DwarfLinkerForBinary.cpp 118 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
//===- tools/dsymutil/DwarfLinkerForBinary.cpp ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "DwarfLinkerForBinary.h"
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "DwarfStreamer.h"
#include "MachOUtils.h"
#include "dsymutil.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/CodeGen/AccelTable.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/NonRelocatableStringpool.h"
#include "llvm/Config/config.h"
#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Remarks/RemarkFormat.h"
#include "llvm/Remarks/RemarkLinker.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <climits>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>

namespace llvm {
namespace dsymutil {

/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
/// CompileUnit object instead.
static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
  auto CU = std::upper_bound(
      Units.begin(), Units.end(), Offset,
      [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
        return LHS < RHS->getOrigUnit().getNextUnitOffset();
      });
  return CU != Units.end() ? CU->get() : nullptr;
}

/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
/// The resulting DIE might be in another CompileUnit which is stored into \p
/// ReferencedCU. \returns null if resolving fails for any reason.
static DWARFDie resolveDIEReference(const DwarfLinkerForBinary &Linker,
                                    const DebugMapObject &DMO,
                                    const UnitListTy &Units,
                                    const DWARFFormValue &RefValue,
                                    const DWARFDie &DIE, CompileUnit *&RefCU) {
  assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
  uint64_t RefOffset = *RefValue.getAsReference();
  if ((RefCU = getUnitForOffset(Units, RefOffset)))
    if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
      // In a file with broken references, an attribute might point to a NULL
      // DIE.
      if (!RefDie.isNULL())
        return RefDie;
    }

  Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
  return DWARFDie();
}

/// \returns whether the passed \a Attr type might contain a DIE reference
/// suitable for ODR uniquing.
static bool isODRAttribute(uint16_t Attr) {
  switch (Attr) {
  default:
    return false;
  case dwarf::DW_AT_type:
  case dwarf::DW_AT_containing_type:
  case dwarf::DW_AT_specification:
  case dwarf::DW_AT_abstract_origin:
  case dwarf::DW_AT_import:
    return true;
  }
  llvm_unreachable("Improper attribute.");
}

static bool isTypeTag(uint16_t Tag) {
  switch (Tag) {
  case dwarf::DW_TAG_array_type:
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_enumeration_type:
  case dwarf::DW_TAG_pointer_type:
  case dwarf::DW_TAG_reference_type:
  case dwarf::DW_TAG_string_type:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_subroutine_type:
  case dwarf::DW_TAG_typedef:
  case dwarf::DW_TAG_union_type:
  case dwarf::DW_TAG_ptr_to_member_type:
  case dwarf::DW_TAG_set_type:
  case dwarf::DW_TAG_subrange_type:
  case dwarf::DW_TAG_base_type:
  case dwarf::DW_TAG_const_type:
  case dwarf::DW_TAG_constant:
  case dwarf::DW_TAG_file_type:
  case dwarf::DW_TAG_namelist:
  case dwarf::DW_TAG_packed_type:
  case dwarf::DW_TAG_volatile_type:
  case dwarf::DW_TAG_restrict_type:
  case dwarf::DW_TAG_atomic_type:
  case dwarf::DW_TAG_interface_type:
  case dwarf::DW_TAG_unspecified_type:
  case dwarf::DW_TAG_shared_type:
    return true;
  default:
    break;
  }
  return false;
}

static Error remarksErrorHandler(const DebugMapObject &DMO,
                                 DwarfLinkerForBinary &Linker,
                                 std::unique_ptr<FileError> FE) {
  bool IsArchive = DMO.getObjectFilename().endswith(")");
  // Don't report errors for missing remark files from static
  // archives.
  if (!IsArchive)
    return Error(std::move(FE));

  std::string Message = FE->message();
  Error E = FE->takeError();
  Error NewE = handleErrors(std::move(E), [&](std::unique_ptr<ECError> EC) {
    if (EC->convertToErrorCode() != std::errc::no_such_file_or_directory)
      return Error(std::move(EC));

    Linker.reportWarning(Message, DMO);
    return Error(Error::success());
  });

  if (!NewE)
    return Error::success();

  return createFileError(FE->getFileName(), std::move(NewE));
}

bool DwarfLinkerForBinary::DIECloner::getDIENames(const DWARFDie &Die,
                                                  AttributesInfo &Info,
                                                  OffsetsStringPool &StringPool,
                                                  bool StripTemplate) {
  // This function will be called on DIEs having low_pcs and
  // ranges. As getting the name might be more expansive, filter out
  // blocks directly.
  if (Die.getTag() == dwarf::DW_TAG_lexical_block)
    return false;

  // FIXME: a bit wasteful as the first getName might return the
  // short name.
  if (!Info.MangledName)
    if (const char *MangledName = Die.getName(DINameKind::LinkageName))
      Info.MangledName = StringPool.getEntry(MangledName);

  if (!Info.Name)
    if (const char *Name = Die.getName(DINameKind::ShortName))
      Info.Name = StringPool.getEntry(Name);

  if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
    // FIXME: dsymutil compatibility. This is wrong for operator<
    auto Split = Info.Name.getString().split('<');
    if (!Split.second.empty())
      Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
  }

  return Info.Name || Info.MangledName;
}

/// Report a warning to the user, optionally including information about a
/// specific \p DIE related to the warning.
void DwarfLinkerForBinary::reportWarning(const Twine &Warning,
                                         const DebugMapObject &DMO,
                                         const DWARFDie *DIE) const {
  StringRef Context = DMO.getObjectFilename();
  warn(Warning, Context);

  if (!Options.Verbose || !DIE)
    return;

  DIDumpOptions DumpOpts;
  DumpOpts.ChildRecurseDepth = 0;
  DumpOpts.Verbose = Options.Verbose;

  WithColor::note() << "    in DIE:\n";
  DIE->dump(errs(), 6 /* Indent */, DumpOpts);
}

bool DwarfLinkerForBinary::createStreamer(const Triple &TheTriple,
                                          raw_fd_ostream &OutFile) {
  if (Options.NoOutput)
    return true;

  Streamer = std::make_unique<DwarfStreamer>(OutFile, Options);
  return Streamer->init(TheTriple);
}

/// Resolve the relative path to a build artifact referenced by DWARF by
/// applying DW_AT_comp_dir.
static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
  sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
}

/// Collect references to parseable Swift interfaces in imported
/// DW_TAG_module blocks.
static void analyzeImportedModule(
    const DWARFDie &DIE, CompileUnit &CU,
    std::map<std::string, std::string> &ParseableSwiftInterfaces,
    std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
  if (CU.getLanguage() != dwarf::DW_LANG_Swift)
    return;

  StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
  if (!Path.endswith(".swiftinterface"))
    return;
  if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
    if (Optional<const char *> Name = Val->getAsCString()) {
      auto &Entry = ParseableSwiftInterfaces[*Name];
      // The prepend path is applied later when copying.
      DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
      SmallString<128> ResolvedPath;
      if (sys::path::is_relative(Path))
        resolveRelativeObjectPath(ResolvedPath, CUDie);
      sys::path::append(ResolvedPath, Path);
      if (!Entry.empty() && Entry != ResolvedPath)
        ReportWarning(
            Twine("Conflicting parseable interfaces for Swift Module ") +
                *Name + ": " + Entry + " and " + Path,
            DIE);
      Entry = ResolvedPath.str();
    }
}

/// Recursive helper to build the global DeclContext information and
/// gather the child->parent relationships in the original compile unit.
///
/// \return true when this DIE and all of its children are only
/// forward declarations to types defined in external clang modules
/// (i.e., forward declarations that are children of a DW_TAG_module).
static bool analyzeContextInfo(
    const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
    DeclContext *CurrentDeclContext, UniquingStringPool &StringPool,
    DeclContextTree &Contexts, uint64_t ModulesEndOffset,
    std::map<std::string, std::string> &ParseableSwiftInterfaces,
    std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
    bool InImportedModule = false) {
  unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
  CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);

  // Clang imposes an ODR on modules(!) regardless of the language:
  //  "The module-id should consist of only a single identifier,
  //   which provides the name of the module being defined. Each
  //   module shall have a single definition."
  //
  // This does not extend to the types inside the modules:
  //  "[I]n C, this implies that if two structs are defined in
  //   different submodules with the same name, those two types are
  //   distinct types (but may be compatible types if their
  //   definitions match)."
  //
  // We treat non-C++ modules like namespaces for this reason.
  if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
      dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
          CU.getClangModuleName()) {
    InImportedModule = true;
    analyzeImportedModule(DIE, CU, ParseableSwiftInterfaces, ReportWarning);
  }

  Info.ParentIdx = ParentIdx;
  bool InClangModule = CU.isClangModule() || InImportedModule;
  if (CU.hasODR() || InClangModule) {
    if (CurrentDeclContext) {
      auto PtrInvalidPair = Contexts.getChildDeclContext(
          *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
      CurrentDeclContext = PtrInvalidPair.getPointer();
      Info.Ctxt =
          PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
      if (Info.Ctxt)
        Info.Ctxt->setDefinedInClangModule(InClangModule);
    } else
      Info.Ctxt = CurrentDeclContext = nullptr;
  }

  Info.Prune = InImportedModule;
  if (DIE.hasChildren())
    for (auto Child : DIE.children())
      Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
                                       StringPool, Contexts, ModulesEndOffset,
                                       ParseableSwiftInterfaces, ReportWarning,
                                       InImportedModule);

  // Prune this DIE if it is either a forward declaration inside a
  // DW_TAG_module or a DW_TAG_module that contains nothing but
  // forward declarations.
  Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
                (isTypeTag(DIE.getTag()) &&
                 dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));

  // Only prune forward declarations inside a DW_TAG_module for which a
  // definition exists elsewhere.
  if (ModulesEndOffset == 0)
    Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
  else
    Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
                  Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;

  return Info.Prune;
} // namespace dsymutil

static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
  switch (Tag) {
  default:
    return false;
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_common_block:
  case dwarf::DW_TAG_lexical_block:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_subprogram:
  case dwarf::DW_TAG_subroutine_type:
  case dwarf::DW_TAG_union_type:
    return true;
  }
  llvm_unreachable("Invalid Tag");
}

void DwarfLinkerForBinary::startDebugObject(LinkContext &Context) {}

void DwarfLinkerForBinary::endDebugObject(LinkContext &Context) {
  Context.Clear();

  for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
    (*I)->~DIEBlock();
  for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
    (*I)->~DIELoc();

  DIEBlocks.clear();
  DIELocs.clear();
  DIEAlloc.Reset();
}

static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
  switch (Arch) {
  case Triple::x86:
    return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
           RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
  case Triple::x86_64:
    return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
  case Triple::arm:
  case Triple::thumb:
    return RelocType == MachO::ARM_RELOC_SECTDIFF ||
           RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
           RelocType == MachO::ARM_RELOC_HALF ||
           RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
  case Triple::aarch64:
    return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
  default:
    return false;
  }
}

/// Iterate over the relocations of the given \p Section and
/// store the ones that correspond to debug map entries into the
/// ValidRelocs array.
void DwarfLinkerForBinary::RelocationManager::findValidRelocsMachO(
    const object::SectionRef &Section, const object::MachOObjectFile &Obj,
    const DebugMapObject &DMO) {
  Expected<StringRef> ContentsOrErr = Section.getContents();
  if (!ContentsOrErr) {
    consumeError(ContentsOrErr.takeError());
    Linker.reportWarning("error reading section", DMO);
    return;
  }
  DataExtractor Data(*ContentsOrErr, Obj.isLittleEndian(), 0);
  bool SkipNext = false;

  for (const object::RelocationRef &Reloc : Section.relocations()) {
    if (SkipNext) {
      SkipNext = false;
      continue;
    }

    object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
    MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);

    if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
                           Obj.getArch())) {
      SkipNext = true;
      Linker.reportWarning("unsupported relocation in debug_info section.",
                           DMO);
      continue;
    }

    unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
    uint64_t Offset64 = Reloc.getOffset();
    if ((RelocSize != 4 && RelocSize != 8)) {
      Linker.reportWarning("unsupported relocation in debug_info section.",
                           DMO);
      continue;
    }
    uint64_t OffsetCopy = Offset64;
    // Mach-o uses REL relocations, the addend is at the relocation offset.
    uint64_t Addend = Data.getUnsigned(&OffsetCopy, RelocSize);
    uint64_t SymAddress;
    int64_t SymOffset;

    if (Obj.isRelocationScattered(MachOReloc)) {
      // The address of the base symbol for scattered relocations is
      // stored in the reloc itself. The actual addend will store the
      // base address plus the offset.
      SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
      SymOffset = int64_t(Addend) - SymAddress;
    } else {
      SymAddress = Addend;
      SymOffset = 0;
    }

    auto Sym = Reloc.getSymbol();
    if (Sym != Obj.symbol_end()) {
      Expected<StringRef> SymbolName = Sym->getName();
      if (!SymbolName) {
        consumeError(SymbolName.takeError());
        Linker.reportWarning("error getting relocation symbol name.", DMO);
        continue;
      }
      if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
        ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
    } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
      // Do not store the addend. The addend was the address of the symbol in
      // the object file, the address in the binary that is stored in the debug
      // map doesn't need to be offset.
      ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
    }
  }
}

/// Dispatch the valid relocation finding logic to the
/// appropriate handler depending on the object file format.
bool DwarfLinkerForBinary::RelocationManager::findValidRelocs(
    const object::SectionRef &Section, const object::ObjectFile &Obj,
    const DebugMapObject &DMO) {
  // Dispatch to the right handler depending on the file type.
  if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
    findValidRelocsMachO(Section, *MachOObj, DMO);
  else
    Linker.reportWarning(
        Twine("unsupported object file type: ") + Obj.getFileName(), DMO);

  if (ValidRelocs.empty())
    return false;

  // Sort the relocations by offset. We will walk the DIEs linearly in
  // the file, this allows us to just keep an index in the relocation
  // array that we advance during our walk, rather than resorting to
  // some associative container. See DwarfLinker::NextValidReloc.
  llvm::sort(ValidRelocs);
  return true;
}

/// Look for relocations in the debug_info section that match
/// entries in the debug map. These relocations will drive the Dwarf
/// link by indicating which DIEs refer to symbols present in the
/// linked binary.
/// \returns whether there are any valid relocations in the debug info.
bool DwarfLinkerForBinary::RelocationManager::findValidRelocsInDebugInfo(
    const object::ObjectFile &Obj, const DebugMapObject &DMO) {
  // Find the debug_info section.
  for (const object::SectionRef &Section : Obj.sections()) {
    StringRef SectionName;
    if (Expected<StringRef> NameOrErr = Section.getName())
      SectionName = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
    if (SectionName != "debug_info")
      continue;
    return findValidRelocs(Section, Obj, DMO);
  }
  return false;
}

/// Checks that there is a relocation against an actual debug
/// map entry between \p StartOffset and \p NextOffset.
///
/// This function must be called with offsets in strictly ascending
/// order because it never looks back at relocations it already 'went past'.
/// \returns true and sets Info.InDebugMap if it is the case.
bool DwarfLinkerForBinary::RelocationManager::hasValidRelocationAt(
    uint64_t StartOffset, uint64_t EndOffset, CompileUnit::DIEInfo &Info) {
  assert(NextValidReloc == 0 ||
         StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
  if (NextValidReloc >= ValidRelocs.size())
    return false;

  uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;

  // We might need to skip some relocs that we didn't consider. For
  // example the high_pc of a discarded DIE might contain a reloc that
  // is in the list because it actually corresponds to the start of a
  // function that is in the debug map.
  while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
    RelocOffset = ValidRelocs[++NextValidReloc].Offset;

  if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
    return false;

  const auto &ValidReloc = ValidRelocs[NextValidReloc++];
  const auto &Mapping = ValidReloc.Mapping->getValue();
  const uint64_t BinaryAddress = Mapping.BinaryAddress;
  const uint64_t ObjectAddress = Mapping.ObjectAddress
                                     ? uint64_t(*Mapping.ObjectAddress)
                                     : std::numeric_limits<uint64_t>::max();
  if (Linker.Options.Verbose)
    outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
           << "\t"
           << format("0x%016" PRIx64 " => 0x%016" PRIx64 "\n", ObjectAddress,
                     BinaryAddress);

  Info.AddrAdjust = BinaryAddress + ValidReloc.Addend;
  if (Mapping.ObjectAddress)
    Info.AddrAdjust -= ObjectAddress;
  Info.InDebugMap = true;
  return true;
}

/// Get the starting and ending (exclusive) offset for the
/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
/// supposed to point to the position of the first attribute described
/// by \p Abbrev.
/// \return [StartOffset, EndOffset) as a pair.
static std::pair<uint64_t, uint64_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
                    uint64_t Offset, const DWARFUnit &Unit) {
  DataExtractor Data = Unit.getDebugInfoExtractor();

  for (unsigned i = 0; i < Idx; ++i)
    DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
                              Unit.getFormParams());

  uint64_t End = Offset;
  DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
                            Unit.getFormParams());

  return std::make_pair(Offset, End);
}

/// Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepVariableDIE(
    RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit,
    CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
  const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();

  // Global variables with constant value can always be kept.
  if (!(Flags & TF_InFunctionScope) &&
      Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
    MyInfo.InDebugMap = true;
    return Flags | TF_Keep;
  }

  Optional<uint32_t> LocationIdx =
      Abbrev->findAttributeIndex(dwarf::DW_AT_location);
  if (!LocationIdx)
    return Flags;

  uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
  const DWARFUnit &OrigUnit = Unit.getOrigUnit();
  uint64_t LocationOffset, LocationEndOffset;
  std::tie(LocationOffset, LocationEndOffset) =
      getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);

  // See if there is a relocation to a valid debug map entry inside
  // this variable's location. The order is important here. We want to
  // always check if the variable has a valid relocation, so that the
  // DIEInfo is filled. However, we don't want a static variable in a
  // function to force us to keep the enclosing function.
  if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset,
                                     MyInfo) ||
      (Flags & TF_InFunctionScope))
    return Flags;

  if (Options.Verbose) {
    outs() << "Keeping variable DIE:";
    DIDumpOptions DumpOpts;
    DumpOpts.ChildRecurseDepth = 0;
    DumpOpts.Verbose = Options.Verbose;
    DIE.dump(outs(), 8 /* Indent */, DumpOpts);
  }

  return Flags | TF_Keep;
}

/// Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepSubprogramDIE(
    RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
    const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
    unsigned Flags) {
  const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();

  Flags |= TF_InFunctionScope;

  Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
  if (!LowPcIdx)
    return Flags;

  uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
  DWARFUnit &OrigUnit = Unit.getOrigUnit();
  uint64_t LowPcOffset, LowPcEndOffset;
  std::tie(LowPcOffset, LowPcEndOffset) =
      getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);

  auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
  assert(LowPc.hasValue() && "low_pc attribute is not an address.");
  if (!LowPc ||
      !RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo))
    return Flags;

  if (Options.Verbose) {
    outs() << "Keeping subprogram DIE:";
    DIDumpOptions DumpOpts;
    DumpOpts.ChildRecurseDepth = 0;
    DumpOpts.Verbose = Options.Verbose;
    DIE.dump(outs(), 8 /* Indent */, DumpOpts);
  }

  if (DIE.getTag() == dwarf::DW_TAG_label) {
    if (Unit.hasLabelAt(*LowPc))
      return Flags;
    // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
    // that don't fall into the CU's aranges. This is wrong IMO. Debug info
    // generation bugs aside, this is really wrong in the case of labels, where
    // a label marking the end of a function will have a PC == CU's high_pc.
    if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
            .getValueOr(UINT64_MAX) <= LowPc)
      return Flags;
    Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
    return Flags | TF_Keep;
  }

  Flags |= TF_Keep;

  Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
  if (!HighPc) {
    reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
                  &DIE);
    return Flags;
  }

  // Replace the debug map range with a more accurate one.
  Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
  Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
  return Flags;
}

/// Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepDIE(
    RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
    const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
    unsigned Flags) {
  switch (DIE.getTag()) {
  case dwarf::DW_TAG_constant:
  case dwarf::DW_TAG_variable:
    return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
  case dwarf::DW_TAG_subprogram:
  case dwarf::DW_TAG_label:
    return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
                                   Flags);
  case dwarf::DW_TAG_base_type:
    // DWARF Expressions may reference basic types, but scanning them
    // is expensive. Basic types are tiny, so just keep all of them.
  case dwarf::DW_TAG_imported_module:
  case dwarf::DW_TAG_imported_declaration:
  case dwarf::DW_TAG_imported_unit:
    // We always want to keep these.
    return Flags | TF_Keep;
  default:
    break;
  }

  return Flags;
}

namespace {
/// The  distinct types of work performed by the work loop.
enum class WorklistItemType {
  /// Given a DIE, look for DIEs to be kept.
  LookForDIEsToKeep,
  /// Given a DIE, look for children of this DIE to be kept.
  LookForChildDIEsToKeep,
  /// Given a DIE, look for DIEs referencing this DIE to be kept.
  LookForRefDIEsToKeep,
  /// Given a DIE, look for parent DIEs to be kept.
  LookForParentDIEsToKeep,
  /// Given a DIE, update its incompleteness based on whether its children are
  /// incomplete.
  UpdateChildIncompleteness,
  /// Given a DIE, update its incompleteness based on whether the DIEs it
  /// references are incomplete.
  UpdateRefIncompleteness,
};

/// This class represents an item in the work list. The type defines what kind
/// of work needs to be performed when processing the current item. The flags
/// and info fields are optional based on the type.
struct WorklistItem {
  WorklistItemType Type;
  DWARFDie Die;
  CompileUnit &CU;
  unsigned Flags;
  unsigned AncestorIdx = 0;
  CompileUnit::DIEInfo *OtherInfo = nullptr;

  WorklistItem(DWARFDie Die, CompileUnit &CU, unsigned Flags,
               WorklistItemType T = WorklistItemType::LookForDIEsToKeep)
      : Type(T), Die(Die), CU(CU), Flags(Flags){};

  WorklistItem(DWARFDie Die, CompileUnit &CU, WorklistItemType T,
               CompileUnit::DIEInfo *OtherInfo = nullptr)
      : Type(T), Die(Die), CU(CU), OtherInfo(OtherInfo){};

  WorklistItem(unsigned AncestorIdx, CompileUnit &CU, unsigned Flags)
      : Type(WorklistItemType::LookForParentDIEsToKeep), CU(CU), Flags(Flags),
        AncestorIdx(AncestorIdx){};
};
} // namespace

/// Helper that updates the completeness of the current DIE based on the
/// completeness of one of its children. It depends on the incompleteness of
/// the children already being computed.
static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
                                      CompileUnit::DIEInfo &ChildInfo) {
  switch (Die.getTag()) {
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_class_type:
    break;
  default:
    return;
  }

  unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
  CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);

  if (ChildInfo.Incomplete || ChildInfo.Prune)
    MyInfo.Incomplete = true;
}

/// Helper that updates the completeness of the current DIE based on the
/// completeness of the DIEs it references. It depends on the incompleteness of
/// the referenced DIE already being computed.
static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
                                    CompileUnit::DIEInfo &RefInfo) {
  switch (Die.getTag()) {
  case dwarf::DW_TAG_typedef:
  case dwarf::DW_TAG_member:
  case dwarf::DW_TAG_reference_type:
  case dwarf::DW_TAG_ptr_to_member_type:
  case dwarf::DW_TAG_pointer_type:
    break;
  default:
    return;
  }

  unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
  CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);

  if (MyInfo.Incomplete)
    return;

  if (RefInfo.Incomplete)
    MyInfo.Incomplete = true;
}

/// Look at the children of the given DIE and decide whether they should be
/// kept.
static void lookForChildDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
                                   unsigned Flags,
                                   SmallVectorImpl<WorklistItem> &Worklist) {
  // The TF_ParentWalk flag tells us that we are currently walking up the
  // parent chain of a required DIE, and we don't want to mark all the children
  // of the parents as kept (consider for example a DW_TAG_namespace node in
  // the parent chain). There are however a set of DIE types for which we want
  // to ignore that directive and still walk their children.
  if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
    Flags &= ~DwarfLinkerForBinary::TF_ParentWalk;

  // We're finished if this DIE has no children or we're walking the parent
  // chain.
  if (!Die.hasChildren() || (Flags & DwarfLinkerForBinary::TF_ParentWalk))
    return;

  // Add children in reverse order to the worklist to effectively process them
  // in order.
  for (auto Child : reverse(Die.children())) {
    // Add a worklist item before every child to calculate incompleteness right
    // after the current child is processed.
    unsigned Idx = CU.getOrigUnit().getDIEIndex(Child);
    CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Idx);
    Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
                          &ChildInfo);
    Worklist.emplace_back(Child, CU, Flags);
  }
}

/// Look at DIEs referenced by the given DIE and decide whether they should be
/// kept. All DIEs referenced though attributes should be kept.
static void lookForRefDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
                                 unsigned Flags, DwarfLinkerForBinary &Linker,
                                 const UnitListTy &Units,
                                 const DebugMapObject &DMO,
                                 SmallVectorImpl<WorklistItem> &Worklist) {
  bool UseOdr = (Flags & DwarfLinkerForBinary::TF_DependencyWalk)
                    ? (Flags & DwarfLinkerForBinary::TF_ODR)
                    : CU.hasODR();
  DWARFUnit &Unit = CU.getOrigUnit();
  DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
  const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
  uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());

  SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
  for (const auto &AttrSpec : Abbrev->attributes()) {
    DWARFFormValue Val(AttrSpec.Form);
    if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
        AttrSpec.Attr == dwarf::DW_AT_sibling) {
      DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
                                Unit.getFormParams());
      continue;
    }

    Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
    CompileUnit *ReferencedCU;
    if (auto RefDie =
            resolveDIEReference(Linker, DMO, Units, Val, Die, ReferencedCU)) {
      uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
      CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
      bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
                         Info.Ctxt->isDefinedInClangModule();
      // If the referenced DIE has a DeclContext that has already been
      // emitted, then do not keep the one in this CU. We'll link to
      // the canonical DIE in cloneDieReferenceAttribute.
      //
      // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
      // be necessary and could be advantageously replaced by
      // ReferencedCU->hasODR() && CU.hasODR().
      //
      // FIXME: compatibility with dsymutil-classic. There is no
      // reason not to unique ref_addr references.
      if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
          Info.Ctxt &&
          Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
          Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
        continue;

      // Keep a module forward declaration if there is no definition.
      if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
            Info.Ctxt->getCanonicalDIEOffset()))
        Info.Prune = false;
      ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
    }
  }

  unsigned ODRFlag = UseOdr ? DwarfLinkerForBinary::TF_ODR : 0;

  // Add referenced DIEs in reverse order to the worklist to effectively
  // process them in order.
  for (auto &P : reverse(ReferencedDIEs)) {
    // Add a worklist item before every child to calculate incompleteness right
    // after the current child is processed.
    uint32_t RefIdx = P.second.getOrigUnit().getDIEIndex(P.first);
    CompileUnit::DIEInfo &Info = P.second.getInfo(RefIdx);
    Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
                          &Info);
    Worklist.emplace_back(P.first, P.second,
                          DwarfLinkerForBinary::TF_Keep |
                              DwarfLinkerForBinary::TF_DependencyWalk |
                              ODRFlag);
  }
}

/// Look at the parent of the given DIE and decide whether they should be kept.
static void lookForParentDIEsToKeep(unsigned AncestorIdx, CompileUnit &CU,
                                    unsigned Flags,
                                    SmallVectorImpl<WorklistItem> &Worklist) {
  // Stop if we encounter an ancestor that's already marked as kept.
  if (CU.getInfo(AncestorIdx).Keep)
    return;

  DWARFUnit &Unit = CU.getOrigUnit();
  DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
  Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
  Worklist.emplace_back(ParentDIE, CU, Flags);
}

/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
/// information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection algorithm. It is
/// expected to walk the DIE tree in file order and (though the mediation of
/// its helper) call hasValidRelocation() on each DIE that might be a 'root
/// DIE' (See DwarfLinker class comment).
///
/// While walking the dependencies of root DIEs, this function is also called,
/// but during these dependency walks the file order is not respected. The
/// TF_DependencyWalk flag tells us which kind of traversal we are currently
/// doing.
///
/// The recursive algorithm is implemented iteratively as a work list because
/// very deep recursion could exhaust the stack for large projects. The work
/// list acts as a scheduler for different types of work that need to be
/// performed.
///
/// The recursive nature of the algorithm is simulated by running the "main"
/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
/// fixing up a computed property (UpdateChildIncompleteness,
/// UpdateRefIncompleteness).
///
/// The return value indicates whether the DIE is incomplete.
void DwarfLinkerForBinary::lookForDIEsToKeep(RelocationManager &RelocMgr,
                                             RangesTy &Ranges,
                                             const UnitListTy &Units,
                                             const DWARFDie &Die,
                                             const DebugMapObject &DMO,
                                             CompileUnit &Cu, unsigned Flags) {
  // LIFO work list.
  SmallVector<WorklistItem, 4> Worklist;
  Worklist.emplace_back(Die, Cu, Flags);

  while (!Worklist.empty()) {
    WorklistItem Current = Worklist.back();
    Worklist.pop_back();

    // Look at the worklist type to decide what kind of work to perform.
    switch (Current.Type) {
    case WorklistItemType::UpdateChildIncompleteness:
      updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
      continue;
    case WorklistItemType::UpdateRefIncompleteness:
      updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
      continue;
    case WorklistItemType::LookForChildDIEsToKeep:
      lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
      continue;
    case WorklistItemType::LookForRefDIEsToKeep:
      lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, *this, Units,
                           DMO, Worklist);
      continue;
    case WorklistItemType::LookForParentDIEsToKeep:
      lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
                              Worklist);
      continue;
    case WorklistItemType::LookForDIEsToKeep:
      break;
    }

    unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
    CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);

    if (MyInfo.Prune)
      continue;

    // If the Keep flag is set, we are marking a required DIE's dependencies.
    // If our target is already marked as kept, we're all set.
    bool AlreadyKept = MyInfo.Keep;
    if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
      continue;

    // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
    // because it would screw up the relocation finding logic.
    if (!(Current.Flags & TF_DependencyWalk))
      Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO,
                                    Current.CU, MyInfo, Current.Flags);

    // Finish by looking for child DIEs. Because of the LIFO worklist we need
    // to schedule that work before any subsequent items are added to the
    // worklist.
    Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
                          WorklistItemType::LookForChildDIEsToKeep);

    if (AlreadyKept || !(Current.Flags & TF_Keep))
      continue;

    // If it is a newly kept DIE mark it as well as all its dependencies as
    // kept.
    MyInfo.Keep = true;

    // We're looking for incomplete types.
    MyInfo.Incomplete =
        Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
        Current.Die.getTag() != dwarf::DW_TAG_member &&
        dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);

    // After looking at the parent chain, look for referenced DIEs. Because of
    // the LIFO worklist we need to schedule that work before any subsequent
    // items are added to the worklist.
    Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
                          WorklistItemType::LookForRefDIEsToKeep);

    bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
                                                      : Current.CU.hasODR();
    unsigned ODRFlag = UseOdr ? TF_ODR : 0;
    unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;

    // Now schedule the parent walk.
    Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
  }
}

/// Assign an abbreviation number to \p Abbrev.
///
/// Our DIEs get freed after every DebugMapObject has been processed,
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
/// the instances hold by the DIEs. When we encounter an abbreviation
/// that we don't know, we create a permanent copy of it.
void DwarfLinkerForBinary::assignAbbrev(DIEAbbrev &Abbrev) {
  // Check the set for priors.
  FoldingSetNodeID ID;
  Abbrev.Profile(ID);
  void *InsertToken;
  DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);

  // If it's newly added.
  if (InSet) {
    // Assign existing abbreviation number.
    Abbrev.setNumber(InSet->getNumber());
  } else {
    // Add to abbreviation list.
    Abbreviations.push_back(
        std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
    for (const auto &Attr : Abbrev.getData())
      Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
    AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
    // Assign the unique abbreviation number.
    Abbrev.setNumber(Abbreviations.size());
    Abbreviations.back()->setNumber(Abbreviations.size());
  }
}

unsigned DwarfLinkerForBinary::DIECloner::cloneStringAttribute(
    DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
    const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
  // Switch everything to out of line strings.
  const char *String = *Val.getAsCString();
  auto StringEntry = StringPool.getEntry(String);

  // Update attributes info.
  if (AttrSpec.Attr == dwarf::DW_AT_name)
    Info.Name = StringEntry;
  else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
           AttrSpec.Attr == dwarf::DW_AT_linkage_name)
    Info.MangledName = StringEntry;

  Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
               DIEInteger(StringEntry.getOffset()));

  return 4;
}

unsigned DwarfLinkerForBinary::DIECloner::cloneDieReferenceAttribute(
    DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
    unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
    CompileUnit &Unit) {
  const DWARFUnit &U = Unit.getOrigUnit();
  uint64_t Ref = *Val.getAsReference();
  DIE *NewRefDie = nullptr;
  CompileUnit *RefUnit = nullptr;
  DeclContext *Ctxt = nullptr;

  DWARFDie RefDie =
      resolveDIEReference(Linker, DMO, CompileUnits, Val, InputDIE, RefUnit);

  // If the referenced DIE is not found,  drop the attribute.
  if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
    return 0;

  unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
  CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);

  // If we already have emitted an equivalent DeclContext, just point
  // at it.
  if (isODRAttribute(AttrSpec.Attr)) {
    Ctxt = RefInfo.Ctxt;
    if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
      DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
      Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                   dwarf::DW_FORM_ref_addr, Attr);
      return U.getRefAddrByteSize();
    }
  }

  if (!RefInfo.Clone) {
    assert(Ref > InputDIE.getOffset());
    // We haven't cloned this DIE yet. Just create an empty one and
    // store it. It'll get really cloned when we process it.
    RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
  }
  NewRefDie = RefInfo.Clone;

  if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
      (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
    // We cannot currently rely on a DIEEntry to emit ref_addr
    // references, because the implementation calls back to DwarfDebug
    // to find the unit offset. (We don't have a DwarfDebug)
    // FIXME: we should be able to design DIEEntry reliance on
    // DwarfDebug away.
    uint64_t Attr;
    if (Ref < InputDIE.getOffset()) {
      // We must have already cloned that DIE.
      uint32_t NewRefOffset =
          RefUnit->getStartOffset() + NewRefDie->getOffset();
      Attr = NewRefOffset;
      Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                   dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
    } else {
      // A forward reference. Note and fixup later.
      Attr = 0xBADDEF;
      Unit.noteForwardReference(
          NewRefDie, RefUnit, Ctxt,
          Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                       dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
    }
    return U.getRefAddrByteSize();
  }

  Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
               dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
  return AttrSize;
}

void DwarfLinkerForBinary::DIECloner::cloneExpression(
    DataExtractor &Data, DWARFExpression Expression, const DebugMapObject &DMO,
    CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
  using Encoding = DWARFExpression::Operation::Encoding;

  uint64_t OpOffset = 0;
  for (auto &Op : Expression) {
    auto Description = Op.getDescription();
    // DW_OP_const_type is variable-length and has 3
    // operands. DWARFExpression thus far only supports 2.
    auto Op0 = Description.Op[0];
    auto Op1 = Description.Op[1];
    if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
        (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
      Linker.reportWarning("Unsupported DW_OP encoding.", DMO);

    if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
        (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
      // This code assumes that the other non-typeref operand fits into 1 byte.
      assert(OpOffset < Op.getEndOffset());
      uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
      assert(ULEBsize <= 16);

      // Copy over the operation.
      OutputBuffer.push_back(Op.getCode());
      uint64_t RefOffset;
      if (Op1 == Encoding::SizeNA) {
        RefOffset = Op.getRawOperand(0);
      } else {
        OutputBuffer.push_back(Op.getRawOperand(0));
        RefOffset = Op.getRawOperand(1);
      }
      auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
      uint32_t RefIdx = Unit.getOrigUnit().getDIEIndex(RefDie);
      CompileUnit::DIEInfo &Info = Unit.getInfo(RefIdx);
      uint32_t Offset = 0;
      if (DIE *Clone = Info.Clone)
        Offset = Clone->getOffset();
      else
        Linker.reportWarning("base type ref doesn't point to DW_TAG_base_type.",
                             DMO);
      uint8_t ULEB[16];
      unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
      if (RealSize > ULEBsize) {
        // Emit the generic type as a fallback.
        RealSize = encodeULEB128(0, ULEB, ULEBsize);
        Linker.reportWarning("base type ref doesn't fit.", DMO);
      }
      assert(RealSize == ULEBsize && "padding failed");
      ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
      OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
    } else {
      // Copy over everything else unmodified.
      StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
      OutputBuffer.append(Bytes.begin(), Bytes.end());
    }
    OpOffset = Op.getEndOffset();
  }
}

unsigned DwarfLinkerForBinary::DIECloner::cloneBlockAttribute(
    DIE &Die, const DebugMapObject &DMO, CompileUnit &Unit,
    AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
    bool IsLittleEndian) {
  DIEValueList *Attr;
  DIEValue Value;
  DIELoc *Loc = nullptr;
  DIEBlock *Block = nullptr;
  if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
    Loc = new (DIEAlloc) DIELoc;
    Linker.DIELocs.push_back(Loc);
  } else {
    Block = new (DIEAlloc) DIEBlock;
    Linker.DIEBlocks.push_back(Block);
  }
  Attr = Loc ? static_cast<DIEValueList *>(Loc)
             : static_cast<DIEValueList *>(Block);

  if (Loc)
    Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
                     dwarf::Form(AttrSpec.Form), Loc);
  else
    Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
                     dwarf::Form(AttrSpec.Form), Block);

  // If the block is a DWARF Expression, clone it into the temporary
  // buffer using cloneExpression(), otherwise copy the data directly.
  SmallVector<uint8_t, 32> Buffer;
  ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
  if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) &&
      (Val.isFormClass(DWARFFormValue::FC_Block) ||
       Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
    DWARFUnit &OrigUnit = Unit.getOrigUnit();
    DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
                       IsLittleEndian, OrigUnit.getAddressByteSize());
    DWARFExpression Expr(Data, OrigUnit.getVersion(),
                         OrigUnit.getAddressByteSize());
    cloneExpression(Data, Expr, DMO, Unit, Buffer);
    Bytes = Buffer;
  }
  for (auto Byte : Bytes)
    Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
                   dwarf::DW_FORM_data1, DIEInteger(Byte));

  // FIXME: If DIEBlock and DIELoc just reuses the Size field of
  // the DIE class, this if could be replaced by
  // Attr->setSize(Bytes.size()).
  if (Linker.Streamer) {
    auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
    if (Loc)
      Loc->ComputeSize(AsmPrinter);
    else
      Block->ComputeSize(AsmPrinter);
  }
  Die.addValue(DIEAlloc, Value);
  return AttrSize;
}

unsigned DwarfLinkerForBinary::DIECloner::cloneAddressAttribute(
    DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
    const CompileUnit &Unit, AttributesInfo &Info) {
  uint64_t Addr = *Val.getAsAddress();

  if (LLVM_UNLIKELY(Linker.Options.Update)) {
    if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
      Info.HasLowPc = true;
    Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                 dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
    return Unit.getOrigUnit().getAddressByteSize();
  }

  if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
    if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
        Die.getTag() == dwarf::DW_TAG_lexical_block)
      // The low_pc of a block or inline subroutine might get
      // relocated because it happens to match the low_pc of the
      // enclosing subprogram. To prevent issues with that, always use
      // the low_pc from the input DIE if relocations have been applied.
      Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
                  ? Info.OrigLowPc
                  : Addr) +
             Info.PCOffset;
    else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
      Addr = Unit.getLowPc();
      if (Addr == std::numeric_limits<uint64_t>::max())
        return 0;
    }
    Info.HasLowPc = true;
  } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
    if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
      if (uint64_t HighPc = Unit.getHighPc())
        Addr = HighPc;
      else
        return 0;
    } else
      // If we have a high_pc recorded for the input DIE, use
      // it. Otherwise (when no relocations where applied) just use the
      // one we just decoded.
      Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
  }

  Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
               static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
  return Unit.getOrigUnit().getAddressByteSize();
}

unsigned DwarfLinkerForBinary::DIECloner::cloneScalarAttribute(
    DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
    CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
    unsigned AttrSize, AttributesInfo &Info) {
  uint64_t Value;

  if (LLVM_UNLIKELY(Linker.Options.Update)) {
    if (auto OptionalValue = Val.getAsUnsignedConstant())
      Value = *OptionalValue;
    else if (auto OptionalValue = Val.getAsSignedConstant())
      Value = *OptionalValue;
    else if (auto OptionalValue = Val.getAsSectionOffset())
      Value = *OptionalValue;
    else {
      Linker.reportWarning(
          "Unsupported scalar attribute form. Dropping attribute.", DMO,
          &InputDIE);
      return 0;
    }
    if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
      Info.IsDeclaration = true;
    Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
    return AttrSize;
  }

  if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
      Die.getTag() == dwarf::DW_TAG_compile_unit) {
    if (Unit.getLowPc() == -1ULL)
      return 0;
    // Dwarf >= 4 high_pc is an size, not an address.
    Value = Unit.getHighPc() - Unit.getLowPc();
  } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
    Value = *Val.getAsSectionOffset();
  else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
    Value = *Val.getAsSignedConstant();
  else if (auto OptionalValue = Val.getAsUnsignedConstant())
    Value = *OptionalValue;
  else {
    Linker.reportWarning(
        "Unsupported scalar attribute form. Dropping attribute.", DMO,
        &InputDIE);
    return 0;
  }
  PatchLocation Patch =
      Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
                   dwarf::Form(AttrSpec.Form), DIEInteger(Value));
  if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
    Unit.noteRangeAttribute(Die, Patch);
    Info.HasRanges = true;
  }

  // A more generic way to check for location attributes would be
  // nice, but it's very unlikely that any other attribute needs a
  // location list.
  // FIXME: use DWARFAttribute::mayHaveLocationDescription().
  else if (AttrSpec.Attr == dwarf::DW_AT_location ||
           AttrSpec.Attr == dwarf::DW_AT_frame_base)
    Unit.noteLocationAttribute(Patch, Info.PCOffset);
  else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
    Info.IsDeclaration = true;

  return AttrSize;
}

/// Clone \p InputDIE's attribute described by \p AttrSpec with
/// value \p Val, and add it to \p Die.
/// \returns the size of the cloned attribute.
unsigned DwarfLinkerForBinary::DIECloner::cloneAttribute(
    DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
    CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
    const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
    bool IsLittleEndian) {
  const DWARFUnit &U = Unit.getOrigUnit();

  switch (AttrSpec.Form) {
  case dwarf::DW_FORM_strp:
  case dwarf::DW_FORM_string:
    return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
  case dwarf::DW_FORM_ref_addr:
  case dwarf::DW_FORM_ref1:
  case dwarf::DW_FORM_ref2:
  case dwarf::DW_FORM_ref4:
  case dwarf::DW_FORM_ref8:
    return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
                                      DMO, Unit);
  case dwarf::DW_FORM_block:
  case dwarf::DW_FORM_block1:
  case dwarf::DW_FORM_block2:
  case dwarf::DW_FORM_block4:
  case dwarf::DW_FORM_exprloc:
    return cloneBlockAttribute(Die, DMO, Unit, AttrSpec, Val, AttrSize,
                               IsLittleEndian);
  case dwarf::DW_FORM_addr:
    return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
  case dwarf::DW_FORM_data1:
  case dwarf::DW_FORM_data2:
  case dwarf::DW_FORM_data4:
  case dwarf::DW_FORM_data8:
  case dwarf::DW_FORM_udata:
  case dwarf::DW_FORM_sdata:
  case dwarf::DW_FORM_sec_offset:
  case dwarf::DW_FORM_flag:
  case dwarf::DW_FORM_flag_present:
    return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
                                AttrSize, Info);
  default:
    Linker.reportWarning(
        "Unsupported attribute form in cloneAttribute. Dropping.", DMO,
        &InputDIE);
  }

  return 0;
}

/// Apply the valid relocations found by findValidRelocs() to
/// the buffer \p Data, taking into account that Data is at \p BaseOffset
/// in the debug_info section.
///
/// Like for findValidRelocs(), this function must be called with
/// monotonic \p BaseOffset values.
///
/// \returns whether any reloc has been applied.
bool DwarfLinkerForBinary::RelocationManager::applyValidRelocs(
    MutableArrayRef<char> Data, uint64_t BaseOffset, bool IsLittleEndian) {
  assert((NextValidReloc == 0 ||
          BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
         "BaseOffset should only be increasing.");
  if (NextValidReloc >= ValidRelocs.size())
    return false;

  // Skip relocs that haven't been applied.
  while (NextValidReloc < ValidRelocs.size() &&
         ValidRelocs[NextValidReloc].Offset < BaseOffset)
    ++NextValidReloc;

  bool Applied = false;
  uint64_t EndOffset = BaseOffset + Data.size();
  while (NextValidReloc < ValidRelocs.size() &&
         ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
         ValidRelocs[NextValidReloc].Offset < EndOffset) {
    const auto &ValidReloc = ValidRelocs[NextValidReloc++];
    assert(ValidReloc.Offset - BaseOffset < Data.size());
    assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
    char Buf[8];
    uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
    Value += ValidReloc.Addend;
    for (unsigned i = 0; i != ValidReloc.Size; ++i) {
      unsigned Index = IsLittleEndian ? i : (ValidReloc.Size - i - 1);
      Buf[i] = uint8_t(Value >> (Index * 8));
    }
    assert(ValidReloc.Size <= sizeof(Buf));
    memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
    Applied = true;
  }

  return Applied;
}

static bool isObjCSelector(StringRef Name) {
  return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
         (Name[1] == '[');
}

void DwarfLinkerForBinary::DIECloner::addObjCAccelerator(
    CompileUnit &Unit, const DIE *Die, DwarfStringPoolEntryRef Name,
    OffsetsStringPool &StringPool, bool SkipPubSection) {
  assert(isObjCSelector(Name.getString()) && "not an objc selector");
  // Objective C method or class function.
  // "- [Class(Category) selector :withArg ...]"
  StringRef ClassNameStart(Name.getString().drop_front(2));
  size_t FirstSpace = ClassNameStart.find(' ');
  if (FirstSpace == StringRef::npos)
    return;

  StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
  if (!SelectorStart.size())
    return;

  StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
  Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);

  // Add an entry for the class name that points to this
  // method/class function.
  StringRef ClassName(ClassNameStart.data(), FirstSpace);
  Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);

  if (ClassName[ClassName.size() - 1] == ')') {
    size_t OpenParens = ClassName.find('(');
    if (OpenParens != StringRef::npos) {
      StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
      Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
                              SkipPubSection);

      std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
      // FIXME: The missing space here may be a bug, but
      //        dsymutil-classic also does it this way.
      MethodNameNoCategory.append(SelectorStart);
      Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
                              SkipPubSection);
    }
  }
}

static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
                    uint16_t Tag, bool InDebugMap, bool SkipPC,
                    bool InFunctionScope) {
  switch (AttrSpec.Attr) {
  default:
    return false;
  case dwarf::DW_AT_low_pc:
  case dwarf::DW_AT_high_pc:
  case dwarf::DW_AT_ranges:
    return SkipPC;
  case dwarf::DW_AT_location:
  case dwarf::DW_AT_frame_base:
    // FIXME: for some reason dsymutil-classic keeps the location attributes
    // when they are of block type (i.e. not location lists). This is totally
    // wrong for globals where we will keep a wrong address. It is mostly
    // harmless for locals, but there is no point in keeping these anyway when
    // the function wasn't linked.
    return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
                       !InDebugMap)) &&
           !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
  }
}

DIE *DwarfLinkerForBinary::DIECloner::cloneDIE(
    const DWARFDie &InputDIE, const DebugMapObject &DMO, CompileUnit &Unit,
    OffsetsStringPool &StringPool, int64_t PCOffset, uint32_t OutOffset,
    unsigned Flags, bool IsLittleEndian, DIE *Die) {
  DWARFUnit &U = Unit.getOrigUnit();
  unsigned Idx = U.getDIEIndex(InputDIE);
  CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);

  // Should the DIE appear in the output?
  if (!Unit.getInfo(Idx).Keep)
    return nullptr;

  uint64_t Offset = InputDIE.getOffset();
  assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
  if (!Die) {
    // The DIE might have been already created by a forward reference
    // (see cloneDieReferenceAttribute()).
    if (!Info.Clone)
      Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
    Die = Info.Clone;
  }

  assert(Die->getTag() == InputDIE.getTag());
  Die->setOffset(OutOffset);
  if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
      Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
      Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
      !Info.Ctxt->getCanonicalDIEOffset()) {
    // We are about to emit a DIE that is the root of its own valid
    // DeclContext tree. Make the current offset the canonical offset
    // for this context.
    Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
  }

  // Extract and clone every attribute.
  DWARFDataExtractor Data = U.getDebugInfoExtractor();
  // Point to the next DIE (generally there is always at least a NULL
  // entry after the current one). If this is a lone
  // DW_TAG_compile_unit without any children, point to the next unit.
  uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
                            ? U.getDIEAtIndex(Idx + 1).getOffset()
                            : U.getNextUnitOffset();
  AttributesInfo AttrInfo;

  // We could copy the data only if we need to apply a relocation to it. After
  // testing, it seems there is no performance downside to doing the copy
  // unconditionally, and it makes the code simpler.
  SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
  Data =
      DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
  // Modify the copy with relocated addresses.
  if (RelocMgr.areRelocationsResolved() &&
      RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
    // If we applied relocations, we store the value of high_pc that was
    // potentially stored in the input DIE. If high_pc is an address
    // (Dwarf version == 2), then it might have been relocated to a
    // totally unrelated value (because the end address in the object
    // file might be start address of another function which got moved
    // independently by the linker). The computation of the actual
    // high_pc value is done in cloneAddressAttribute().
    AttrInfo.OrigHighPc =
        dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
    // Also store the low_pc. It might get relocated in an
    // inline_subprogram that happens at the beginning of its
    // inlining function.
    AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
                                          std::numeric_limits<uint64_t>::max());
  }

  // Reset the Offset to 0 as we will be working on the local copy of
  // the data.
  Offset = 0;

  const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
  Offset += getULEB128Size(Abbrev->getCode());

  // We are entering a subprogram. Get and propagate the PCOffset.
  if (Die->getTag() == dwarf::DW_TAG_subprogram)
    PCOffset = Info.AddrAdjust;
  AttrInfo.PCOffset = PCOffset;

  if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
    Flags |= TF_InFunctionScope;
    if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update))
      Flags |= TF_SkipPC;
  }

  bool Copied = false;
  for (const auto &AttrSpec : Abbrev->attributes()) {
    if (LLVM_LIKELY(!Options.Update) &&
        shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
                            Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
      DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
                                U.getFormParams());
      // FIXME: dsymutil-classic keeps the old abbreviation around
      // even if it's not used. We can remove this (and the copyAbbrev
      // helper) as soon as bit-for-bit compatibility is not a goal anymore.
      if (!Copied) {
        copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
        Copied = true;
      }
      continue;
    }

    DWARFFormValue Val(AttrSpec.Form);
    uint64_t AttrSize = Offset;
    Val.extractValue(Data, &Offset, U.getFormParams(), &U);
    AttrSize = Offset - AttrSize;

    OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
                                AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
  }

  // Look for accelerator entries.
  uint16_t Tag = InputDIE.getTag();
  // FIXME: This is slightly wrong. An inline_subroutine without a
  // low_pc, but with AT_ranges might be interesting to get into the
  // accelerator tables too. For now stick with dsymutil's behavior.
  if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
      Tag != dwarf::DW_TAG_compile_unit &&
      getDIENames(InputDIE, AttrInfo, StringPool,
                  Tag != dwarf::DW_TAG_inlined_subroutine)) {
    if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
      Unit.addNameAccelerator(Die, AttrInfo.MangledName,
                              Tag == dwarf::DW_TAG_inlined_subroutine);
    if (AttrInfo.Name) {
      if (AttrInfo.NameWithoutTemplate)
        Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
                                /* SkipPubSection */ true);
      Unit.addNameAccelerator(Die, AttrInfo.Name,
                              Tag == dwarf::DW_TAG_inlined_subroutine);
    }
    if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
      addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
                         /* SkipPubSection =*/true);

  } else if (Tag == dwarf::DW_TAG_namespace) {
    if (!AttrInfo.Name)
      AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
    Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
  } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
             getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
             AttrInfo.Name.getString()[0]) {
    uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
    uint64_t RuntimeLang =
        dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
            .getValueOr(0);
    bool ObjCClassIsImplementation =
        (RuntimeLang == dwarf::DW_LANG_ObjC ||
         RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
        dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
            .getValueOr(0);
    Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
                            Hash);
  }

  // Determine whether there are any children that we want to keep.
  bool HasChildren = false;
  for (auto Child : InputDIE.children()) {
    unsigned Idx = U.getDIEIndex(Child);
    if (Unit.getInfo(Idx).Keep) {
      HasChildren = true;
      break;
    }
  }

  DIEAbbrev NewAbbrev = Die->generateAbbrev();
  if (HasChildren)
    NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
  // Assign a permanent abbrev number
  Linker.assignAbbrev(NewAbbrev);
  Die->setAbbrevNumber(NewAbbrev.getNumber());

  // Add the size of the abbreviation number to the output offset.
  OutOffset += getULEB128Size(Die->getAbbrevNumber());

  if (!HasChildren) {
    // Update our size.
    Die->setSize(OutOffset - Die->getOffset());
    return Die;
  }

  // Recursively clone children.
  for (auto Child : InputDIE.children()) {
    if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
                              Flags, IsLittleEndian)) {
      Die->addChild(Clone);
      OutOffset = Clone->getOffset() + Clone->getSize();
    }
  }

  // Account for the end of children marker.
  OutOffset += sizeof(int8_t);
  // Update our size.
  Die->setSize(OutOffset - Die->getOffset());
  return Die;
}

/// Patch the input object file relevant debug_ranges entries
/// and emit them in the output file. Update the relevant attributes
/// to point at the new entries.
void DwarfLinkerForBinary::patchRangesForUnit(const CompileUnit &Unit,
                                              DWARFContext &OrigDwarf,
                                              const DebugMapObject &DMO) const {
  DWARFDebugRangeList RangeList;
  const auto &FunctionRanges = Unit.getFunctionRanges();
  unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
  DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
                                    OrigDwarf.getDWARFObj().getRangesSection(),
                                    OrigDwarf.isLittleEndian(), AddressSize);
  auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
  DWARFUnit &OrigUnit = Unit.getOrigUnit();
  auto OrigUnitDie = OrigUnit.getUnitDIE(false);
  uint64_t OrigLowPc =
      dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
  // Ranges addresses are based on the unit's low_pc. Compute the
  // offset we need to apply to adapt to the new unit's low_pc.
  int64_t UnitPcOffset = 0;
  if (OrigLowPc != -1ULL)
    UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();

  for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
    uint64_t Offset = RangeAttribute.get();
    RangeAttribute.set(Streamer->getRangesSectionSize());
    if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
      llvm::consumeError(std::move(E));
      reportWarning("invalid range list ignored.", DMO);
      RangeList.clear();
    }
    const auto &Entries = RangeList.getEntries();
    if (!Entries.empty()) {
      const DWARFDebugRangeList::RangeListEntry &First = Entries.front();

      if (CurrRange == InvalidRange ||
          First.StartAddress + OrigLowPc < CurrRange.start() ||
          First.StartAddress + OrigLowPc >= CurrRange.stop()) {
        CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
        if (CurrRange == InvalidRange ||
            CurrRange.start() > First.StartAddress + OrigLowPc) {
          reportWarning("no mapping for range.", DMO);
          continue;
        }
      }
    }

    Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
                                AddressSize);
  }
}

/// Generate the debug_aranges entries for \p Unit and if the
/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
/// contribution for this attribute.
/// FIXME: this could actually be done right in patchRangesForUnit,
/// but for the sake of initial bit-for-bit compatibility with legacy
/// dsymutil, we have to do it in a delayed pass.
void DwarfLinkerForBinary::generateUnitRanges(CompileUnit &Unit) const {
  auto Attr = Unit.getUnitRangesAttribute();
  if (Attr)
    Attr->set(Streamer->getRangesSectionSize());
  Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
}

/// Insert the new line info sequence \p Seq into the current
/// set of already linked line info \p Rows.
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
                               std::vector<DWARFDebugLine::Row> &Rows) {
  if (Seq.empty())
    return;

  if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
    Rows.insert(Rows.end(), Seq.begin(), Seq.end());
    Seq.clear();
    return;
  }

  object::SectionedAddress Front = Seq.front().Address;
  auto InsertPoint = partition_point(
      Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });

  // FIXME: this only removes the unneeded end_sequence if the
  // sequences have been inserted in order. Using a global sort like
  // described in patchLineTableForUnit() and delaying the end_sequene
  // elimination to emitLineTableForUnit() we can get rid of all of them.
  if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
      InsertPoint->EndSequence) {
    *InsertPoint = Seq.front();
    Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
  } else {
    Rows.insert(InsertPoint, Seq.begin(), Seq.end());
  }

  Seq.clear();
}

static void patchStmtList(DIE &Die, DIEInteger Offset) {
  for (auto &V : Die.values())
    if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
      V = DIEValue(V.getAttribute(), V.getForm(), Offset);
      return;
    }

  llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
}

/// Extract the line table for \p Unit from \p OrigDwarf, and
/// recreate a relocated version of these for the address ranges that
/// are present in the binary.
void DwarfLinkerForBinary::patchLineTableForUnit(CompileUnit &Unit,
                                                 DWARFContext &OrigDwarf,
                                                 RangesTy &Ranges,
                                                 const DebugMapObject &DMO) {
  DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
  auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
  if (!StmtList)
    return;

  // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
  if (auto *OutputDIE = Unit.getOutputUnitDIE())
    patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));

  // Parse the original line info for the unit.
  DWARFDebugLine::LineTable LineTable;
  uint64_t StmtOffset = *StmtList;
  DWARFDataExtractor LineExtractor(
      OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
      OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
  if (Options.Translator)
    return Streamer->translateLineTable(LineExtractor, StmtOffset);

  Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
                              &Unit.getOrigUnit(), DWARFContext::dumpWarning);
  DWARFContext::dumpWarning(std::move(Err));

  // This vector is the output line table.
  std::vector<DWARFDebugLine::Row> NewRows;
  NewRows.reserve(LineTable.Rows.size());

  // Current sequence of rows being extracted, before being inserted
  // in NewRows.
  std::vector<DWARFDebugLine::Row> Seq;
  const auto &FunctionRanges = Unit.getFunctionRanges();
  auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;

  // FIXME: This logic is meant to generate exactly the same output as
  // Darwin's classic dsymutil. There is a nicer way to implement this
  // by simply putting all the relocated line info in NewRows and simply
  // sorting NewRows before passing it to emitLineTableForUnit. This
  // should be correct as sequences for a function should stay
  // together in the sorted output. There are a few corner cases that
  // look suspicious though, and that required to implement the logic
  // this way. Revisit that once initial validation is finished.

  // Iterate over the object file line info and extract the sequences
  // that correspond to linked functions.
  for (auto &Row : LineTable.Rows) {
    // Check whether we stepped out of the range. The range is
    // half-open, but consider accept the end address of the range if
    // it is marked as end_sequence in the input (because in that
    // case, the relocation offset is accurate and that entry won't
    // serve as the start of another function).
    if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
        Row.Address.Address > CurrRange.stop() ||
        (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
      // We just stepped out of a known range. Insert a end_sequence
      // corresponding to the end of the range.
      uint64_t StopAddress = CurrRange != InvalidRange
                                 ? CurrRange.stop() + CurrRange.value()
                                 : -1ULL;
      CurrRange = FunctionRanges.find(Row.Address.Address);
      bool CurrRangeValid =
          CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
      if (!CurrRangeValid) {
        CurrRange = InvalidRange;
        if (StopAddress != -1ULL) {
          // Try harder by looking in the DebugMapObject function
          // ranges map. There are corner cases where this finds a
          // valid entry. It's unclear if this is right or wrong, but
          // for now do as dsymutil.
          // FIXME: Understand exactly what cases this addresses and
          // potentially remove it along with the Ranges map.
          auto Range = Ranges.lower_bound(Row.Address.Address);
          if (Range != Ranges.begin() && Range != Ranges.end())
            --Range;

          if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
              Range->second.HighPC >= Row.Address.Address) {
            StopAddress = Row.Address.Address + Range->second.Offset;
          }
        }
      }
      if (StopAddress != -1ULL && !Seq.empty()) {
        // Insert end sequence row with the computed end address, but
        // the same line as the previous one.
        auto NextLine = Seq.back();
        NextLine.Address.Address = StopAddress;
        NextLine.EndSequence = 1;
        NextLine.PrologueEnd = 0;
        NextLine.BasicBlock = 0;
        NextLine.EpilogueBegin = 0;
        Seq.push_back(NextLine);
        insertLineSequence(Seq, NewRows);
      }

      if (!CurrRangeValid)
        continue;
    }

    // Ignore empty sequences.
    if (Row.EndSequence && Seq.empty())
      continue;

    // Relocate row address and add it to the current sequence.
    Row.Address.Address += CurrRange.value();
    Seq.emplace_back(Row);

    if (Row.EndSequence)
      insertLineSequence(Seq, NewRows);
  }

  // Finished extracting, now emit the line tables.
  // FIXME: LLVM hard-codes its prologue values. We just copy the
  // prologue over and that works because we act as both producer and
  // consumer. It would be nicer to have a real configurable line
  // table emitter.
  if (LineTable.Prologue.getVersion() < 2 ||
      LineTable.Prologue.getVersion() > 5 ||
      LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
      LineTable.Prologue.OpcodeBase > 13)
    reportWarning("line table parameters mismatch. Cannot emit.", DMO);
  else {
    uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
    // DWARF v5 has an extra 2 bytes of information before the header_length
    // field.
    if (LineTable.Prologue.getVersion() == 5)
      PrologueEnd += 2;
    StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
    MCDwarfLineTableParams Params;
    Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
    Params.DWARF2LineBase = LineTable.Prologue.LineBase;
    Params.DWARF2LineRange = LineTable.Prologue.LineRange;
    Streamer->emitLineTableForUnit(Params,
                                   LineData.slice(*StmtList + 4, PrologueEnd),
                                   LineTable.Prologue.MinInstLength, NewRows,
                                   Unit.getOrigUnit().getAddressByteSize());
  }
}

void DwarfLinkerForBinary::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
  switch (Options.TheAccelTableKind) {
  case AccelTableKind::Apple:
    emitAppleAcceleratorEntriesForUnit(Unit);
    break;
  case AccelTableKind::Dwarf:
    emitDwarfAcceleratorEntriesForUnit(Unit);
    break;
  case AccelTableKind::Default:
    llvm_unreachable("The default must be updated to a concrete value.");
    break;
  }
}

void DwarfLinkerForBinary::emitAppleAcceleratorEntriesForUnit(
    CompileUnit &Unit) {
  // Add namespaces.
  for (const auto &Namespace : Unit.getNamespaces())
    AppleNamespaces.addName(Namespace.Name,
                            Namespace.Die->getOffset() + Unit.getStartOffset());

  /// Add names.
  if (!Options.Minimize)
    Streamer->emitPubNamesForUnit(Unit);
  for (const auto &Pubname : Unit.getPubnames())
    AppleNames.addName(Pubname.Name,
                       Pubname.Die->getOffset() + Unit.getStartOffset());

  /// Add types.
  if (!Options.Minimize)
    Streamer->emitPubTypesForUnit(Unit);
  for (const auto &Pubtype : Unit.getPubtypes())
    AppleTypes.addName(
        Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
        Pubtype.Die->getTag(),
        Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
                                        : 0,
        Pubtype.QualifiedNameHash);

  /// Add ObjC names.
  for (const auto &ObjC : Unit.getObjC())
    AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
}

void DwarfLinkerForBinary::emitDwarfAcceleratorEntriesForUnit(
    CompileUnit &Unit) {
  for (const auto &Namespace : Unit.getNamespaces())
    DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
                       Namespace.Die->getTag(), Unit.getUniqueID());
  for (const auto &Pubname : Unit.getPubnames())
    DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
                       Pubname.Die->getTag(), Unit.getUniqueID());
  for (const auto &Pubtype : Unit.getPubtypes())
    DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
                       Pubtype.Die->getTag(), Unit.getUniqueID());
}

/// Read the frame info stored in the object, and emit the
/// patched frame descriptions for the linked binary.
///
/// This is actually pretty easy as the data of the CIEs and FDEs can
/// be considered as black boxes and moved as is. The only thing to do
/// is to patch the addresses in the headers.
void DwarfLinkerForBinary::patchFrameInfoForObject(const DebugMapObject &DMO,
                                                   RangesTy &Ranges,
                                                   DWARFContext &OrigDwarf,
                                                   unsigned AddrSize) {
  StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
  if (FrameData.empty())
    return;

  DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
  uint64_t InputOffset = 0;

  // Store the data of the CIEs defined in this object, keyed by their
  // offsets.
  DenseMap<uint64_t, StringRef> LocalCIES;

  while (Data.isValidOffset(InputOffset)) {
    uint64_t EntryOffset = InputOffset;
    uint32_t InitialLength = Data.getU32(&InputOffset);
    if (InitialLength == 0xFFFFFFFF)
      return reportWarning("Dwarf64 bits no supported", DMO);

    uint32_t CIEId = Data.getU32(&InputOffset);
    if (CIEId == 0xFFFFFFFF) {
      // This is a CIE, store it.
      StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
      LocalCIES[EntryOffset] = CIEData;
      // The -4 is to account for the CIEId we just read.
      InputOffset += InitialLength - 4;
      continue;
    }

    uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);

    // Some compilers seem to emit frame info that doesn't start at
    // the function entry point, thus we can't just lookup the address
    // in the debug map. Use the linker's range map to see if the FDE
    // describes something that we can relocate.
    auto Range = Ranges.upper_bound(Loc);
    if (Range != Ranges.begin())
      --Range;
    if (Range == Ranges.end() || Range->first > Loc ||
        Range->second.HighPC <= Loc) {
      // The +4 is to account for the size of the InitialLength field itself.
      InputOffset = EntryOffset + InitialLength + 4;
      continue;
    }

    // This is an FDE, and we have a mapping.
    // Have we already emitted a corresponding CIE?
    StringRef CIEData = LocalCIES[CIEId];
    if (CIEData.empty())
      return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);

    // Look if we already emitted a CIE that corresponds to the
    // referenced one (the CIE data is the key of that lookup).
    auto IteratorInserted = EmittedCIEs.insert(
        std::make_pair(CIEData, Streamer->getFrameSectionSize()));
    // If there is no CIE yet for this ID, emit it.
    if (IteratorInserted.second ||
        // FIXME: dsymutil-classic only caches the last used CIE for
        // reuse. Mimic that behavior for now. Just removing that
        // second half of the condition and the LastCIEOffset variable
        // makes the code DTRT.
        LastCIEOffset != IteratorInserted.first->getValue()) {
      LastCIEOffset = Streamer->getFrameSectionSize();
      IteratorInserted.first->getValue() = LastCIEOffset;
      Streamer->emitCIE(CIEData);
    }

    // Emit the FDE with updated address and CIE pointer.
    // (4 + AddrSize) is the size of the CIEId + initial_location
    // fields that will get reconstructed by emitFDE().
    unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
    Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
                      Loc + Range->second.Offset,
                      FrameData.substr(InputOffset, FDERemainingBytes));
    InputOffset += FDERemainingBytes;
  }
}

void DwarfLinkerForBinary::DIECloner::copyAbbrev(
    const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) {
  DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
                 dwarf::Form(Abbrev.hasChildren()));

  for (const auto &Attr : Abbrev.attributes()) {
    uint16_t Form = Attr.Form;
    if (HasODR && isODRAttribute(Attr.Attr))
      Form = dwarf::DW_FORM_ref_addr;
    Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
  }

  Linker.assignAbbrev(Copy);
}

uint32_t DwarfLinkerForBinary::DIECloner::hashFullyQualifiedName(
    DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO,
    int ChildRecurseDepth) {
  const char *Name = nullptr;
  DWARFUnit *OrigUnit = &U.getOrigUnit();
  CompileUnit *CU = &U;
  Optional<DWARFFormValue> Ref;

  while (1) {
    if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
      Name = CurrentName;

    if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
        !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
      break;

    if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
      break;

    CompileUnit *RefCU;
    if (auto RefDIE =
            resolveDIEReference(Linker, DMO, CompileUnits, *Ref, DIE, RefCU)) {
      CU = RefCU;
      OrigUnit = &RefCU->getOrigUnit();
      DIE = RefDIE;
    }
  }

  unsigned Idx = OrigUnit->getDIEIndex(DIE);
  if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
    Name = "(anonymous namespace)";

  if (CU->getInfo(Idx).ParentIdx == 0 ||
      // FIXME: dsymutil-classic compatibility. Ignore modules.
      CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
          dwarf::DW_TAG_module)
    return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));

  DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
  return djbHash(
      (Name ? Name : ""),
      djbHash((Name ? "::" : ""),
              hashFullyQualifiedName(Die, *CU, DMO, ++ChildRecurseDepth)));
}

static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
  auto DwoId = dwarf::toUnsigned(
      CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
  if (DwoId)
    return *DwoId;
  return 0;
}

bool DwarfLinkerForBinary::registerModuleReference(
    DWARFDie CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
    const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
    UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
    uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian,
    unsigned Indent, bool Quiet) {
  std::string PCMfile = dwarf::toString(
      CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
  if (PCMfile.empty())
    return false;

  // Clang module DWARF skeleton CUs abuse this for the path to the module.
  uint64_t DwoId = getDwoId(CUDie, Unit);

  std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
  if (Name.empty()) {
    if (!Quiet)
      reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
    return true;
  }

  if (!Quiet && Options.Verbose) {
    outs().indent(Indent);
    outs() << "Found clang module reference " << PCMfile;
  }

  auto Cached = ClangModules.find(PCMfile);
  if (Cached != ClangModules.end()) {
    // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
    // fixed in clang, only warn about DWO_id mismatches in verbose mode.
    // ASTFileSignatures will change randomly when a module is rebuilt.
    if (!Quiet && Options.Verbose && (Cached->second != DwoId))
      reportWarning(Twine("hash mismatch: this object file was built against a "
                          "different version of the module ") +
                        PCMfile,
                    DMO);
    if (!Quiet && Options.Verbose)
      outs() << " [cached].\n";
    return true;
  }
  if (!Quiet && Options.Verbose)
    outs() << " ...\n";

  // Cyclic dependencies are disallowed by Clang, but we still
  // shouldn't run into an infinite loop, so mark it as processed now.
  ClangModules.insert({PCMfile, DwoId});

  if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, ModuleMap, DMO,
                                Ranges, StringPool, UniquingStringPool,
                                ODRContexts, ModulesEndOffset, UnitID,
                                IsLittleEndian, Indent + 2, Quiet)) {
    consumeError(std::move(E));
    return false;
  }
  return true;
}

ErrorOr<const object::ObjectFile &>
DwarfLinkerForBinary::loadObject(const DebugMapObject &Obj,
                                 const DebugMap &Map) {
  auto ObjectEntry =
      BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
  if (!ObjectEntry) {
    auto Err = ObjectEntry.takeError();
    reportWarning(
        Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
    return errorToErrorCode(std::move(Err));
  }

  auto Object = ObjectEntry->getObject(Map.getTriple());
  if (!Object) {
    auto Err = Object.takeError();
    reportWarning(
        Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
    return errorToErrorCode(std::move(Err));
  }

  return *Object;
}

Error DwarfLinkerForBinary::loadClangModule(
    DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
    DebugMap &ModuleMap, const DebugMapObject &DMO, RangesTy &Ranges,
    OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool,
    DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
    bool IsLittleEndian, unsigned Indent, bool Quiet) {
  /// Using a SmallString<0> because loadClangModule() is recursive.
  SmallString<0> Path(Options.PrependPath);
  if (sys::path::is_relative(Filename))
    resolveRelativeObjectPath(Path, CUDie);
  sys::path::append(Path, Filename);
  // Don't use the cached binary holder because we have no thread-safety
  // guarantee and the lifetime is limited.
  auto &Obj = ModuleMap.addDebugMapObject(
      Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
  auto ErrOrObj = loadObject(Obj, ModuleMap);
  if (!ErrOrObj) {
    // Try and emit more helpful warnings by applying some heuristics.
    StringRef ObjFile = DMO.getObjectFilename();
    bool isClangModule = sys::path::extension(Filename).equals(".pcm");
    bool isArchive = ObjFile.endswith(")");
    if (isClangModule) {
      StringRef ModuleCacheDir = sys::path::parent_path(Path);
      if (sys::fs::exists(ModuleCacheDir)) {
        // If the module's parent directory exists, we assume that the module
        // cache has expired and was pruned by clang.  A more adventurous
        // dsymutil would invoke clang to rebuild the module now.
        if (!ModuleCacheHintDisplayed) {
          WithColor::note() << "The clang module cache may have expired since "
                               "this object file was built. Rebuilding the "
                               "object file will rebuild the module cache.\n";
          ModuleCacheHintDisplayed = true;
        }
      } else if (isArchive) {
        // If the module cache directory doesn't exist at all and the object
        // file is inside a static library, we assume that the static library
        // was built on a different machine. We don't want to discourage module
        // debugging for convenience libraries within a project though.
        if (!ArchiveHintDisplayed) {
          WithColor::note()
              << "Linking a static library that was built with "
                 "-gmodules, but the module cache was not found.  "
                 "Redistributable static libraries should never be "
                 "built with module debugging enabled.  The debug "
                 "experience will be degraded due to incomplete "
                 "debug information.\n";
          ArchiveHintDisplayed = true;
        }
      }
    }
    return Error::success();
  }

  std::unique_ptr<CompileUnit> Unit;

  // Setup access to the debug info.
  auto DwarfContext = DWARFContext::create(*ErrOrObj);
  RelocationManager RelocMgr(*this, *ErrOrObj, DMO);

  for (const auto &CU : DwarfContext->compile_units()) {
    updateDwarfVersion(CU->getVersion());
    // Recursively get all modules imported by this one.
    auto CUDie = CU->getUnitDIE(false);
    if (!CUDie)
      continue;
    if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
                                 UniquingStringPool, ODRContexts,
                                 ModulesEndOffset, UnitID, IsLittleEndian,
                                 Indent, Quiet)) {
      if (Unit) {
        std::string Err =
            (Filename +
             ": Clang modules are expected to have exactly 1 compile unit.\n")
                .str();
        error(Err);
        return make_error<StringError>(Err, inconvertibleErrorCode());
      }
      // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
      // fixed in clang, only warn about DWO_id mismatches in verbose mode.
      // ASTFileSignatures will change randomly when a module is rebuilt.
      uint64_t PCMDwoId = getDwoId(CUDie, *CU);
      if (PCMDwoId != DwoId) {
        if (!Quiet && Options.Verbose)
          reportWarning(
              Twine("hash mismatch: this object file was built against a "
                    "different version of the module ") +
                  Filename,
              DMO);
        // Update the cache entry with the DwoId of the module loaded from disk.
        ClangModules[Filename] = PCMDwoId;
      }

      // Add this module.
      Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
                                           ModuleName);
      Unit->setHasInterestingContent();
      analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
                         UniquingStringPool, ODRContexts, ModulesEndOffset,
                         ParseableSwiftInterfaces,
                         [&](const Twine &Warning, const DWARFDie &DIE) {
                           reportWarning(Warning, DMO, &DIE);
                         });
      // Keep everything.
      Unit->markEverythingAsKept();
    }
  }
  if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
    return Error::success();
  if (!Quiet && Options.Verbose) {
    outs().indent(Indent);
    outs() << "cloning .debug_info from " << Filename << "\n";
  }

  UnitListTy CompileUnits;
  CompileUnits.push_back(std::move(Unit));
  DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
      .cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool,
                            IsLittleEndian);
  return Error::success();
}

void DwarfLinkerForBinary::DIECloner::cloneAllCompileUnits(
    DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
    OffsetsStringPool &StringPool, bool IsLittleEndian) {
  if (!Linker.Streamer)
    return;

  uint64_t OutputDebugInfoSize = Linker.Streamer->getDebugInfoSectionSize();
  for (auto &CurrentUnit : CompileUnits) {
    auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
    CurrentUnit->setStartOffset(OutputDebugInfoSize);
    if (!InputDIE) {
      OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
      continue;
    }
    if (CurrentUnit->getInfo(0).Keep) {
      // Clone the InputDIE into your Unit DIE in our compile unit since it
      // already has a DIE inside of it.
      CurrentUnit->createOutputDIE();
      cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
               11 /* Unit Header size */, 0, IsLittleEndian,
               CurrentUnit->getOutputUnitDIE());
    }

    OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();

    if (Linker.Options.NoOutput)
      continue;

    // FIXME: for compatibility with the classic dsymutil, we emit
    // an empty line table for the unit, even if the unit doesn't
    // actually exist in the DIE tree.
    if (LLVM_LIKELY(!Linker.Options.Update) || Linker.Options.Translator)
      Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);

    Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);

    if (LLVM_UNLIKELY(Linker.Options.Update))
      continue;

    Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
    auto ProcessExpr = [&](StringRef Bytes, SmallVectorImpl<uint8_t> &Buffer) {
      DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
      DataExtractor Data(Bytes, IsLittleEndian, OrigUnit.getAddressByteSize());
      cloneExpression(Data,
                      DWARFExpression(Data, OrigUnit.getVersion(),
                                      OrigUnit.getAddressByteSize()),
                      DMO, *CurrentUnit, Buffer);
    };
    Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext,
                                          ProcessExpr);
  }

  if (Linker.Options.NoOutput)
    return;

  // Emit all the compile unit's debug information.
  for (auto &CurrentUnit : CompileUnits) {
    if (LLVM_LIKELY(!Linker.Options.Update))
      Linker.generateUnitRanges(*CurrentUnit);

    CurrentUnit->fixupForwardReferences();

    if (!CurrentUnit->getOutputUnitDIE())
      continue;

    assert(Linker.Streamer->getDebugInfoSectionSize() ==
           CurrentUnit->getStartOffset());
    Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
    Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
    assert(Linker.Streamer->getDebugInfoSectionSize() ==
           CurrentUnit->computeNextUnitOffset());
  }
}

void DwarfLinkerForBinary::updateAccelKind(DWARFContext &Dwarf) {
  if (Options.TheAccelTableKind != AccelTableKind::Default)
    return;

  auto &DwarfObj = Dwarf.getDWARFObj();

  if (!AtLeastOneDwarfAccelTable &&
      (!DwarfObj.getAppleNamesSection().Data.empty() ||
       !DwarfObj.getAppleTypesSection().Data.empty() ||
       !DwarfObj.getAppleNamespacesSection().Data.empty() ||
       !DwarfObj.getAppleObjCSection().Data.empty())) {
    AtLeastOneAppleAccelTable = true;
  }

  if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
    AtLeastOneDwarfAccelTable = true;
  }
}

bool DwarfLinkerForBinary::emitPaperTrailWarnings(
    const DebugMapObject &DMO, const DebugMap &Map,
    OffsetsStringPool &StringPool) {
  if (DMO.getWarnings().empty() || !DMO.empty())
    return false;

  Streamer->switchToDebugInfoSection(/* Version */ 2);
  DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
  CUDie->setOffset(11);
  StringRef Producer = StringPool.internString("dsymutil");
  StringRef File = StringPool.internString(DMO.getObjectFilename());
  CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
                  DIEInteger(StringPool.getStringOffset(Producer)));
  DIEBlock *String = new (DIEAlloc) DIEBlock();
  DIEBlocks.push_back(String);
  for (auto &C : File)
    String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
                     DIEInteger(C));
  String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
                   DIEInteger(0));

  CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
  for (const auto &Warning : DMO.getWarnings()) {
    DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
    ConstDie.addValue(
        DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
        DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
    ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
                      DIEInteger(1));
    ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
                      DIEInteger(StringPool.getStringOffset(Warning)));
  }
  unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
                  DMO.getWarnings().size() * (4 + 1 + 4) +
                  1 /* End of children */;
  DIEAbbrev Abbrev = CUDie->generateAbbrev();
  assignAbbrev(Abbrev);
  CUDie->setAbbrevNumber(Abbrev.getNumber());
  Size += getULEB128Size(Abbrev.getNumber());
  // Abbreviation ordering needed for classic compatibility.
  for (auto &Child : CUDie->children()) {
    Abbrev = Child.generateAbbrev();
    assignAbbrev(Abbrev);
    Child.setAbbrevNumber(Abbrev.getNumber());
    Size += getULEB128Size(Abbrev.getNumber());
  }
  CUDie->setSize(Size);
  Streamer->emitPaperTrailWarningsDie(Map.getTriple(), *CUDie);

  return true;
}

static Error copySwiftInterfaces(
    const std::map<std::string, std::string> &ParseableSwiftInterfaces,
    StringRef Architecture, const LinkOptions &Options) {
  std::error_code EC;
  SmallString<128> InputPath;
  SmallString<128> Path;
  sys::path::append(Path, *Options.ResourceDir, "Swift", Architecture);
  if ((EC = sys::fs::create_directories(Path.str(), true,
                                        sys::fs::perms::all_all)))
    return make_error<StringError>(
        "cannot create directory: " + toString(errorCodeToError(EC)), EC);
  unsigned BaseLength = Path.size();

  for (auto &I : ParseableSwiftInterfaces) {
    StringRef ModuleName = I.first;
    StringRef InterfaceFile = I.second;
    if (!Options.PrependPath.empty()) {
      InputPath.clear();
      sys::path::append(InputPath, Options.PrependPath, InterfaceFile);
      InterfaceFile = InputPath;
    }
    sys::path::append(Path, ModuleName);
    Path.append(".swiftinterface");
    if (Options.Verbose)
      outs() << "copy parseable Swift interface " << InterfaceFile << " -> "
             << Path.str() << '\n';

    // copy_file attempts an APFS clone first, so this should be cheap.
    if ((EC = sys::fs::copy_file(InterfaceFile, Path.str())))
      warn(Twine("cannot copy parseable Swift interface ") + InterfaceFile +
           ": " + toString(errorCodeToError(EC)));
    Path.resize(BaseLength);
  }
  return Error::success();
}

static Error emitRemarks(const LinkOptions &Options, StringRef BinaryPath,
                         StringRef ArchName, const remarks::RemarkLinker &RL) {
  // Make sure we don't create the directories and the file if there is nothing
  // to serialize.
  if (RL.empty())
    return Error::success();

  SmallString<128> InputPath;
  SmallString<128> Path;
  // Create the "Remarks" directory in the "Resources" directory.
  sys::path::append(Path, *Options.ResourceDir, "Remarks");
  if (std::error_code EC = sys::fs::create_directories(Path.str(), true,
                                                       sys::fs::perms::all_all))
    return errorCodeToError(EC);

  // Append the file name.
  // For fat binaries, also append a dash and the architecture name.
  sys::path::append(Path, sys::path::filename(BinaryPath));
  if (Options.NumDebugMaps > 1) {
    // More than one debug map means we have a fat binary.
    Path += '-';
    Path += ArchName;
  }

  std::error_code EC;
  raw_fd_ostream OS(Options.NoOutput ? "-" : Path.str(), EC, sys::fs::OF_None);
  if (EC)
    return errorCodeToError(EC);

  if (Error E = RL.serialize(OS, Options.RemarksFormat))
    return E;

  return Error::success();
}

bool DwarfLinkerForBinary::link(const DebugMap &Map) {
  if (!createStreamer(Map.getTriple(), OutFile))
    return false;

  // Size of the DIEs (and headers) generated for the linked output.
  // A unique ID that identifies each compile unit.
  unsigned UnitID = 0;
  DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());

  // First populate the data structure we need for each iteration of the
  // parallel loop.
  unsigned NumObjects = Map.getNumberOfObjects();
  std::vector<LinkContext> ObjectContexts;
  ObjectContexts.reserve(NumObjects);
  for (const auto &Obj : Map.objects()) {
    ObjectContexts.emplace_back(Map, *this, *Obj.get());
    LinkContext &LC = ObjectContexts.back();
    if (LC.ObjectFile)
      updateAccelKind(*LC.DwarfContext);
  }

  // This Dwarf string pool which is only used for uniquing. This one should
  // never be used for offsets as its not thread-safe or predictable.
  UniquingStringPool UniquingStringPool(nullptr, true);

  // This Dwarf string pool which is used for emission. It must be used
  // serially as the order of calling getStringOffset matters for
  // reproducibility.
  OffsetsStringPool OffsetsStringPool(Options.Translator, true);

  // ODR Contexts for the link.
  DeclContextTree ODRContexts;

  // If we haven't decided on an accelerator table kind yet, we base ourselves
  // on the DWARF we have seen so far. At this point we haven't pulled in debug
  // information from modules yet, so it is technically possible that they
  // would affect the decision. However, as they're built with the same
  // compiler and flags, it is safe to assume that they will follow the
  // decision made here.
  if (Options.TheAccelTableKind == AccelTableKind::Default) {
    if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
      Options.TheAccelTableKind = AccelTableKind::Dwarf;
    else
      Options.TheAccelTableKind = AccelTableKind::Apple;
  }

  for (LinkContext &LinkContext : ObjectContexts) {
    if (Options.Verbose)
      outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
             << "\n";

    // N_AST objects (swiftmodule files) should get dumped directly into the
    // appropriate DWARF section.
    if (LinkContext.DMO.getType() == MachO::N_AST) {
      StringRef File = LinkContext.DMO.getObjectFilename();
      auto ErrorOrMem = MemoryBuffer::getFile(File);
      if (!ErrorOrMem) {
        warn("Could not open '" + File + "'\n");
        continue;
      }
      sys::fs::file_status Stat;
      if (auto Err = sys::fs::status(File, Stat)) {
        warn(Err.message());
        continue;
      }
      if (!Options.NoTimestamp) {
        // The modification can have sub-second precision so we need to cast
        // away the extra precision that's not present in the debug map.
        auto ModificationTime =
            std::chrono::time_point_cast<std::chrono::seconds>(
                Stat.getLastModificationTime());
        if (ModificationTime != LinkContext.DMO.getTimestamp()) {
          // Not using the helper here as we can easily stream TimePoint<>.
          WithColor::warning()
              << "Timestamp mismatch for " << File << ": "
              << Stat.getLastModificationTime() << " and "
              << sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
          continue;
        }
      }

      // Copy the module into the .swift_ast section.
      if (!Options.NoOutput)
        Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
      continue;
    }

    if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
      continue;

    if (!LinkContext.ObjectFile)
      continue;

    // Look for relocations that correspond to debug map entries.

    if (LLVM_LIKELY(!Options.Update) &&
        !LinkContext.RelocMgr->hasValidRelocs()) {
      if (Options.Verbose)
        outs() << "No valid relocations found. Skipping.\n";

      // Clear this ObjFile entry as a signal to other loops that we should not
      // process this iteration.
      LinkContext.ObjectFile = nullptr;
      continue;
    }

    // Setup access to the debug info.
    if (!LinkContext.DwarfContext)
      continue;

    startDebugObject(LinkContext);

    // In a first phase, just read in the debug info and load all clang modules.
    LinkContext.CompileUnits.reserve(
        LinkContext.DwarfContext->getNumCompileUnits());

    for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
      updateDwarfVersion(CU->getVersion());
      auto CUDie = CU->getUnitDIE(false);
      if (Options.Verbose) {
        outs() << "Input compilation unit:";
        DIDumpOptions DumpOpts;
        DumpOpts.ChildRecurseDepth = 0;
        DumpOpts.Verbose = Options.Verbose;
        CUDie.dump(outs(), 0, DumpOpts);
      }
      if (CUDie && !LLVM_UNLIKELY(Options.Update))
        registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
                                LinkContext.Ranges, OffsetsStringPool,
                                UniquingStringPool, ODRContexts, 0, UnitID,
                                LinkContext.DwarfContext->isLittleEndian());
    }
  }

  // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
  if (MaxDwarfVersion == 0)
    MaxDwarfVersion = 3;

  // At this point we know how much data we have emitted. We use this value to
  // compare canonical DIE offsets in analyzeContextInfo to see if a definition
  // is already emitted, without being affected by canonical die offsets set
  // later. This prevents undeterminism when analyze and clone execute
  // concurrently, as clone set the canonical DIE offset and analyze reads it.
  const uint64_t ModulesEndOffset =
      Options.NoOutput ? 0 : Streamer->getDebugInfoSectionSize();

  // These variables manage the list of processed object files.
  // The mutex and condition variable are to ensure that this is thread safe.
  std::mutex ProcessedFilesMutex;
  std::condition_variable ProcessedFilesConditionVariable;
  BitVector ProcessedFiles(NumObjects, false);

  //  Analyzing the context info is particularly expensive so it is executed in
  //  parallel with emitting the previous compile unit.
  auto AnalyzeLambda = [&](size_t i) {
    auto &LinkContext = ObjectContexts[i];

    if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
      return;

    for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
      updateDwarfVersion(CU->getVersion());
      // The !registerModuleReference() condition effectively skips
      // over fully resolved skeleton units. This second pass of
      // registerModuleReferences doesn't do any new work, but it
      // will collect top-level errors, which are suppressed. Module
      // warnings were already displayed in the first iteration.
      bool Quiet = true;
      auto CUDie = CU->getUnitDIE(false);
      if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
          !registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
                                   LinkContext.Ranges, OffsetsStringPool,
                                   UniquingStringPool, ODRContexts,
                                   ModulesEndOffset, UnitID, Quiet)) {
        LinkContext.CompileUnits.push_back(std::make_unique<CompileUnit>(
            *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
      }
    }

    // Now build the DIE parent links that we will use during the next phase.
    for (auto &CurrentUnit : LinkContext.CompileUnits) {
      auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
      if (!CUDie)
        continue;
      analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
                         *CurrentUnit, &ODRContexts.getRoot(),
                         UniquingStringPool, ODRContexts, ModulesEndOffset,
                         ParseableSwiftInterfaces,
                         [&](const Twine &Warning, const DWARFDie &DIE) {
                           reportWarning(Warning, LinkContext.DMO, &DIE);
                         });
    }
  };

  // And then the remaining work in serial again.
  // Note, although this loop runs in serial, it can run in parallel with
  // the analyzeContextInfo loop so long as we process files with indices >=
  // than those processed by analyzeContextInfo.
  auto CloneLambda = [&](size_t i) {
    auto &LinkContext = ObjectContexts[i];
    if (!LinkContext.ObjectFile)
      return;

    // Then mark all the DIEs that need to be present in the linked output
    // and collect some information about them.
    // Note that this loop can not be merged with the previous one because
    // cross-cu references require the ParentIdx to be setup for every CU in
    // the object file before calling this.
    if (LLVM_UNLIKELY(Options.Update)) {
      for (auto &CurrentUnit : LinkContext.CompileUnits)
        CurrentUnit->markEverythingAsKept();
      Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
    } else {
      for (auto &CurrentUnit : LinkContext.CompileUnits)
        lookForDIEsToKeep(*LinkContext.RelocMgr, LinkContext.Ranges,
                          LinkContext.CompileUnits,
                          CurrentUnit->getOrigUnit().getUnitDIE(),
                          LinkContext.DMO, *CurrentUnit, 0);
    }

    // The calls to applyValidRelocs inside cloneDIE will walk the reloc
    // array again (in the same way findValidRelocsInDebugInfo() did). We
    // need to reset the NextValidReloc index to the beginning.
    if (LinkContext.RelocMgr->hasValidRelocs() || LLVM_UNLIKELY(Options.Update))
      DIECloner(*this, *LinkContext.RelocMgr, DIEAlloc,
                LinkContext.CompileUnits, Options)
          .cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
                                LinkContext.Ranges, OffsetsStringPool,
                                LinkContext.DwarfContext->isLittleEndian());
    if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
        LLVM_LIKELY(!Options.Update))
      patchFrameInfoForObject(
          LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
          LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());

    // Clean-up before starting working on the next object.
    endDebugObject(LinkContext);
  };

  auto EmitLambda = [&]() {
    // Emit everything that's global.
    if (!Options.NoOutput) {
      Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
      Streamer->emitStrings(OffsetsStringPool);
      switch (Options.TheAccelTableKind) {
      case AccelTableKind::Apple:
        Streamer->emitAppleNames(AppleNames);
        Streamer->emitAppleNamespaces(AppleNamespaces);
        Streamer->emitAppleTypes(AppleTypes);
        Streamer->emitAppleObjc(AppleObjc);
        break;
      case AccelTableKind::Dwarf:
        Streamer->emitDebugNames(DebugNames);
        break;
      case AccelTableKind::Default:
        llvm_unreachable("Default should have already been resolved.");
        break;
      }
    }
  };

  remarks::RemarkLinker RL;
  if (!Options.RemarksPrependPath.empty())
    RL.setExternalFilePrependPath(Options.RemarksPrependPath);
  auto RemarkLinkLambda = [&](size_t i) {
    // Link remarks from one object file.
    auto &LinkContext = ObjectContexts[i];
    if (const object::ObjectFile *Obj = LinkContext.ObjectFile) {
      Error E = RL.link(*Obj);
      if (Error NewE = handleErrors(
              std::move(E), [&](std::unique_ptr<FileError> EC) -> Error {
                return remarksErrorHandler(LinkContext.DMO, *this,
                                           std::move(EC));
              }))
        return NewE;
    }
    return Error(Error::success());
  };

  auto AnalyzeAll = [&]() {
    for (unsigned i = 0, e = NumObjects; i != e; ++i) {
      AnalyzeLambda(i);

      std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
      ProcessedFiles.set(i);
      ProcessedFilesConditionVariable.notify_one();
    }
  };

  auto CloneAll = [&]() {
    for (unsigned i = 0, e = NumObjects; i != e; ++i) {
      {
        std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
        if (!ProcessedFiles[i]) {
          ProcessedFilesConditionVariable.wait(
              LockGuard, [&]() { return ProcessedFiles[i]; });
        }
      }

      CloneLambda(i);
    }
    EmitLambda();
  };

  auto EmitRemarksLambda = [&]() {
    StringRef ArchName = Map.getTriple().getArchName();
    return emitRemarks(Options, Map.getBinaryPath(), ArchName, RL);
  };

  // Instead of making error handling a lot more complicated using futures,
  // write to one llvm::Error instance if something went wrong.
  // We're assuming RemarkLinkAllError is alive longer than the thread
  // executing RemarkLinkAll.
  auto RemarkLinkAll = [&](Error &RemarkLinkAllError) {
    // Allow assigning to the error only within the lambda.
    ErrorAsOutParameter EAO(&RemarkLinkAllError);
    for (unsigned i = 0, e = NumObjects; i != e; ++i)
      if ((RemarkLinkAllError = RemarkLinkLambda(i)))
        return;

    if ((RemarkLinkAllError = EmitRemarksLambda()))
      return;
  };

  // To limit memory usage in the single threaded case, analyze and clone are
  // run sequentially so the LinkContext is freed after processing each object
  // in endDebugObject.
  if (Options.Threads == 1) {
    for (unsigned i = 0, e = NumObjects; i != e; ++i) {
      AnalyzeLambda(i);
      CloneLambda(i);

      if (Error E = RemarkLinkLambda(i))
        return error(toString(std::move(E)));
    }
    EmitLambda();

    if (Error E = EmitRemarksLambda())
      return error(toString(std::move(E)));

  } else {
    // This should not be constructed on the single-threaded path to avoid fatal
    // errors from unchecked llvm::Error objects.
    Error RemarkLinkAllError = Error::success();

    ThreadPool pool(3);
    pool.async(AnalyzeAll);
    pool.async(CloneAll);
    pool.async(RemarkLinkAll, std::ref(RemarkLinkAllError));
    pool.wait();

    // Report errors from RemarkLinkAll, if any.
    if (Error E = std::move(RemarkLinkAllError))
      return error(toString(std::move(E)));
  }

  if (Options.NoOutput)
    return true;

  if (Options.ResourceDir && !ParseableSwiftInterfaces.empty()) {
    StringRef ArchName = Triple::getArchTypeName(Map.getTriple().getArch());
    if (auto E =
            copySwiftInterfaces(ParseableSwiftInterfaces, ArchName, Options))
      return error(toString(std::move(E)));
  }

  return Streamer->finish(Map, Options.Translator);
} // namespace dsymutil

bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
               const DebugMap &DM, LinkOptions Options) {
  DwarfLinkerForBinary Linker(OutFile, BinHolder, std::move(Options));
  return Linker.link(DM);
}

} // namespace dsymutil
} // namespace llvm