnalyses::none();
  PA1.preserve<TestFunctionAnalysis>();
  PA1.preserveSet<AllAnalysesOn<Module>>();
  auto PA2 = PreservedAnalyses::none();
  PA2.preserve<TestFunctionAnalysis>();
  PA2.preserveSet<AllAnalysesOn<Function>>();
  PA2.preserve<TestModuleAnalysis>();
  PA2.preserveSet<AllAnalysesOn<Module>>();
  auto PA3 = PreservedAnalyses::none();
  PA3.preserve<TestModuleAnalysis>();
  PA3.preserveSet<AllAnalysesOn<Function>>();

  // Self intersection is a no-op.
  auto Intersected = PA1;
  Intersected.intersect(PA1);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with all is a no-op.
  Intersected.intersect(PreservedAnalyses::all());
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting a narrow set with a more broad set is the narrow set.
  Intersected.intersect(PA2);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting a broad set with a more narrow set is the narrow set.
  Intersected = PA2;
  Intersected.intersect(PA1);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with empty clears.
  Intersected.intersect(PreservedAnalyses::none());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting non-overlapping clears.
  Intersected = PA1;
  Intersected.intersect(PA3);
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with moves works in when there is storage on both sides.
  Intersected = PA1;
  auto Tmp = PA2;
  Intersected.intersect(std::move(Tmp));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with move works for incoming all and existing all.
  auto Tmp2 = PreservedAnalyses::all();
  Intersected.intersect(std::move(Tmp2));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
  Intersected = PreservedAnalyses::all();
  auto Tmp3 = PA1;
  Intersected.intersect(std::move(Tmp3));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
}

TEST(PreservedAnalysisTest, Abandon) {
  auto PA = PreservedAnalyses::none();

  // We can abandon things after they are preserved.
  PA.preserve<TestFunctionAnalysis>();
  PA.abandon<TestFunctionAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());

  // Repeated is fine, and abandoning if they were never preserved is fine.
  PA.abandon<TestFunctionAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());
  PA.abandon<TestModuleAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());

  // Even if the sets are preserved, the abandoned analyses' checker won't
  // return true for those sets.
  PA.preserveSet<AllAnalysesOn<Function>>();
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // But an arbitrary (opaque) analysis will still observe the sets as
  // preserved. This also checks that we can use an explicit ID rather than
  // a type.
  AnalysisKey FakeKey, *FakeID = &FakeKey;
  EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Module>>());
}

TEST_F(PassManagerTest, Basic) {
  FunctionAnalysisManager FAM(/*DebugLogging*/ true);
  int FunctionAnalysisRuns = 0;
  FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });

  ModuleAnalysisManager MAM(/*DebugLogging*/ true);
  int ModuleAnalysisRuns = 0;
  MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
  MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });

  MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
  FAM.registerPass([&] { return PassInstrumentationAnalysis(); });

  ModulePassManager MPM;

  // Count the runs over a Function.
  int FunctionPassRunCount1 = 0;
  int AnalyzedInstrCount1 = 0;
  int AnalyzedFunctionCount1 = 0;
  {
    // Pointless scoped copy to test move assignment.
    ModulePassManager NestedMPM(/*DebugLogging*/ true);
    FunctionPassManager FPM;
    {
      // Pointless scope to test move assignment.
      FunctionPassManager NestedFPM(/*DebugLogging*/ true);
      NestedFPM.addPass(TestFunctionPass(
          FunctionPassRunCount1, AnalyzedInstrCount1, AnalyzedFunctionCount1));
      FPM = std::move(NestedFPM);
    }
    NestedMPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
    MPM = std::move(NestedMPM);
  }

  // Count the runs over a module.
  int ModulePassRunCount = 0;
  MPM.addPass(TestModulePass(ModulePassRunCount));

  // Count the runs over a Function in a separate manager.
  int FunctionPassRunCount2 = 0;
  int AnalyzedInstrCount2 = 0;
  int AnalyzedFunctionCount2 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestFunctionPass(FunctionPassRunCount2, AnalyzedInstrCount2,
                                 AnalyzedFunctionCount2));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A third function pass manager but with only preserving intervening passes
  // and with a function pass that invalidates exactly one analysis.
  MPM.addPass(TestPreservingModulePass());
  int FunctionPassRunCount3 = 0;
  int AnalyzedInstrCount3 = 0;
  int AnalyzedFunctionCount3 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestFunctionPass(FunctionPassRunCount3, AnalyzedInstrCount3,
                                 AnalyzedFunctionCount3));
    FPM.addPass(TestInvalidationFunctionPass("f"));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A fourth function pass manager but with only preserving intervening
  // passes but triggering the module analysis.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  int FunctionPassRunCount4 = 0;
  int AnalyzedInstrCount4 = 0;
  int AnalyzedFunctionCount4 = 0;
  {
    FunctionPassManager FPM;
    FPM.addPass(TestFunctionPass(FunctionPassRunCount4, AnalyzedInstrCount4,
                                 AnalyzedFunctionCount4));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A fifth function pass manager which invalidates one function first but
  // uses only cached results.
  int FunctionPassRunCount5 = 0;
  int AnalyzedInstrCount5 = 0;
  int AnalyzedFunctionCount5 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestInvalidationFunctionPass("f"));
    FPM.addPass(TestFunctionPass(FunctionPassRunCount5, AnalyzedInstrCount5,
                                 AnalyzedFunctionCount5,
                                 /*OnlyUseCachedResults=*/true));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  MPM.run(*M, MAM);

  // Validate module pass counters.
  EXPECT_EQ(1, ModulePassRunCount);

  // Validate all function pass counter sets are the same.
  EXPECT_EQ(3, FunctionPassRunCount1);
  EXPECT_EQ(5, AnalyzedInstrCount1);
  EXPECT_EQ(0, AnalyzedFunctionCount1);
  EXPECT_EQ(3, FunctionPassRunCount2);
  EXPECT_EQ(5, AnalyzedInstrCount2);
  EXPECT_EQ(0, AnalyzedFunctionCount2);
  EXPECT_EQ(3, FunctionPassRunCount3);
  EXPECT_EQ(5, AnalyzedInstrCount3);
  EXPECT_EQ(0, AnalyzedFunctionCount3);
  EXPECT_EQ(3, FunctionPassRunCount4);
  EXPECT_EQ(5, AnalyzedInstrCount4);
  EXPECT_EQ(9, AnalyzedFunctionCount4);
  EXPECT_EQ(3, FunctionPassRunCount5);
  EXPECT_EQ(2, AnalyzedInstrCount5); // Only 'g' and 'h' were cached.
  EXPECT_EQ(9, AnalyzedFunctionCount5);

  // Validate the analysis counters:
  //   first run over 3 functions, then module pass invalidates
  //   second run over 3 functions, nothing invalidates
  //   third run over 0 functions, but 1 function invalidated
  //   fourth run over 1 function
  //   fifth run invalidates 1 function first, but runs over 0 functions
  EXPECT_EQ(7, FunctionAnalysisRuns);

  EXPECT_EQ(1, ModuleAnalysisRuns);
}

// A customized pass manager that passes extra arguments through the
// infrastructure.
typedef AnalysisManager<Function, int> CustomizedAnalysisManager;
typedef PassManager<Function, CustomizedAnalysisManager, int, int &>
    CustomizedPassManager;

class CustomizedAnalysis : public AnalysisInfoMixin<CustomizedAnalysis> {
public:
  struct Result {
    Result(int I) : I(I) {}
    int I;
  };

  Result run(Function &F, CustomizedAnalysisManager &AM, int I) {
    return Result(I);
  }

private:
  friend AnalysisInfoMixin<CustomizedAnalysis>;
  static AnalysisKey Key;
};

AnalysisKey CustomizedAnalysis::Key;

struct CustomizedPass : PassInfoMixin<CustomizedPass> {
  std::function<void(CustomizedAnalysis::Result &, int &)> Callback;

  template <typename CallbackT>
  CustomizedPass(CallbackT Callback) : Callback(Callback) {}

  PreservedAnalyses run(Function &F, CustomizedAnalysisManager &AM, int I,
                        int &O) {
    Callback(AM.getResult<CustomizedAnalysis>(F, I), O);
    return PreservedAnalyses::none();
  }
};

TEST_F(PassManagerTest, CustomizedPassManagerArgs) {
  CustomizedAnalysisManager AM;
  AM.registerPass([&] { return CustomizedAnalysis(); });
  PassInstrumentationCallbacks PIC;
  AM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });

  CustomizedPassManager PM;

  // Add an instance of the customized pass that just accumulates the input
  // after it is round-tripped through the analysis.
  int Result = 0;
  PM.addPass(
      CustomizedPass([](CustomizedAnalysis::Result &R, int &O) { O += R.I; }));

  // Run this over every function with the input of 42.
  for (Function &F : *M)
    PM.run(F, AM, 42, Result);

  // And ensure that we accumulated the correct result.
  EXPECT_EQ(42 * (int)M->size(), Result);
}

/// A test analysis pass which caches in its result another analysis pass and
/// uses it to serve queries. This requires the result to invalidate itself
/// when its dependency is invalidated.
struct TestIndirectFunctionAnalysis
    : public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
  struct Result {
    Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep)
        : FDep(FDep), MDep(MDep) {}
    TestFunctionAnalysis::Result &FDep;
    TestModuleAnalysis::Result &MDep;

    bool invalidate(Function &F, const PreservedAnalyses &PA,
                    FunctionAnalysisManager::Invalidator &Inv) {
      auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
      return !(PAC.preserved() ||
               PAC.preservedSet<AllAnalysesOn<Function>>()) ||
             Inv.invalidate<TestFunctionAnalysis>(F, PA);
    }
  };

  TestIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
    auto &Proxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    const ModuleAnalysisManager &MAM = Proxy.getManager();
    // For the test, we insist that the module analysis starts off in the
    // cache.
    auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
    // And register the dependency as module analysis dependencies have to be
    // pre-registered on the proxy.
    Proxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
                                            TestIndirectFunctionAnalysis>();
    return Result(FDep, MDep);
  }

private:
  friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestIndirectFunctionAnalysis::Key;

/// A test analysis pass which chaches in its result the result from the above
/// indirect analysis pass.
///
/// This allows us to ensure that whenever an analysis pass is invalidated due
/// to dependencies (especially dependencies across IR units that trigger
/// asynchronous invalidation) we correctly detect that this may in turn cause
/// other analysis to be invalidated.
struct TestDoublyIndirectFunctionAnalysis
    : public AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis> {
  struct Result {
    Result(TestIndirectFunctionAnalysis::Result &IDep) : IDep(IDep) {}
    TestIndirectFunctionAnalysis::Result &IDep;

    bool invalidate(Function &F, const PreservedAnalyses &PA,
                    FunctionAnalysisManager::Invalidator &Inv) {
      auto PAC = PA.getChecker<TestDoublyIndirectFunctionAnalysis>();
      return !(PAC.preserved() ||
               PAC.preservedSet<AllAnalysesOn<Function>>()) ||
             Inv.invalidate<TestIndirectFunctionAnalysis>(F, PA);
    }
  };

  TestDoublyIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    auto &IDep = AM.getResult<TestIndirectFunctionAnalysis>(F);
    return Result(IDep);
  }

private:
  friend AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestDoublyIndirectFunctionAnalysis::Key;

struct LambdaPass : public PassInfoMixin<LambdaPass> {
  using FuncT = std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)>;

  LambdaPass(FuncT Func) : Func(std::move(Func)) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    return Func(F, AM);
  }

  FuncT Func;
};

TEST_F(PassManagerTest, IndirectAnalysisInvalidation) {
  FunctionAnalysisManager FAM(/*DebugLogging*/ true);
  int FunctionAnalysisRuns = 0, ModuleAnalysisRuns = 0,
      IndirectAnalysisRuns = 0, DoublyIndirectAnalysisRuns = 0;
  FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
  FAM.registerPass(
      [&] { return TestIndirectFunctionAnalysis(IndirectAnalysisRuns); });
  FAM.registerPass([&] {
    return TestDoublyIndirectFunctionAnalysis(DoublyIndirectAnalysisRuns);
  });

  ModuleAnalysisManager MAM(/*DebugLogging*/ true);
  MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
  MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });

  PassInstrumentationCallbacks PIC;
  MAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
  FAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });

  int InstrCount = 0, FunctionCount = 0;
  ModulePassManager MPM(/*DebugLogging*/ true);
  FunctionPassManager FPM(/*DebugLogging*/ true);
  // First just use the analysis to get the instruction count, and preserve
  // everything.
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));
  // Next, invalidate
  //   - both analyses for "f",
  //   - just the underlying (indirect) analysis for "g", and
  //   - just the direct analysis for "h".
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    auto PA = PreservedAnalyses::none();
    if (F.getName() == "g")
      PA.preserve<TestFunctionAnalysis>();
    else if (F.getName() == "h")
      PA.preserve<TestIndirectFunctionAnalysis>();
    return PA;
  }));
  // Finally, use the analysis again on each function, forcing re-computation
  // for all of them.
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));

  // Create a second function pass manager. This will cause the module-level
  // invalidation to occur, which will force yet another invalidation of the
  // indirect function-level analysis as the module analysis it depends on gets
  // invalidated.
  FunctionPassManager FPM2(/*DebugLogging*/ true);
  FPM2.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));

  // Add a requires pass to populate the module analysis and then our function
  // pass pipeline.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  // Now require the module analysis again (it will have been invalidated once)
  // and then use it again from a function pass manager.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM2)));
  MPM.run(*M, MAM);

  // There are generally two possible runs for each of the three functions. But
  // for one function, we only invalidate the indirect analysis so the base one
  // only gets run five times.
  EXPECT_EQ(5, FunctionAnalysisRuns);
  // The module analysis pass should be run twice here.
  EXPECT_EQ(2, ModuleAnalysisRuns);
  // The indirect analysis is invalidated for each function (either directly or
  // indirectly) and run twice for each.
  EXPECT_EQ(9, IndirectAnalysisRuns);
  EXPECT_EQ(9, DoublyIndirectAnalysisRuns);

  // There are five instructions in the module and we add the count four
  // times.
  EXPECT_EQ(5 * 4, InstrCount);

  // There are three functions and we count them four times for each of the
  // three functions.
  EXPECT_EQ(3 * 4 * 3, FunctionCount);
}
}