DwarfLinkerForBinary.cpp
118 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
//===- tools/dsymutil/DwarfLinkerForBinary.cpp ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "DwarfLinkerForBinary.h"
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "DwarfStreamer.h"
#include "MachOUtils.h"
#include "dsymutil.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/CodeGen/AccelTable.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/NonRelocatableStringpool.h"
#include "llvm/Config/config.h"
#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Remarks/RemarkFormat.h"
#include "llvm/Remarks/RemarkLinker.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <climits>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
namespace llvm {
namespace dsymutil {
/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
/// CompileUnit object instead.
static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
auto CU = std::upper_bound(
Units.begin(), Units.end(), Offset,
[](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
return LHS < RHS->getOrigUnit().getNextUnitOffset();
});
return CU != Units.end() ? CU->get() : nullptr;
}
/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
/// The resulting DIE might be in another CompileUnit which is stored into \p
/// ReferencedCU. \returns null if resolving fails for any reason.
static DWARFDie resolveDIEReference(const DwarfLinkerForBinary &Linker,
const DebugMapObject &DMO,
const UnitListTy &Units,
const DWARFFormValue &RefValue,
const DWARFDie &DIE, CompileUnit *&RefCU) {
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
uint64_t RefOffset = *RefValue.getAsReference();
if ((RefCU = getUnitForOffset(Units, RefOffset)))
if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
// In a file with broken references, an attribute might point to a NULL
// DIE.
if (!RefDie.isNULL())
return RefDie;
}
Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
return DWARFDie();
}
/// \returns whether the passed \a Attr type might contain a DIE reference
/// suitable for ODR uniquing.
static bool isODRAttribute(uint16_t Attr) {
switch (Attr) {
default:
return false;
case dwarf::DW_AT_type:
case dwarf::DW_AT_containing_type:
case dwarf::DW_AT_specification:
case dwarf::DW_AT_abstract_origin:
case dwarf::DW_AT_import:
return true;
}
llvm_unreachable("Improper attribute.");
}
static bool isTypeTag(uint16_t Tag) {
switch (Tag) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_pointer_type:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_string_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_set_type:
case dwarf::DW_TAG_subrange_type:
case dwarf::DW_TAG_base_type:
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_file_type:
case dwarf::DW_TAG_namelist:
case dwarf::DW_TAG_packed_type:
case dwarf::DW_TAG_volatile_type:
case dwarf::DW_TAG_restrict_type:
case dwarf::DW_TAG_atomic_type:
case dwarf::DW_TAG_interface_type:
case dwarf::DW_TAG_unspecified_type:
case dwarf::DW_TAG_shared_type:
return true;
default:
break;
}
return false;
}
static Error remarksErrorHandler(const DebugMapObject &DMO,
DwarfLinkerForBinary &Linker,
std::unique_ptr<FileError> FE) {
bool IsArchive = DMO.getObjectFilename().endswith(")");
// Don't report errors for missing remark files from static
// archives.
if (!IsArchive)
return Error(std::move(FE));
std::string Message = FE->message();
Error E = FE->takeError();
Error NewE = handleErrors(std::move(E), [&](std::unique_ptr<ECError> EC) {
if (EC->convertToErrorCode() != std::errc::no_such_file_or_directory)
return Error(std::move(EC));
Linker.reportWarning(Message, DMO);
return Error(Error::success());
});
if (!NewE)
return Error::success();
return createFileError(FE->getFileName(), std::move(NewE));
}
bool DwarfLinkerForBinary::DIECloner::getDIENames(const DWARFDie &Die,
AttributesInfo &Info,
OffsetsStringPool &StringPool,
bool StripTemplate) {
// This function will be called on DIEs having low_pcs and
// ranges. As getting the name might be more expansive, filter out
// blocks directly.
if (Die.getTag() == dwarf::DW_TAG_lexical_block)
return false;
// FIXME: a bit wasteful as the first getName might return the
// short name.
if (!Info.MangledName)
if (const char *MangledName = Die.getName(DINameKind::LinkageName))
Info.MangledName = StringPool.getEntry(MangledName);
if (!Info.Name)
if (const char *Name = Die.getName(DINameKind::ShortName))
Info.Name = StringPool.getEntry(Name);
if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
// FIXME: dsymutil compatibility. This is wrong for operator<
auto Split = Info.Name.getString().split('<');
if (!Split.second.empty())
Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
}
return Info.Name || Info.MangledName;
}
/// Report a warning to the user, optionally including information about a
/// specific \p DIE related to the warning.
void DwarfLinkerForBinary::reportWarning(const Twine &Warning,
const DebugMapObject &DMO,
const DWARFDie *DIE) const {
StringRef Context = DMO.getObjectFilename();
warn(Warning, Context);
if (!Options.Verbose || !DIE)
return;
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
WithColor::note() << " in DIE:\n";
DIE->dump(errs(), 6 /* Indent */, DumpOpts);
}
bool DwarfLinkerForBinary::createStreamer(const Triple &TheTriple,
raw_fd_ostream &OutFile) {
if (Options.NoOutput)
return true;
Streamer = std::make_unique<DwarfStreamer>(OutFile, Options);
return Streamer->init(TheTriple);
}
/// Resolve the relative path to a build artifact referenced by DWARF by
/// applying DW_AT_comp_dir.
static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
}
/// Collect references to parseable Swift interfaces in imported
/// DW_TAG_module blocks.
static void analyzeImportedModule(
const DWARFDie &DIE, CompileUnit &CU,
std::map<std::string, std::string> &ParseableSwiftInterfaces,
std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
if (CU.getLanguage() != dwarf::DW_LANG_Swift)
return;
StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
if (!Path.endswith(".swiftinterface"))
return;
if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
if (Optional<const char *> Name = Val->getAsCString()) {
auto &Entry = ParseableSwiftInterfaces[*Name];
// The prepend path is applied later when copying.
DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
SmallString<128> ResolvedPath;
if (sys::path::is_relative(Path))
resolveRelativeObjectPath(ResolvedPath, CUDie);
sys::path::append(ResolvedPath, Path);
if (!Entry.empty() && Entry != ResolvedPath)
ReportWarning(
Twine("Conflicting parseable interfaces for Swift Module ") +
*Name + ": " + Entry + " and " + Path,
DIE);
Entry = ResolvedPath.str();
}
}
/// Recursive helper to build the global DeclContext information and
/// gather the child->parent relationships in the original compile unit.
///
/// \return true when this DIE and all of its children are only
/// forward declarations to types defined in external clang modules
/// (i.e., forward declarations that are children of a DW_TAG_module).
static bool analyzeContextInfo(
const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
DeclContext *CurrentDeclContext, UniquingStringPool &StringPool,
DeclContextTree &Contexts, uint64_t ModulesEndOffset,
std::map<std::string, std::string> &ParseableSwiftInterfaces,
std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
bool InImportedModule = false) {
unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
// Clang imposes an ODR on modules(!) regardless of the language:
// "The module-id should consist of only a single identifier,
// which provides the name of the module being defined. Each
// module shall have a single definition."
//
// This does not extend to the types inside the modules:
// "[I]n C, this implies that if two structs are defined in
// different submodules with the same name, those two types are
// distinct types (but may be compatible types if their
// definitions match)."
//
// We treat non-C++ modules like namespaces for this reason.
if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
CU.getClangModuleName()) {
InImportedModule = true;
analyzeImportedModule(DIE, CU, ParseableSwiftInterfaces, ReportWarning);
}
Info.ParentIdx = ParentIdx;
bool InClangModule = CU.isClangModule() || InImportedModule;
if (CU.hasODR() || InClangModule) {
if (CurrentDeclContext) {
auto PtrInvalidPair = Contexts.getChildDeclContext(
*CurrentDeclContext, DIE, CU, StringPool, InClangModule);
CurrentDeclContext = PtrInvalidPair.getPointer();
Info.Ctxt =
PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
if (Info.Ctxt)
Info.Ctxt->setDefinedInClangModule(InClangModule);
} else
Info.Ctxt = CurrentDeclContext = nullptr;
}
Info.Prune = InImportedModule;
if (DIE.hasChildren())
for (auto Child : DIE.children())
Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
StringPool, Contexts, ModulesEndOffset,
ParseableSwiftInterfaces, ReportWarning,
InImportedModule);
// Prune this DIE if it is either a forward declaration inside a
// DW_TAG_module or a DW_TAG_module that contains nothing but
// forward declarations.
Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
(isTypeTag(DIE.getTag()) &&
dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));
// Only prune forward declarations inside a DW_TAG_module for which a
// definition exists elsewhere.
if (ModulesEndOffset == 0)
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
else
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
return Info.Prune;
} // namespace dsymutil
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
switch (Tag) {
default:
return false;
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_common_block:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_union_type:
return true;
}
llvm_unreachable("Invalid Tag");
}
void DwarfLinkerForBinary::startDebugObject(LinkContext &Context) {}
void DwarfLinkerForBinary::endDebugObject(LinkContext &Context) {
Context.Clear();
for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
(*I)->~DIEBlock();
for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
(*I)->~DIELoc();
DIEBlocks.clear();
DIELocs.clear();
DIEAlloc.Reset();
}
static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
switch (Arch) {
case Triple::x86:
return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
case Triple::x86_64:
return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
case Triple::arm:
case Triple::thumb:
return RelocType == MachO::ARM_RELOC_SECTDIFF ||
RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
RelocType == MachO::ARM_RELOC_HALF ||
RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
case Triple::aarch64:
return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
default:
return false;
}
}
/// Iterate over the relocations of the given \p Section and
/// store the ones that correspond to debug map entries into the
/// ValidRelocs array.
void DwarfLinkerForBinary::RelocationManager::findValidRelocsMachO(
const object::SectionRef &Section, const object::MachOObjectFile &Obj,
const DebugMapObject &DMO) {
Expected<StringRef> ContentsOrErr = Section.getContents();
if (!ContentsOrErr) {
consumeError(ContentsOrErr.takeError());
Linker.reportWarning("error reading section", DMO);
return;
}
DataExtractor Data(*ContentsOrErr, Obj.isLittleEndian(), 0);
bool SkipNext = false;
for (const object::RelocationRef &Reloc : Section.relocations()) {
if (SkipNext) {
SkipNext = false;
continue;
}
object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
Obj.getArch())) {
SkipNext = true;
Linker.reportWarning("unsupported relocation in debug_info section.",
DMO);
continue;
}
unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
uint64_t Offset64 = Reloc.getOffset();
if ((RelocSize != 4 && RelocSize != 8)) {
Linker.reportWarning("unsupported relocation in debug_info section.",
DMO);
continue;
}
uint64_t OffsetCopy = Offset64;
// Mach-o uses REL relocations, the addend is at the relocation offset.
uint64_t Addend = Data.getUnsigned(&OffsetCopy, RelocSize);
uint64_t SymAddress;
int64_t SymOffset;
if (Obj.isRelocationScattered(MachOReloc)) {
// The address of the base symbol for scattered relocations is
// stored in the reloc itself. The actual addend will store the
// base address plus the offset.
SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
SymOffset = int64_t(Addend) - SymAddress;
} else {
SymAddress = Addend;
SymOffset = 0;
}
auto Sym = Reloc.getSymbol();
if (Sym != Obj.symbol_end()) {
Expected<StringRef> SymbolName = Sym->getName();
if (!SymbolName) {
consumeError(SymbolName.takeError());
Linker.reportWarning("error getting relocation symbol name.", DMO);
continue;
}
if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
} else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
// Do not store the addend. The addend was the address of the symbol in
// the object file, the address in the binary that is stored in the debug
// map doesn't need to be offset.
ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
}
}
}
/// Dispatch the valid relocation finding logic to the
/// appropriate handler depending on the object file format.
bool DwarfLinkerForBinary::RelocationManager::findValidRelocs(
const object::SectionRef &Section, const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Dispatch to the right handler depending on the file type.
if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
findValidRelocsMachO(Section, *MachOObj, DMO);
else
Linker.reportWarning(
Twine("unsupported object file type: ") + Obj.getFileName(), DMO);
if (ValidRelocs.empty())
return false;
// Sort the relocations by offset. We will walk the DIEs linearly in
// the file, this allows us to just keep an index in the relocation
// array that we advance during our walk, rather than resorting to
// some associative container. See DwarfLinker::NextValidReloc.
llvm::sort(ValidRelocs);
return true;
}
/// Look for relocations in the debug_info section that match
/// entries in the debug map. These relocations will drive the Dwarf
/// link by indicating which DIEs refer to symbols present in the
/// linked binary.
/// \returns whether there are any valid relocations in the debug info.
bool DwarfLinkerForBinary::RelocationManager::findValidRelocsInDebugInfo(
const object::ObjectFile &Obj, const DebugMapObject &DMO) {
// Find the debug_info section.
for (const object::SectionRef &Section : Obj.sections()) {
StringRef SectionName;
if (Expected<StringRef> NameOrErr = Section.getName())
SectionName = *NameOrErr;
else
consumeError(NameOrErr.takeError());
SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
if (SectionName != "debug_info")
continue;
return findValidRelocs(Section, Obj, DMO);
}
return false;
}
/// Checks that there is a relocation against an actual debug
/// map entry between \p StartOffset and \p NextOffset.
///
/// This function must be called with offsets in strictly ascending
/// order because it never looks back at relocations it already 'went past'.
/// \returns true and sets Info.InDebugMap if it is the case.
bool DwarfLinkerForBinary::RelocationManager::hasValidRelocationAt(
uint64_t StartOffset, uint64_t EndOffset, CompileUnit::DIEInfo &Info) {
assert(NextValidReloc == 0 ||
StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
if (NextValidReloc >= ValidRelocs.size())
return false;
uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
// We might need to skip some relocs that we didn't consider. For
// example the high_pc of a discarded DIE might contain a reloc that
// is in the list because it actually corresponds to the start of a
// function that is in the debug map.
while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
RelocOffset = ValidRelocs[++NextValidReloc].Offset;
if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
return false;
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
const auto &Mapping = ValidReloc.Mapping->getValue();
const uint64_t BinaryAddress = Mapping.BinaryAddress;
const uint64_t ObjectAddress = Mapping.ObjectAddress
? uint64_t(*Mapping.ObjectAddress)
: std::numeric_limits<uint64_t>::max();
if (Linker.Options.Verbose)
outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
<< "\t"
<< format("0x%016" PRIx64 " => 0x%016" PRIx64 "\n", ObjectAddress,
BinaryAddress);
Info.AddrAdjust = BinaryAddress + ValidReloc.Addend;
if (Mapping.ObjectAddress)
Info.AddrAdjust -= ObjectAddress;
Info.InDebugMap = true;
return true;
}
/// Get the starting and ending (exclusive) offset for the
/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
/// supposed to point to the position of the first attribute described
/// by \p Abbrev.
/// \return [StartOffset, EndOffset) as a pair.
static std::pair<uint64_t, uint64_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
uint64_t Offset, const DWARFUnit &Unit) {
DataExtractor Data = Unit.getDebugInfoExtractor();
for (unsigned i = 0; i < Idx; ++i)
DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
Unit.getFormParams());
uint64_t End = Offset;
DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
Unit.getFormParams());
return std::make_pair(Offset, End);
}
/// Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepVariableDIE(
RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
// Global variables with constant value can always be kept.
if (!(Flags & TF_InFunctionScope) &&
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
MyInfo.InDebugMap = true;
return Flags | TF_Keep;
}
Optional<uint32_t> LocationIdx =
Abbrev->findAttributeIndex(dwarf::DW_AT_location);
if (!LocationIdx)
return Flags;
uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint64_t LocationOffset, LocationEndOffset;
std::tie(LocationOffset, LocationEndOffset) =
getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
// See if there is a relocation to a valid debug map entry inside
// this variable's location. The order is important here. We want to
// always check if the variable has a valid relocation, so that the
// DIEInfo is filled. However, we don't want a static variable in a
// function to force us to keep the enclosing function.
if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset,
MyInfo) ||
(Flags & TF_InFunctionScope))
return Flags;
if (Options.Verbose) {
outs() << "Keeping variable DIE:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
}
return Flags | TF_Keep;
}
/// Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepSubprogramDIE(
RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
Flags |= TF_InFunctionScope;
Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
if (!LowPcIdx)
return Flags;
uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint64_t LowPcOffset, LowPcEndOffset;
std::tie(LowPcOffset, LowPcEndOffset) =
getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
assert(LowPc.hasValue() && "low_pc attribute is not an address.");
if (!LowPc ||
!RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo))
return Flags;
if (Options.Verbose) {
outs() << "Keeping subprogram DIE:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
}
if (DIE.getTag() == dwarf::DW_TAG_label) {
if (Unit.hasLabelAt(*LowPc))
return Flags;
// FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
// that don't fall into the CU's aranges. This is wrong IMO. Debug info
// generation bugs aside, this is really wrong in the case of labels, where
// a label marking the end of a function will have a PC == CU's high_pc.
if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
.getValueOr(UINT64_MAX) <= LowPc)
return Flags;
Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
return Flags | TF_Keep;
}
Flags |= TF_Keep;
Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
if (!HighPc) {
reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
&DIE);
return Flags;
}
// Replace the debug map range with a more accurate one.
Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
return Flags;
}
/// Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinkerForBinary::shouldKeepDIE(
RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
switch (DIE.getTag()) {
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_variable:
return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_label:
return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
Flags);
case dwarf::DW_TAG_base_type:
// DWARF Expressions may reference basic types, but scanning them
// is expensive. Basic types are tiny, so just keep all of them.
case dwarf::DW_TAG_imported_module:
case dwarf::DW_TAG_imported_declaration:
case dwarf::DW_TAG_imported_unit:
// We always want to keep these.
return Flags | TF_Keep;
default:
break;
}
return Flags;
}
namespace {
/// The distinct types of work performed by the work loop.
enum class WorklistItemType {
/// Given a DIE, look for DIEs to be kept.
LookForDIEsToKeep,
/// Given a DIE, look for children of this DIE to be kept.
LookForChildDIEsToKeep,
/// Given a DIE, look for DIEs referencing this DIE to be kept.
LookForRefDIEsToKeep,
/// Given a DIE, look for parent DIEs to be kept.
LookForParentDIEsToKeep,
/// Given a DIE, update its incompleteness based on whether its children are
/// incomplete.
UpdateChildIncompleteness,
/// Given a DIE, update its incompleteness based on whether the DIEs it
/// references are incomplete.
UpdateRefIncompleteness,
};
/// This class represents an item in the work list. The type defines what kind
/// of work needs to be performed when processing the current item. The flags
/// and info fields are optional based on the type.
struct WorklistItem {
WorklistItemType Type;
DWARFDie Die;
CompileUnit &CU;
unsigned Flags;
unsigned AncestorIdx = 0;
CompileUnit::DIEInfo *OtherInfo = nullptr;
WorklistItem(DWARFDie Die, CompileUnit &CU, unsigned Flags,
WorklistItemType T = WorklistItemType::LookForDIEsToKeep)
: Type(T), Die(Die), CU(CU), Flags(Flags){};
WorklistItem(DWARFDie Die, CompileUnit &CU, WorklistItemType T,
CompileUnit::DIEInfo *OtherInfo = nullptr)
: Type(T), Die(Die), CU(CU), OtherInfo(OtherInfo){};
WorklistItem(unsigned AncestorIdx, CompileUnit &CU, unsigned Flags)
: Type(WorklistItemType::LookForParentDIEsToKeep), CU(CU), Flags(Flags),
AncestorIdx(AncestorIdx){};
};
} // namespace
/// Helper that updates the completeness of the current DIE based on the
/// completeness of one of its children. It depends on the incompleteness of
/// the children already being computed.
static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
CompileUnit::DIEInfo &ChildInfo) {
switch (Die.getTag()) {
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_class_type:
break;
default:
return;
}
unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
if (ChildInfo.Incomplete || ChildInfo.Prune)
MyInfo.Incomplete = true;
}
/// Helper that updates the completeness of the current DIE based on the
/// completeness of the DIEs it references. It depends on the incompleteness of
/// the referenced DIE already being computed.
static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
CompileUnit::DIEInfo &RefInfo) {
switch (Die.getTag()) {
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_member:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_pointer_type:
break;
default:
return;
}
unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
if (MyInfo.Incomplete)
return;
if (RefInfo.Incomplete)
MyInfo.Incomplete = true;
}
/// Look at the children of the given DIE and decide whether they should be
/// kept.
static void lookForChildDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
unsigned Flags,
SmallVectorImpl<WorklistItem> &Worklist) {
// The TF_ParentWalk flag tells us that we are currently walking up the
// parent chain of a required DIE, and we don't want to mark all the children
// of the parents as kept (consider for example a DW_TAG_namespace node in
// the parent chain). There are however a set of DIE types for which we want
// to ignore that directive and still walk their children.
if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
Flags &= ~DwarfLinkerForBinary::TF_ParentWalk;
// We're finished if this DIE has no children or we're walking the parent
// chain.
if (!Die.hasChildren() || (Flags & DwarfLinkerForBinary::TF_ParentWalk))
return;
// Add children in reverse order to the worklist to effectively process them
// in order.
for (auto Child : reverse(Die.children())) {
// Add a worklist item before every child to calculate incompleteness right
// after the current child is processed.
unsigned Idx = CU.getOrigUnit().getDIEIndex(Child);
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Idx);
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
&ChildInfo);
Worklist.emplace_back(Child, CU, Flags);
}
}
/// Look at DIEs referenced by the given DIE and decide whether they should be
/// kept. All DIEs referenced though attributes should be kept.
static void lookForRefDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
unsigned Flags, DwarfLinkerForBinary &Linker,
const UnitListTy &Units,
const DebugMapObject &DMO,
SmallVectorImpl<WorklistItem> &Worklist) {
bool UseOdr = (Flags & DwarfLinkerForBinary::TF_DependencyWalk)
? (Flags & DwarfLinkerForBinary::TF_ODR)
: CU.hasODR();
DWARFUnit &Unit = CU.getOrigUnit();
DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
AttrSpec.Attr == dwarf::DW_AT_sibling) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
Unit.getFormParams());
continue;
}
Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
CompileUnit *ReferencedCU;
if (auto RefDie =
resolveDIEReference(Linker, DMO, Units, Val, Die, ReferencedCU)) {
uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
Info.Ctxt->isDefinedInClangModule();
// If the referenced DIE has a DeclContext that has already been
// emitted, then do not keep the one in this CU. We'll link to
// the canonical DIE in cloneDieReferenceAttribute.
//
// FIXME: compatibility with dsymutil-classic. UseODR shouldn't
// be necessary and could be advantageously replaced by
// ReferencedCU->hasODR() && CU.hasODR().
//
// FIXME: compatibility with dsymutil-classic. There is no
// reason not to unique ref_addr references.
if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
Info.Ctxt &&
Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
continue;
// Keep a module forward declaration if there is no definition.
if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
Info.Ctxt->getCanonicalDIEOffset()))
Info.Prune = false;
ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
}
}
unsigned ODRFlag = UseOdr ? DwarfLinkerForBinary::TF_ODR : 0;
// Add referenced DIEs in reverse order to the worklist to effectively
// process them in order.
for (auto &P : reverse(ReferencedDIEs)) {
// Add a worklist item before every child to calculate incompleteness right
// after the current child is processed.
uint32_t RefIdx = P.second.getOrigUnit().getDIEIndex(P.first);
CompileUnit::DIEInfo &Info = P.second.getInfo(RefIdx);
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
&Info);
Worklist.emplace_back(P.first, P.second,
DwarfLinkerForBinary::TF_Keep |
DwarfLinkerForBinary::TF_DependencyWalk |
ODRFlag);
}
}
/// Look at the parent of the given DIE and decide whether they should be kept.
static void lookForParentDIEsToKeep(unsigned AncestorIdx, CompileUnit &CU,
unsigned Flags,
SmallVectorImpl<WorklistItem> &Worklist) {
// Stop if we encounter an ancestor that's already marked as kept.
if (CU.getInfo(AncestorIdx).Keep)
return;
DWARFUnit &Unit = CU.getOrigUnit();
DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
Worklist.emplace_back(ParentDIE, CU, Flags);
}
/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
/// information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection algorithm. It is
/// expected to walk the DIE tree in file order and (though the mediation of
/// its helper) call hasValidRelocation() on each DIE that might be a 'root
/// DIE' (See DwarfLinker class comment).
///
/// While walking the dependencies of root DIEs, this function is also called,
/// but during these dependency walks the file order is not respected. The
/// TF_DependencyWalk flag tells us which kind of traversal we are currently
/// doing.
///
/// The recursive algorithm is implemented iteratively as a work list because
/// very deep recursion could exhaust the stack for large projects. The work
/// list acts as a scheduler for different types of work that need to be
/// performed.
///
/// The recursive nature of the algorithm is simulated by running the "main"
/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
/// fixing up a computed property (UpdateChildIncompleteness,
/// UpdateRefIncompleteness).
///
/// The return value indicates whether the DIE is incomplete.
void DwarfLinkerForBinary::lookForDIEsToKeep(RelocationManager &RelocMgr,
RangesTy &Ranges,
const UnitListTy &Units,
const DWARFDie &Die,
const DebugMapObject &DMO,
CompileUnit &Cu, unsigned Flags) {
// LIFO work list.
SmallVector<WorklistItem, 4> Worklist;
Worklist.emplace_back(Die, Cu, Flags);
while (!Worklist.empty()) {
WorklistItem Current = Worklist.back();
Worklist.pop_back();
// Look at the worklist type to decide what kind of work to perform.
switch (Current.Type) {
case WorklistItemType::UpdateChildIncompleteness:
updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
continue;
case WorklistItemType::UpdateRefIncompleteness:
updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
continue;
case WorklistItemType::LookForChildDIEsToKeep:
lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
continue;
case WorklistItemType::LookForRefDIEsToKeep:
lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, *this, Units,
DMO, Worklist);
continue;
case WorklistItemType::LookForParentDIEsToKeep:
lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
Worklist);
continue;
case WorklistItemType::LookForDIEsToKeep:
break;
}
unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
if (MyInfo.Prune)
continue;
// If the Keep flag is set, we are marking a required DIE's dependencies.
// If our target is already marked as kept, we're all set.
bool AlreadyKept = MyInfo.Keep;
if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
continue;
// We must not call shouldKeepDIE while called from keepDIEAndDependencies,
// because it would screw up the relocation finding logic.
if (!(Current.Flags & TF_DependencyWalk))
Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO,
Current.CU, MyInfo, Current.Flags);
// Finish by looking for child DIEs. Because of the LIFO worklist we need
// to schedule that work before any subsequent items are added to the
// worklist.
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
WorklistItemType::LookForChildDIEsToKeep);
if (AlreadyKept || !(Current.Flags & TF_Keep))
continue;
// If it is a newly kept DIE mark it as well as all its dependencies as
// kept.
MyInfo.Keep = true;
// We're looking for incomplete types.
MyInfo.Incomplete =
Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
Current.Die.getTag() != dwarf::DW_TAG_member &&
dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
// After looking at the parent chain, look for referenced DIEs. Because of
// the LIFO worklist we need to schedule that work before any subsequent
// items are added to the worklist.
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
WorklistItemType::LookForRefDIEsToKeep);
bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
: Current.CU.hasODR();
unsigned ODRFlag = UseOdr ? TF_ODR : 0;
unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
// Now schedule the parent walk.
Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
}
}
/// Assign an abbreviation number to \p Abbrev.
///
/// Our DIEs get freed after every DebugMapObject has been processed,
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
/// the instances hold by the DIEs. When we encounter an abbreviation
/// that we don't know, we create a permanent copy of it.
void DwarfLinkerForBinary::assignAbbrev(DIEAbbrev &Abbrev) {
// Check the set for priors.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
void *InsertToken;
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
// If it's newly added.
if (InSet) {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
} else {
// Add to abbreviation list.
Abbreviations.push_back(
std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
for (const auto &Attr : Abbrev.getData())
Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
// Assign the unique abbreviation number.
Abbrev.setNumber(Abbreviations.size());
Abbreviations.back()->setNumber(Abbreviations.size());
}
}
unsigned DwarfLinkerForBinary::DIECloner::cloneStringAttribute(
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
// Switch everything to out of line strings.
const char *String = *Val.getAsCString();
auto StringEntry = StringPool.getEntry(String);
// Update attributes info.
if (AttrSpec.Attr == dwarf::DW_AT_name)
Info.Name = StringEntry;
else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
AttrSpec.Attr == dwarf::DW_AT_linkage_name)
Info.MangledName = StringEntry;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
DIEInteger(StringEntry.getOffset()));
return 4;
}
unsigned DwarfLinkerForBinary::DIECloner::cloneDieReferenceAttribute(
DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
CompileUnit &Unit) {
const DWARFUnit &U = Unit.getOrigUnit();
uint64_t Ref = *Val.getAsReference();
DIE *NewRefDie = nullptr;
CompileUnit *RefUnit = nullptr;
DeclContext *Ctxt = nullptr;
DWARFDie RefDie =
resolveDIEReference(Linker, DMO, CompileUnits, Val, InputDIE, RefUnit);
// If the referenced DIE is not found, drop the attribute.
if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
return 0;
unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
// If we already have emitted an equivalent DeclContext, just point
// at it.
if (isODRAttribute(AttrSpec.Attr)) {
Ctxt = RefInfo.Ctxt;
if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, Attr);
return U.getRefAddrByteSize();
}
}
if (!RefInfo.Clone) {
assert(Ref > InputDIE.getOffset());
// We haven't cloned this DIE yet. Just create an empty one and
// store it. It'll get really cloned when we process it.
RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
}
NewRefDie = RefInfo.Clone;
if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
(Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
// We cannot currently rely on a DIEEntry to emit ref_addr
// references, because the implementation calls back to DwarfDebug
// to find the unit offset. (We don't have a DwarfDebug)
// FIXME: we should be able to design DIEEntry reliance on
// DwarfDebug away.
uint64_t Attr;
if (Ref < InputDIE.getOffset()) {
// We must have already cloned that DIE.
uint32_t NewRefOffset =
RefUnit->getStartOffset() + NewRefDie->getOffset();
Attr = NewRefOffset;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
} else {
// A forward reference. Note and fixup later.
Attr = 0xBADDEF;
Unit.noteForwardReference(
NewRefDie, RefUnit, Ctxt,
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
}
return U.getRefAddrByteSize();
}
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
return AttrSize;
}
void DwarfLinkerForBinary::DIECloner::cloneExpression(
DataExtractor &Data, DWARFExpression Expression, const DebugMapObject &DMO,
CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
using Encoding = DWARFExpression::Operation::Encoding;
uint64_t OpOffset = 0;
for (auto &Op : Expression) {
auto Description = Op.getDescription();
// DW_OP_const_type is variable-length and has 3
// operands. DWARFExpression thus far only supports 2.
auto Op0 = Description.Op[0];
auto Op1 = Description.Op[1];
if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
(Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
Linker.reportWarning("Unsupported DW_OP encoding.", DMO);
if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
(Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
// This code assumes that the other non-typeref operand fits into 1 byte.
assert(OpOffset < Op.getEndOffset());
uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
assert(ULEBsize <= 16);
// Copy over the operation.
OutputBuffer.push_back(Op.getCode());
uint64_t RefOffset;
if (Op1 == Encoding::SizeNA) {
RefOffset = Op.getRawOperand(0);
} else {
OutputBuffer.push_back(Op.getRawOperand(0));
RefOffset = Op.getRawOperand(1);
}
auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
uint32_t RefIdx = Unit.getOrigUnit().getDIEIndex(RefDie);
CompileUnit::DIEInfo &Info = Unit.getInfo(RefIdx);
uint32_t Offset = 0;
if (DIE *Clone = Info.Clone)
Offset = Clone->getOffset();
else
Linker.reportWarning("base type ref doesn't point to DW_TAG_base_type.",
DMO);
uint8_t ULEB[16];
unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
if (RealSize > ULEBsize) {
// Emit the generic type as a fallback.
RealSize = encodeULEB128(0, ULEB, ULEBsize);
Linker.reportWarning("base type ref doesn't fit.", DMO);
}
assert(RealSize == ULEBsize && "padding failed");
ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
} else {
// Copy over everything else unmodified.
StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
OutputBuffer.append(Bytes.begin(), Bytes.end());
}
OpOffset = Op.getEndOffset();
}
}
unsigned DwarfLinkerForBinary::DIECloner::cloneBlockAttribute(
DIE &Die, const DebugMapObject &DMO, CompileUnit &Unit,
AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
bool IsLittleEndian) {
DIEValueList *Attr;
DIEValue Value;
DIELoc *Loc = nullptr;
DIEBlock *Block = nullptr;
if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
Loc = new (DIEAlloc) DIELoc;
Linker.DIELocs.push_back(Loc);
} else {
Block = new (DIEAlloc) DIEBlock;
Linker.DIEBlocks.push_back(Block);
}
Attr = Loc ? static_cast<DIEValueList *>(Loc)
: static_cast<DIEValueList *>(Block);
if (Loc)
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), Loc);
else
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), Block);
// If the block is a DWARF Expression, clone it into the temporary
// buffer using cloneExpression(), otherwise copy the data directly.
SmallVector<uint8_t, 32> Buffer;
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) &&
(Val.isFormClass(DWARFFormValue::FC_Block) ||
Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
DWARFUnit &OrigUnit = Unit.getOrigUnit();
DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
IsLittleEndian, OrigUnit.getAddressByteSize());
DWARFExpression Expr(Data, OrigUnit.getVersion(),
OrigUnit.getAddressByteSize());
cloneExpression(Data, Expr, DMO, Unit, Buffer);
Bytes = Buffer;
}
for (auto Byte : Bytes)
Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
dwarf::DW_FORM_data1, DIEInteger(Byte));
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
// the DIE class, this if could be replaced by
// Attr->setSize(Bytes.size()).
if (Linker.Streamer) {
auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
if (Loc)
Loc->ComputeSize(AsmPrinter);
else
Block->ComputeSize(AsmPrinter);
}
Die.addValue(DIEAlloc, Value);
return AttrSize;
}
unsigned DwarfLinkerForBinary::DIECloner::cloneAddressAttribute(
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
const CompileUnit &Unit, AttributesInfo &Info) {
uint64_t Addr = *Val.getAsAddress();
if (LLVM_UNLIKELY(Linker.Options.Update)) {
if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
Info.HasLowPc = true;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
return Unit.getOrigUnit().getAddressByteSize();
}
if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
Die.getTag() == dwarf::DW_TAG_lexical_block)
// The low_pc of a block or inline subroutine might get
// relocated because it happens to match the low_pc of the
// enclosing subprogram. To prevent issues with that, always use
// the low_pc from the input DIE if relocations have been applied.
Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
? Info.OrigLowPc
: Addr) +
Info.PCOffset;
else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
Addr = Unit.getLowPc();
if (Addr == std::numeric_limits<uint64_t>::max())
return 0;
}
Info.HasLowPc = true;
} else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (uint64_t HighPc = Unit.getHighPc())
Addr = HighPc;
else
return 0;
} else
// If we have a high_pc recorded for the input DIE, use
// it. Otherwise (when no relocations where applied) just use the
// one we just decoded.
Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
}
Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
return Unit.getOrigUnit().getAddressByteSize();
}
unsigned DwarfLinkerForBinary::DIECloner::cloneScalarAttribute(
DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
unsigned AttrSize, AttributesInfo &Info) {
uint64_t Value;
if (LLVM_UNLIKELY(Linker.Options.Update)) {
if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else if (auto OptionalValue = Val.getAsSignedConstant())
Value = *OptionalValue;
else if (auto OptionalValue = Val.getAsSectionOffset())
Value = *OptionalValue;
else {
Linker.reportWarning(
"Unsupported scalar attribute form. Dropping attribute.", DMO,
&InputDIE);
return 0;
}
if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
Info.IsDeclaration = true;
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
return AttrSize;
}
if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (Unit.getLowPc() == -1ULL)
return 0;
// Dwarf >= 4 high_pc is an size, not an address.
Value = Unit.getHighPc() - Unit.getLowPc();
} else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
Value = *Val.getAsSectionOffset();
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
Value = *Val.getAsSignedConstant();
else if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else {
Linker.reportWarning(
"Unsupported scalar attribute form. Dropping attribute.", DMO,
&InputDIE);
return 0;
}
PatchLocation Patch =
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
Unit.noteRangeAttribute(Die, Patch);
Info.HasRanges = true;
}
// A more generic way to check for location attributes would be
// nice, but it's very unlikely that any other attribute needs a
// location list.
// FIXME: use DWARFAttribute::mayHaveLocationDescription().
else if (AttrSpec.Attr == dwarf::DW_AT_location ||
AttrSpec.Attr == dwarf::DW_AT_frame_base)
Unit.noteLocationAttribute(Patch, Info.PCOffset);
else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
Info.IsDeclaration = true;
return AttrSize;
}
/// Clone \p InputDIE's attribute described by \p AttrSpec with
/// value \p Val, and add it to \p Die.
/// \returns the size of the cloned attribute.
unsigned DwarfLinkerForBinary::DIECloner::cloneAttribute(
DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
bool IsLittleEndian) {
const DWARFUnit &U = Unit.getOrigUnit();
switch (AttrSpec.Form) {
case dwarf::DW_FORM_strp:
case dwarf::DW_FORM_string:
return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
case dwarf::DW_FORM_ref_addr:
case dwarf::DW_FORM_ref1:
case dwarf::DW_FORM_ref2:
case dwarf::DW_FORM_ref4:
case dwarf::DW_FORM_ref8:
return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
DMO, Unit);
case dwarf::DW_FORM_block:
case dwarf::DW_FORM_block1:
case dwarf::DW_FORM_block2:
case dwarf::DW_FORM_block4:
case dwarf::DW_FORM_exprloc:
return cloneBlockAttribute(Die, DMO, Unit, AttrSpec, Val, AttrSize,
IsLittleEndian);
case dwarf::DW_FORM_addr:
return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
case dwarf::DW_FORM_sec_offset:
case dwarf::DW_FORM_flag:
case dwarf::DW_FORM_flag_present:
return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
AttrSize, Info);
default:
Linker.reportWarning(
"Unsupported attribute form in cloneAttribute. Dropping.", DMO,
&InputDIE);
}
return 0;
}
/// Apply the valid relocations found by findValidRelocs() to
/// the buffer \p Data, taking into account that Data is at \p BaseOffset
/// in the debug_info section.
///
/// Like for findValidRelocs(), this function must be called with
/// monotonic \p BaseOffset values.
///
/// \returns whether any reloc has been applied.
bool DwarfLinkerForBinary::RelocationManager::applyValidRelocs(
MutableArrayRef<char> Data, uint64_t BaseOffset, bool IsLittleEndian) {
assert((NextValidReloc == 0 ||
BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
"BaseOffset should only be increasing.");
if (NextValidReloc >= ValidRelocs.size())
return false;
// Skip relocs that haven't been applied.
while (NextValidReloc < ValidRelocs.size() &&
ValidRelocs[NextValidReloc].Offset < BaseOffset)
++NextValidReloc;
bool Applied = false;
uint64_t EndOffset = BaseOffset + Data.size();
while (NextValidReloc < ValidRelocs.size() &&
ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
ValidRelocs[NextValidReloc].Offset < EndOffset) {
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
assert(ValidReloc.Offset - BaseOffset < Data.size());
assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
char Buf[8];
uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
Value += ValidReloc.Addend;
for (unsigned i = 0; i != ValidReloc.Size; ++i) {
unsigned Index = IsLittleEndian ? i : (ValidReloc.Size - i - 1);
Buf[i] = uint8_t(Value >> (Index * 8));
}
assert(ValidReloc.Size <= sizeof(Buf));
memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
Applied = true;
}
return Applied;
}
static bool isObjCSelector(StringRef Name) {
return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
(Name[1] == '[');
}
void DwarfLinkerForBinary::DIECloner::addObjCAccelerator(
CompileUnit &Unit, const DIE *Die, DwarfStringPoolEntryRef Name,
OffsetsStringPool &StringPool, bool SkipPubSection) {
assert(isObjCSelector(Name.getString()) && "not an objc selector");
// Objective C method or class function.
// "- [Class(Category) selector :withArg ...]"
StringRef ClassNameStart(Name.getString().drop_front(2));
size_t FirstSpace = ClassNameStart.find(' ');
if (FirstSpace == StringRef::npos)
return;
StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
if (!SelectorStart.size())
return;
StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
// Add an entry for the class name that points to this
// method/class function.
StringRef ClassName(ClassNameStart.data(), FirstSpace);
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
if (ClassName[ClassName.size() - 1] == ')') {
size_t OpenParens = ClassName.find('(');
if (OpenParens != StringRef::npos) {
StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
SkipPubSection);
std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
// FIXME: The missing space here may be a bug, but
// dsymutil-classic also does it this way.
MethodNameNoCategory.append(SelectorStart);
Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
SkipPubSection);
}
}
}
static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
uint16_t Tag, bool InDebugMap, bool SkipPC,
bool InFunctionScope) {
switch (AttrSpec.Attr) {
default:
return false;
case dwarf::DW_AT_low_pc:
case dwarf::DW_AT_high_pc:
case dwarf::DW_AT_ranges:
return SkipPC;
case dwarf::DW_AT_location:
case dwarf::DW_AT_frame_base:
// FIXME: for some reason dsymutil-classic keeps the location attributes
// when they are of block type (i.e. not location lists). This is totally
// wrong for globals where we will keep a wrong address. It is mostly
// harmless for locals, but there is no point in keeping these anyway when
// the function wasn't linked.
return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
!InDebugMap)) &&
!DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
}
}
DIE *DwarfLinkerForBinary::DIECloner::cloneDIE(
const DWARFDie &InputDIE, const DebugMapObject &DMO, CompileUnit &Unit,
OffsetsStringPool &StringPool, int64_t PCOffset, uint32_t OutOffset,
unsigned Flags, bool IsLittleEndian, DIE *Die) {
DWARFUnit &U = Unit.getOrigUnit();
unsigned Idx = U.getDIEIndex(InputDIE);
CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
// Should the DIE appear in the output?
if (!Unit.getInfo(Idx).Keep)
return nullptr;
uint64_t Offset = InputDIE.getOffset();
assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
if (!Die) {
// The DIE might have been already created by a forward reference
// (see cloneDieReferenceAttribute()).
if (!Info.Clone)
Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
Die = Info.Clone;
}
assert(Die->getTag() == InputDIE.getTag());
Die->setOffset(OutOffset);
if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
!Info.Ctxt->getCanonicalDIEOffset()) {
// We are about to emit a DIE that is the root of its own valid
// DeclContext tree. Make the current offset the canonical offset
// for this context.
Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
}
// Extract and clone every attribute.
DWARFDataExtractor Data = U.getDebugInfoExtractor();
// Point to the next DIE (generally there is always at least a NULL
// entry after the current one). If this is a lone
// DW_TAG_compile_unit without any children, point to the next unit.
uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
? U.getDIEAtIndex(Idx + 1).getOffset()
: U.getNextUnitOffset();
AttributesInfo AttrInfo;
// We could copy the data only if we need to apply a relocation to it. After
// testing, it seems there is no performance downside to doing the copy
// unconditionally, and it makes the code simpler.
SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
Data =
DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
// Modify the copy with relocated addresses.
if (RelocMgr.areRelocationsResolved() &&
RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
// If we applied relocations, we store the value of high_pc that was
// potentially stored in the input DIE. If high_pc is an address
// (Dwarf version == 2), then it might have been relocated to a
// totally unrelated value (because the end address in the object
// file might be start address of another function which got moved
// independently by the linker). The computation of the actual
// high_pc value is done in cloneAddressAttribute().
AttrInfo.OrigHighPc =
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
// Also store the low_pc. It might get relocated in an
// inline_subprogram that happens at the beginning of its
// inlining function.
AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
std::numeric_limits<uint64_t>::max());
}
// Reset the Offset to 0 as we will be working on the local copy of
// the data.
Offset = 0;
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
Offset += getULEB128Size(Abbrev->getCode());
// We are entering a subprogram. Get and propagate the PCOffset.
if (Die->getTag() == dwarf::DW_TAG_subprogram)
PCOffset = Info.AddrAdjust;
AttrInfo.PCOffset = PCOffset;
if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
Flags |= TF_InFunctionScope;
if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update))
Flags |= TF_SkipPC;
}
bool Copied = false;
for (const auto &AttrSpec : Abbrev->attributes()) {
if (LLVM_LIKELY(!Options.Update) &&
shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
U.getFormParams());
// FIXME: dsymutil-classic keeps the old abbreviation around
// even if it's not used. We can remove this (and the copyAbbrev
// helper) as soon as bit-for-bit compatibility is not a goal anymore.
if (!Copied) {
copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
Copied = true;
}
continue;
}
DWARFFormValue Val(AttrSpec.Form);
uint64_t AttrSize = Offset;
Val.extractValue(Data, &Offset, U.getFormParams(), &U);
AttrSize = Offset - AttrSize;
OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
}
// Look for accelerator entries.
uint16_t Tag = InputDIE.getTag();
// FIXME: This is slightly wrong. An inline_subroutine without a
// low_pc, but with AT_ranges might be interesting to get into the
// accelerator tables too. For now stick with dsymutil's behavior.
if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
Tag != dwarf::DW_TAG_compile_unit &&
getDIENames(InputDIE, AttrInfo, StringPool,
Tag != dwarf::DW_TAG_inlined_subroutine)) {
if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
Unit.addNameAccelerator(Die, AttrInfo.MangledName,
Tag == dwarf::DW_TAG_inlined_subroutine);
if (AttrInfo.Name) {
if (AttrInfo.NameWithoutTemplate)
Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
/* SkipPubSection */ true);
Unit.addNameAccelerator(Die, AttrInfo.Name,
Tag == dwarf::DW_TAG_inlined_subroutine);
}
if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
/* SkipPubSection =*/true);
} else if (Tag == dwarf::DW_TAG_namespace) {
if (!AttrInfo.Name)
AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
} else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
AttrInfo.Name.getString()[0]) {
uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
uint64_t RuntimeLang =
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
.getValueOr(0);
bool ObjCClassIsImplementation =
(RuntimeLang == dwarf::DW_LANG_ObjC ||
RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
.getValueOr(0);
Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
Hash);
}
// Determine whether there are any children that we want to keep.
bool HasChildren = false;
for (auto Child : InputDIE.children()) {
unsigned Idx = U.getDIEIndex(Child);
if (Unit.getInfo(Idx).Keep) {
HasChildren = true;
break;
}
}
DIEAbbrev NewAbbrev = Die->generateAbbrev();
if (HasChildren)
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
// Assign a permanent abbrev number
Linker.assignAbbrev(NewAbbrev);
Die->setAbbrevNumber(NewAbbrev.getNumber());
// Add the size of the abbreviation number to the output offset.
OutOffset += getULEB128Size(Die->getAbbrevNumber());
if (!HasChildren) {
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
// Recursively clone children.
for (auto Child : InputDIE.children()) {
if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
Flags, IsLittleEndian)) {
Die->addChild(Clone);
OutOffset = Clone->getOffset() + Clone->getSize();
}
}
// Account for the end of children marker.
OutOffset += sizeof(int8_t);
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
/// Patch the input object file relevant debug_ranges entries
/// and emit them in the output file. Update the relevant attributes
/// to point at the new entries.
void DwarfLinkerForBinary::patchRangesForUnit(const CompileUnit &Unit,
DWARFContext &OrigDwarf,
const DebugMapObject &DMO) const {
DWARFDebugRangeList RangeList;
const auto &FunctionRanges = Unit.getFunctionRanges();
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
OrigDwarf.getDWARFObj().getRangesSection(),
OrigDwarf.isLittleEndian(), AddressSize);
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
DWARFUnit &OrigUnit = Unit.getOrigUnit();
auto OrigUnitDie = OrigUnit.getUnitDIE(false);
uint64_t OrigLowPc =
dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
// Ranges addresses are based on the unit's low_pc. Compute the
// offset we need to apply to adapt to the new unit's low_pc.
int64_t UnitPcOffset = 0;
if (OrigLowPc != -1ULL)
UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
uint64_t Offset = RangeAttribute.get();
RangeAttribute.set(Streamer->getRangesSectionSize());
if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
llvm::consumeError(std::move(E));
reportWarning("invalid range list ignored.", DMO);
RangeList.clear();
}
const auto &Entries = RangeList.getEntries();
if (!Entries.empty()) {
const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
if (CurrRange == InvalidRange ||
First.StartAddress + OrigLowPc < CurrRange.start() ||
First.StartAddress + OrigLowPc >= CurrRange.stop()) {
CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
if (CurrRange == InvalidRange ||
CurrRange.start() > First.StartAddress + OrigLowPc) {
reportWarning("no mapping for range.", DMO);
continue;
}
}
}
Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
AddressSize);
}
}
/// Generate the debug_aranges entries for \p Unit and if the
/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
/// contribution for this attribute.
/// FIXME: this could actually be done right in patchRangesForUnit,
/// but for the sake of initial bit-for-bit compatibility with legacy
/// dsymutil, we have to do it in a delayed pass.
void DwarfLinkerForBinary::generateUnitRanges(CompileUnit &Unit) const {
auto Attr = Unit.getUnitRangesAttribute();
if (Attr)
Attr->set(Streamer->getRangesSectionSize());
Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
}
/// Insert the new line info sequence \p Seq into the current
/// set of already linked line info \p Rows.
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
std::vector<DWARFDebugLine::Row> &Rows) {
if (Seq.empty())
return;
if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
Rows.insert(Rows.end(), Seq.begin(), Seq.end());
Seq.clear();
return;
}
object::SectionedAddress Front = Seq.front().Address;
auto InsertPoint = partition_point(
Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
// FIXME: this only removes the unneeded end_sequence if the
// sequences have been inserted in order. Using a global sort like
// described in patchLineTableForUnit() and delaying the end_sequene
// elimination to emitLineTableForUnit() we can get rid of all of them.
if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
InsertPoint->EndSequence) {
*InsertPoint = Seq.front();
Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
} else {
Rows.insert(InsertPoint, Seq.begin(), Seq.end());
}
Seq.clear();
}
static void patchStmtList(DIE &Die, DIEInteger Offset) {
for (auto &V : Die.values())
if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
V = DIEValue(V.getAttribute(), V.getForm(), Offset);
return;
}
llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
}
/// Extract the line table for \p Unit from \p OrigDwarf, and
/// recreate a relocated version of these for the address ranges that
/// are present in the binary.
void DwarfLinkerForBinary::patchLineTableForUnit(CompileUnit &Unit,
DWARFContext &OrigDwarf,
RangesTy &Ranges,
const DebugMapObject &DMO) {
DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
if (!StmtList)
return;
// Update the cloned DW_AT_stmt_list with the correct debug_line offset.
if (auto *OutputDIE = Unit.getOutputUnitDIE())
patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
// Parse the original line info for the unit.
DWARFDebugLine::LineTable LineTable;
uint64_t StmtOffset = *StmtList;
DWARFDataExtractor LineExtractor(
OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
if (Options.Translator)
return Streamer->translateLineTable(LineExtractor, StmtOffset);
Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
&Unit.getOrigUnit(), DWARFContext::dumpWarning);
DWARFContext::dumpWarning(std::move(Err));
// This vector is the output line table.
std::vector<DWARFDebugLine::Row> NewRows;
NewRows.reserve(LineTable.Rows.size());
// Current sequence of rows being extracted, before being inserted
// in NewRows.
std::vector<DWARFDebugLine::Row> Seq;
const auto &FunctionRanges = Unit.getFunctionRanges();
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
// FIXME: This logic is meant to generate exactly the same output as
// Darwin's classic dsymutil. There is a nicer way to implement this
// by simply putting all the relocated line info in NewRows and simply
// sorting NewRows before passing it to emitLineTableForUnit. This
// should be correct as sequences for a function should stay
// together in the sorted output. There are a few corner cases that
// look suspicious though, and that required to implement the logic
// this way. Revisit that once initial validation is finished.
// Iterate over the object file line info and extract the sequences
// that correspond to linked functions.
for (auto &Row : LineTable.Rows) {
// Check whether we stepped out of the range. The range is
// half-open, but consider accept the end address of the range if
// it is marked as end_sequence in the input (because in that
// case, the relocation offset is accurate and that entry won't
// serve as the start of another function).
if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
Row.Address.Address > CurrRange.stop() ||
(Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
// We just stepped out of a known range. Insert a end_sequence
// corresponding to the end of the range.
uint64_t StopAddress = CurrRange != InvalidRange
? CurrRange.stop() + CurrRange.value()
: -1ULL;
CurrRange = FunctionRanges.find(Row.Address.Address);
bool CurrRangeValid =
CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
if (!CurrRangeValid) {
CurrRange = InvalidRange;
if (StopAddress != -1ULL) {
// Try harder by looking in the DebugMapObject function
// ranges map. There are corner cases where this finds a
// valid entry. It's unclear if this is right or wrong, but
// for now do as dsymutil.
// FIXME: Understand exactly what cases this addresses and
// potentially remove it along with the Ranges map.
auto Range = Ranges.lower_bound(Row.Address.Address);
if (Range != Ranges.begin() && Range != Ranges.end())
--Range;
if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
Range->second.HighPC >= Row.Address.Address) {
StopAddress = Row.Address.Address + Range->second.Offset;
}
}
}
if (StopAddress != -1ULL && !Seq.empty()) {
// Insert end sequence row with the computed end address, but
// the same line as the previous one.
auto NextLine = Seq.back();
NextLine.Address.Address = StopAddress;
NextLine.EndSequence = 1;
NextLine.PrologueEnd = 0;
NextLine.BasicBlock = 0;
NextLine.EpilogueBegin = 0;
Seq.push_back(NextLine);
insertLineSequence(Seq, NewRows);
}
if (!CurrRangeValid)
continue;
}
// Ignore empty sequences.
if (Row.EndSequence && Seq.empty())
continue;
// Relocate row address and add it to the current sequence.
Row.Address.Address += CurrRange.value();
Seq.emplace_back(Row);
if (Row.EndSequence)
insertLineSequence(Seq, NewRows);
}
// Finished extracting, now emit the line tables.
// FIXME: LLVM hard-codes its prologue values. We just copy the
// prologue over and that works because we act as both producer and
// consumer. It would be nicer to have a real configurable line
// table emitter.
if (LineTable.Prologue.getVersion() < 2 ||
LineTable.Prologue.getVersion() > 5 ||
LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
LineTable.Prologue.OpcodeBase > 13)
reportWarning("line table parameters mismatch. Cannot emit.", DMO);
else {
uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
// DWARF v5 has an extra 2 bytes of information before the header_length
// field.
if (LineTable.Prologue.getVersion() == 5)
PrologueEnd += 2;
StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
MCDwarfLineTableParams Params;
Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
Params.DWARF2LineBase = LineTable.Prologue.LineBase;
Params.DWARF2LineRange = LineTable.Prologue.LineRange;
Streamer->emitLineTableForUnit(Params,
LineData.slice(*StmtList + 4, PrologueEnd),
LineTable.Prologue.MinInstLength, NewRows,
Unit.getOrigUnit().getAddressByteSize());
}
}
void DwarfLinkerForBinary::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
switch (Options.TheAccelTableKind) {
case AccelTableKind::Apple:
emitAppleAcceleratorEntriesForUnit(Unit);
break;
case AccelTableKind::Dwarf:
emitDwarfAcceleratorEntriesForUnit(Unit);
break;
case AccelTableKind::Default:
llvm_unreachable("The default must be updated to a concrete value.");
break;
}
}
void DwarfLinkerForBinary::emitAppleAcceleratorEntriesForUnit(
CompileUnit &Unit) {
// Add namespaces.
for (const auto &Namespace : Unit.getNamespaces())
AppleNamespaces.addName(Namespace.Name,
Namespace.Die->getOffset() + Unit.getStartOffset());
/// Add names.
if (!Options.Minimize)
Streamer->emitPubNamesForUnit(Unit);
for (const auto &Pubname : Unit.getPubnames())
AppleNames.addName(Pubname.Name,
Pubname.Die->getOffset() + Unit.getStartOffset());
/// Add types.
if (!Options.Minimize)
Streamer->emitPubTypesForUnit(Unit);
for (const auto &Pubtype : Unit.getPubtypes())
AppleTypes.addName(
Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
Pubtype.Die->getTag(),
Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
: 0,
Pubtype.QualifiedNameHash);
/// Add ObjC names.
for (const auto &ObjC : Unit.getObjC())
AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
}
void DwarfLinkerForBinary::emitDwarfAcceleratorEntriesForUnit(
CompileUnit &Unit) {
for (const auto &Namespace : Unit.getNamespaces())
DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
Namespace.Die->getTag(), Unit.getUniqueID());
for (const auto &Pubname : Unit.getPubnames())
DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
Pubname.Die->getTag(), Unit.getUniqueID());
for (const auto &Pubtype : Unit.getPubtypes())
DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
Pubtype.Die->getTag(), Unit.getUniqueID());
}
/// Read the frame info stored in the object, and emit the
/// patched frame descriptions for the linked binary.
///
/// This is actually pretty easy as the data of the CIEs and FDEs can
/// be considered as black boxes and moved as is. The only thing to do
/// is to patch the addresses in the headers.
void DwarfLinkerForBinary::patchFrameInfoForObject(const DebugMapObject &DMO,
RangesTy &Ranges,
DWARFContext &OrigDwarf,
unsigned AddrSize) {
StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
if (FrameData.empty())
return;
DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
uint64_t InputOffset = 0;
// Store the data of the CIEs defined in this object, keyed by their
// offsets.
DenseMap<uint64_t, StringRef> LocalCIES;
while (Data.isValidOffset(InputOffset)) {
uint64_t EntryOffset = InputOffset;
uint32_t InitialLength = Data.getU32(&InputOffset);
if (InitialLength == 0xFFFFFFFF)
return reportWarning("Dwarf64 bits no supported", DMO);
uint32_t CIEId = Data.getU32(&InputOffset);
if (CIEId == 0xFFFFFFFF) {
// This is a CIE, store it.
StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
LocalCIES[EntryOffset] = CIEData;
// The -4 is to account for the CIEId we just read.
InputOffset += InitialLength - 4;
continue;
}
uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
// Some compilers seem to emit frame info that doesn't start at
// the function entry point, thus we can't just lookup the address
// in the debug map. Use the linker's range map to see if the FDE
// describes something that we can relocate.
auto Range = Ranges.upper_bound(Loc);
if (Range != Ranges.begin())
--Range;
if (Range == Ranges.end() || Range->first > Loc ||
Range->second.HighPC <= Loc) {
// The +4 is to account for the size of the InitialLength field itself.
InputOffset = EntryOffset + InitialLength + 4;
continue;
}
// This is an FDE, and we have a mapping.
// Have we already emitted a corresponding CIE?
StringRef CIEData = LocalCIES[CIEId];
if (CIEData.empty())
return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);
// Look if we already emitted a CIE that corresponds to the
// referenced one (the CIE data is the key of that lookup).
auto IteratorInserted = EmittedCIEs.insert(
std::make_pair(CIEData, Streamer->getFrameSectionSize()));
// If there is no CIE yet for this ID, emit it.
if (IteratorInserted.second ||
// FIXME: dsymutil-classic only caches the last used CIE for
// reuse. Mimic that behavior for now. Just removing that
// second half of the condition and the LastCIEOffset variable
// makes the code DTRT.
LastCIEOffset != IteratorInserted.first->getValue()) {
LastCIEOffset = Streamer->getFrameSectionSize();
IteratorInserted.first->getValue() = LastCIEOffset;
Streamer->emitCIE(CIEData);
}
// Emit the FDE with updated address and CIE pointer.
// (4 + AddrSize) is the size of the CIEId + initial_location
// fields that will get reconstructed by emitFDE().
unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
Loc + Range->second.Offset,
FrameData.substr(InputOffset, FDERemainingBytes));
InputOffset += FDERemainingBytes;
}
}
void DwarfLinkerForBinary::DIECloner::copyAbbrev(
const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) {
DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
dwarf::Form(Abbrev.hasChildren()));
for (const auto &Attr : Abbrev.attributes()) {
uint16_t Form = Attr.Form;
if (HasODR && isODRAttribute(Attr.Attr))
Form = dwarf::DW_FORM_ref_addr;
Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
}
Linker.assignAbbrev(Copy);
}
uint32_t DwarfLinkerForBinary::DIECloner::hashFullyQualifiedName(
DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO,
int ChildRecurseDepth) {
const char *Name = nullptr;
DWARFUnit *OrigUnit = &U.getOrigUnit();
CompileUnit *CU = &U;
Optional<DWARFFormValue> Ref;
while (1) {
if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
Name = CurrentName;
if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
!(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
break;
if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
break;
CompileUnit *RefCU;
if (auto RefDIE =
resolveDIEReference(Linker, DMO, CompileUnits, *Ref, DIE, RefCU)) {
CU = RefCU;
OrigUnit = &RefCU->getOrigUnit();
DIE = RefDIE;
}
}
unsigned Idx = OrigUnit->getDIEIndex(DIE);
if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
Name = "(anonymous namespace)";
if (CU->getInfo(Idx).ParentIdx == 0 ||
// FIXME: dsymutil-classic compatibility. Ignore modules.
CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
dwarf::DW_TAG_module)
return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
return djbHash(
(Name ? Name : ""),
djbHash((Name ? "::" : ""),
hashFullyQualifiedName(Die, *CU, DMO, ++ChildRecurseDepth)));
}
static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
auto DwoId = dwarf::toUnsigned(
CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
if (DwoId)
return *DwoId;
return 0;
}
bool DwarfLinkerForBinary::registerModuleReference(
DWARFDie CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian,
unsigned Indent, bool Quiet) {
std::string PCMfile = dwarf::toString(
CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
if (PCMfile.empty())
return false;
// Clang module DWARF skeleton CUs abuse this for the path to the module.
uint64_t DwoId = getDwoId(CUDie, Unit);
std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
if (Name.empty()) {
if (!Quiet)
reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
return true;
}
if (!Quiet && Options.Verbose) {
outs().indent(Indent);
outs() << "Found clang module reference " << PCMfile;
}
auto Cached = ClangModules.find(PCMfile);
if (Cached != ClangModules.end()) {
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
// ASTFileSignatures will change randomly when a module is rebuilt.
if (!Quiet && Options.Verbose && (Cached->second != DwoId))
reportWarning(Twine("hash mismatch: this object file was built against a "
"different version of the module ") +
PCMfile,
DMO);
if (!Quiet && Options.Verbose)
outs() << " [cached].\n";
return true;
}
if (!Quiet && Options.Verbose)
outs() << " ...\n";
// Cyclic dependencies are disallowed by Clang, but we still
// shouldn't run into an infinite loop, so mark it as processed now.
ClangModules.insert({PCMfile, DwoId});
if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, ModuleMap, DMO,
Ranges, StringPool, UniquingStringPool,
ODRContexts, ModulesEndOffset, UnitID,
IsLittleEndian, Indent + 2, Quiet)) {
consumeError(std::move(E));
return false;
}
return true;
}
ErrorOr<const object::ObjectFile &>
DwarfLinkerForBinary::loadObject(const DebugMapObject &Obj,
const DebugMap &Map) {
auto ObjectEntry =
BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
if (!ObjectEntry) {
auto Err = ObjectEntry.takeError();
reportWarning(
Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
return errorToErrorCode(std::move(Err));
}
auto Object = ObjectEntry->getObject(Map.getTriple());
if (!Object) {
auto Err = Object.takeError();
reportWarning(
Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
return errorToErrorCode(std::move(Err));
}
return *Object;
}
Error DwarfLinkerForBinary::loadClangModule(
DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
DebugMap &ModuleMap, const DebugMapObject &DMO, RangesTy &Ranges,
OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool,
DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
bool IsLittleEndian, unsigned Indent, bool Quiet) {
/// Using a SmallString<0> because loadClangModule() is recursive.
SmallString<0> Path(Options.PrependPath);
if (sys::path::is_relative(Filename))
resolveRelativeObjectPath(Path, CUDie);
sys::path::append(Path, Filename);
// Don't use the cached binary holder because we have no thread-safety
// guarantee and the lifetime is limited.
auto &Obj = ModuleMap.addDebugMapObject(
Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
auto ErrOrObj = loadObject(Obj, ModuleMap);
if (!ErrOrObj) {
// Try and emit more helpful warnings by applying some heuristics.
StringRef ObjFile = DMO.getObjectFilename();
bool isClangModule = sys::path::extension(Filename).equals(".pcm");
bool isArchive = ObjFile.endswith(")");
if (isClangModule) {
StringRef ModuleCacheDir = sys::path::parent_path(Path);
if (sys::fs::exists(ModuleCacheDir)) {
// If the module's parent directory exists, we assume that the module
// cache has expired and was pruned by clang. A more adventurous
// dsymutil would invoke clang to rebuild the module now.
if (!ModuleCacheHintDisplayed) {
WithColor::note() << "The clang module cache may have expired since "
"this object file was built. Rebuilding the "
"object file will rebuild the module cache.\n";
ModuleCacheHintDisplayed = true;
}
} else if (isArchive) {
// If the module cache directory doesn't exist at all and the object
// file is inside a static library, we assume that the static library
// was built on a different machine. We don't want to discourage module
// debugging for convenience libraries within a project though.
if (!ArchiveHintDisplayed) {
WithColor::note()
<< "Linking a static library that was built with "
"-gmodules, but the module cache was not found. "
"Redistributable static libraries should never be "
"built with module debugging enabled. The debug "
"experience will be degraded due to incomplete "
"debug information.\n";
ArchiveHintDisplayed = true;
}
}
}
return Error::success();
}
std::unique_ptr<CompileUnit> Unit;
// Setup access to the debug info.
auto DwarfContext = DWARFContext::create(*ErrOrObj);
RelocationManager RelocMgr(*this, *ErrOrObj, DMO);
for (const auto &CU : DwarfContext->compile_units()) {
updateDwarfVersion(CU->getVersion());
// Recursively get all modules imported by this one.
auto CUDie = CU->getUnitDIE(false);
if (!CUDie)
continue;
if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
UniquingStringPool, ODRContexts,
ModulesEndOffset, UnitID, IsLittleEndian,
Indent, Quiet)) {
if (Unit) {
std::string Err =
(Filename +
": Clang modules are expected to have exactly 1 compile unit.\n")
.str();
error(Err);
return make_error<StringError>(Err, inconvertibleErrorCode());
}
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
// ASTFileSignatures will change randomly when a module is rebuilt.
uint64_t PCMDwoId = getDwoId(CUDie, *CU);
if (PCMDwoId != DwoId) {
if (!Quiet && Options.Verbose)
reportWarning(
Twine("hash mismatch: this object file was built against a "
"different version of the module ") +
Filename,
DMO);
// Update the cache entry with the DwoId of the module loaded from disk.
ClangModules[Filename] = PCMDwoId;
}
// Add this module.
Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
ModuleName);
Unit->setHasInterestingContent();
analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
UniquingStringPool, ODRContexts, ModulesEndOffset,
ParseableSwiftInterfaces,
[&](const Twine &Warning, const DWARFDie &DIE) {
reportWarning(Warning, DMO, &DIE);
});
// Keep everything.
Unit->markEverythingAsKept();
}
}
if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
return Error::success();
if (!Quiet && Options.Verbose) {
outs().indent(Indent);
outs() << "cloning .debug_info from " << Filename << "\n";
}
UnitListTy CompileUnits;
CompileUnits.push_back(std::move(Unit));
DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
.cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool,
IsLittleEndian);
return Error::success();
}
void DwarfLinkerForBinary::DIECloner::cloneAllCompileUnits(
DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
OffsetsStringPool &StringPool, bool IsLittleEndian) {
if (!Linker.Streamer)
return;
uint64_t OutputDebugInfoSize = Linker.Streamer->getDebugInfoSectionSize();
for (auto &CurrentUnit : CompileUnits) {
auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
CurrentUnit->setStartOffset(OutputDebugInfoSize);
if (!InputDIE) {
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
continue;
}
if (CurrentUnit->getInfo(0).Keep) {
// Clone the InputDIE into your Unit DIE in our compile unit since it
// already has a DIE inside of it.
CurrentUnit->createOutputDIE();
cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
11 /* Unit Header size */, 0, IsLittleEndian,
CurrentUnit->getOutputUnitDIE());
}
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
if (Linker.Options.NoOutput)
continue;
// FIXME: for compatibility with the classic dsymutil, we emit
// an empty line table for the unit, even if the unit doesn't
// actually exist in the DIE tree.
if (LLVM_LIKELY(!Linker.Options.Update) || Linker.Options.Translator)
Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);
Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
if (LLVM_UNLIKELY(Linker.Options.Update))
continue;
Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
auto ProcessExpr = [&](StringRef Bytes, SmallVectorImpl<uint8_t> &Buffer) {
DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
DataExtractor Data(Bytes, IsLittleEndian, OrigUnit.getAddressByteSize());
cloneExpression(Data,
DWARFExpression(Data, OrigUnit.getVersion(),
OrigUnit.getAddressByteSize()),
DMO, *CurrentUnit, Buffer);
};
Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext,
ProcessExpr);
}
if (Linker.Options.NoOutput)
return;
// Emit all the compile unit's debug information.
for (auto &CurrentUnit : CompileUnits) {
if (LLVM_LIKELY(!Linker.Options.Update))
Linker.generateUnitRanges(*CurrentUnit);
CurrentUnit->fixupForwardReferences();
if (!CurrentUnit->getOutputUnitDIE())
continue;
assert(Linker.Streamer->getDebugInfoSectionSize() ==
CurrentUnit->getStartOffset());
Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
assert(Linker.Streamer->getDebugInfoSectionSize() ==
CurrentUnit->computeNextUnitOffset());
}
}
void DwarfLinkerForBinary::updateAccelKind(DWARFContext &Dwarf) {
if (Options.TheAccelTableKind != AccelTableKind::Default)
return;
auto &DwarfObj = Dwarf.getDWARFObj();
if (!AtLeastOneDwarfAccelTable &&
(!DwarfObj.getAppleNamesSection().Data.empty() ||
!DwarfObj.getAppleTypesSection().Data.empty() ||
!DwarfObj.getAppleNamespacesSection().Data.empty() ||
!DwarfObj.getAppleObjCSection().Data.empty())) {
AtLeastOneAppleAccelTable = true;
}
if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
AtLeastOneDwarfAccelTable = true;
}
}
bool DwarfLinkerForBinary::emitPaperTrailWarnings(
const DebugMapObject &DMO, const DebugMap &Map,
OffsetsStringPool &StringPool) {
if (DMO.getWarnings().empty() || !DMO.empty())
return false;
Streamer->switchToDebugInfoSection(/* Version */ 2);
DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
CUDie->setOffset(11);
StringRef Producer = StringPool.internString("dsymutil");
StringRef File = StringPool.internString(DMO.getObjectFilename());
CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset(Producer)));
DIEBlock *String = new (DIEAlloc) DIEBlock();
DIEBlocks.push_back(String);
for (auto &C : File)
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
DIEInteger(C));
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
DIEInteger(0));
CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
for (const auto &Warning : DMO.getWarnings()) {
DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
ConstDie.addValue(
DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
DIEInteger(1));
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
DIEInteger(StringPool.getStringOffset(Warning)));
}
unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
DMO.getWarnings().size() * (4 + 1 + 4) +
1 /* End of children */;
DIEAbbrev Abbrev = CUDie->generateAbbrev();
assignAbbrev(Abbrev);
CUDie->setAbbrevNumber(Abbrev.getNumber());
Size += getULEB128Size(Abbrev.getNumber());
// Abbreviation ordering needed for classic compatibility.
for (auto &Child : CUDie->children()) {
Abbrev = Child.generateAbbrev();
assignAbbrev(Abbrev);
Child.setAbbrevNumber(Abbrev.getNumber());
Size += getULEB128Size(Abbrev.getNumber());
}
CUDie->setSize(Size);
Streamer->emitPaperTrailWarningsDie(Map.getTriple(), *CUDie);
return true;
}
static Error copySwiftInterfaces(
const std::map<std::string, std::string> &ParseableSwiftInterfaces,
StringRef Architecture, const LinkOptions &Options) {
std::error_code EC;
SmallString<128> InputPath;
SmallString<128> Path;
sys::path::append(Path, *Options.ResourceDir, "Swift", Architecture);
if ((EC = sys::fs::create_directories(Path.str(), true,
sys::fs::perms::all_all)))
return make_error<StringError>(
"cannot create directory: " + toString(errorCodeToError(EC)), EC);
unsigned BaseLength = Path.size();
for (auto &I : ParseableSwiftInterfaces) {
StringRef ModuleName = I.first;
StringRef InterfaceFile = I.second;
if (!Options.PrependPath.empty()) {
InputPath.clear();
sys::path::append(InputPath, Options.PrependPath, InterfaceFile);
InterfaceFile = InputPath;
}
sys::path::append(Path, ModuleName);
Path.append(".swiftinterface");
if (Options.Verbose)
outs() << "copy parseable Swift interface " << InterfaceFile << " -> "
<< Path.str() << '\n';
// copy_file attempts an APFS clone first, so this should be cheap.
if ((EC = sys::fs::copy_file(InterfaceFile, Path.str())))
warn(Twine("cannot copy parseable Swift interface ") + InterfaceFile +
": " + toString(errorCodeToError(EC)));
Path.resize(BaseLength);
}
return Error::success();
}
static Error emitRemarks(const LinkOptions &Options, StringRef BinaryPath,
StringRef ArchName, const remarks::RemarkLinker &RL) {
// Make sure we don't create the directories and the file if there is nothing
// to serialize.
if (RL.empty())
return Error::success();
SmallString<128> InputPath;
SmallString<128> Path;
// Create the "Remarks" directory in the "Resources" directory.
sys::path::append(Path, *Options.ResourceDir, "Remarks");
if (std::error_code EC = sys::fs::create_directories(Path.str(), true,
sys::fs::perms::all_all))
return errorCodeToError(EC);
// Append the file name.
// For fat binaries, also append a dash and the architecture name.
sys::path::append(Path, sys::path::filename(BinaryPath));
if (Options.NumDebugMaps > 1) {
// More than one debug map means we have a fat binary.
Path += '-';
Path += ArchName;
}
std::error_code EC;
raw_fd_ostream OS(Options.NoOutput ? "-" : Path.str(), EC, sys::fs::OF_None);
if (EC)
return errorCodeToError(EC);
if (Error E = RL.serialize(OS, Options.RemarksFormat))
return E;
return Error::success();
}
bool DwarfLinkerForBinary::link(const DebugMap &Map) {
if (!createStreamer(Map.getTriple(), OutFile))
return false;
// Size of the DIEs (and headers) generated for the linked output.
// A unique ID that identifies each compile unit.
unsigned UnitID = 0;
DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
// First populate the data structure we need for each iteration of the
// parallel loop.
unsigned NumObjects = Map.getNumberOfObjects();
std::vector<LinkContext> ObjectContexts;
ObjectContexts.reserve(NumObjects);
for (const auto &Obj : Map.objects()) {
ObjectContexts.emplace_back(Map, *this, *Obj.get());
LinkContext &LC = ObjectContexts.back();
if (LC.ObjectFile)
updateAccelKind(*LC.DwarfContext);
}
// This Dwarf string pool which is only used for uniquing. This one should
// never be used for offsets as its not thread-safe or predictable.
UniquingStringPool UniquingStringPool(nullptr, true);
// This Dwarf string pool which is used for emission. It must be used
// serially as the order of calling getStringOffset matters for
// reproducibility.
OffsetsStringPool OffsetsStringPool(Options.Translator, true);
// ODR Contexts for the link.
DeclContextTree ODRContexts;
// If we haven't decided on an accelerator table kind yet, we base ourselves
// on the DWARF we have seen so far. At this point we haven't pulled in debug
// information from modules yet, so it is technically possible that they
// would affect the decision. However, as they're built with the same
// compiler and flags, it is safe to assume that they will follow the
// decision made here.
if (Options.TheAccelTableKind == AccelTableKind::Default) {
if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
Options.TheAccelTableKind = AccelTableKind::Dwarf;
else
Options.TheAccelTableKind = AccelTableKind::Apple;
}
for (LinkContext &LinkContext : ObjectContexts) {
if (Options.Verbose)
outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
<< "\n";
// N_AST objects (swiftmodule files) should get dumped directly into the
// appropriate DWARF section.
if (LinkContext.DMO.getType() == MachO::N_AST) {
StringRef File = LinkContext.DMO.getObjectFilename();
auto ErrorOrMem = MemoryBuffer::getFile(File);
if (!ErrorOrMem) {
warn("Could not open '" + File + "'\n");
continue;
}
sys::fs::file_status Stat;
if (auto Err = sys::fs::status(File, Stat)) {
warn(Err.message());
continue;
}
if (!Options.NoTimestamp) {
// The modification can have sub-second precision so we need to cast
// away the extra precision that's not present in the debug map.
auto ModificationTime =
std::chrono::time_point_cast<std::chrono::seconds>(
Stat.getLastModificationTime());
if (ModificationTime != LinkContext.DMO.getTimestamp()) {
// Not using the helper here as we can easily stream TimePoint<>.
WithColor::warning()
<< "Timestamp mismatch for " << File << ": "
<< Stat.getLastModificationTime() << " and "
<< sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
continue;
}
}
// Copy the module into the .swift_ast section.
if (!Options.NoOutput)
Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
continue;
}
if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
continue;
if (!LinkContext.ObjectFile)
continue;
// Look for relocations that correspond to debug map entries.
if (LLVM_LIKELY(!Options.Update) &&
!LinkContext.RelocMgr->hasValidRelocs()) {
if (Options.Verbose)
outs() << "No valid relocations found. Skipping.\n";
// Clear this ObjFile entry as a signal to other loops that we should not
// process this iteration.
LinkContext.ObjectFile = nullptr;
continue;
}
// Setup access to the debug info.
if (!LinkContext.DwarfContext)
continue;
startDebugObject(LinkContext);
// In a first phase, just read in the debug info and load all clang modules.
LinkContext.CompileUnits.reserve(
LinkContext.DwarfContext->getNumCompileUnits());
for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
updateDwarfVersion(CU->getVersion());
auto CUDie = CU->getUnitDIE(false);
if (Options.Verbose) {
outs() << "Input compilation unit:";
DIDumpOptions DumpOpts;
DumpOpts.ChildRecurseDepth = 0;
DumpOpts.Verbose = Options.Verbose;
CUDie.dump(outs(), 0, DumpOpts);
}
if (CUDie && !LLVM_UNLIKELY(Options.Update))
registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
LinkContext.Ranges, OffsetsStringPool,
UniquingStringPool, ODRContexts, 0, UnitID,
LinkContext.DwarfContext->isLittleEndian());
}
}
// If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
if (MaxDwarfVersion == 0)
MaxDwarfVersion = 3;
// At this point we know how much data we have emitted. We use this value to
// compare canonical DIE offsets in analyzeContextInfo to see if a definition
// is already emitted, without being affected by canonical die offsets set
// later. This prevents undeterminism when analyze and clone execute
// concurrently, as clone set the canonical DIE offset and analyze reads it.
const uint64_t ModulesEndOffset =
Options.NoOutput ? 0 : Streamer->getDebugInfoSectionSize();
// These variables manage the list of processed object files.
// The mutex and condition variable are to ensure that this is thread safe.
std::mutex ProcessedFilesMutex;
std::condition_variable ProcessedFilesConditionVariable;
BitVector ProcessedFiles(NumObjects, false);
// Analyzing the context info is particularly expensive so it is executed in
// parallel with emitting the previous compile unit.
auto AnalyzeLambda = [&](size_t i) {
auto &LinkContext = ObjectContexts[i];
if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
return;
for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
updateDwarfVersion(CU->getVersion());
// The !registerModuleReference() condition effectively skips
// over fully resolved skeleton units. This second pass of
// registerModuleReferences doesn't do any new work, but it
// will collect top-level errors, which are suppressed. Module
// warnings were already displayed in the first iteration.
bool Quiet = true;
auto CUDie = CU->getUnitDIE(false);
if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
!registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
LinkContext.Ranges, OffsetsStringPool,
UniquingStringPool, ODRContexts,
ModulesEndOffset, UnitID, Quiet)) {
LinkContext.CompileUnits.push_back(std::make_unique<CompileUnit>(
*CU, UnitID++, !Options.NoODR && !Options.Update, ""));
}
}
// Now build the DIE parent links that we will use during the next phase.
for (auto &CurrentUnit : LinkContext.CompileUnits) {
auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
if (!CUDie)
continue;
analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
*CurrentUnit, &ODRContexts.getRoot(),
UniquingStringPool, ODRContexts, ModulesEndOffset,
ParseableSwiftInterfaces,
[&](const Twine &Warning, const DWARFDie &DIE) {
reportWarning(Warning, LinkContext.DMO, &DIE);
});
}
};
// And then the remaining work in serial again.
// Note, although this loop runs in serial, it can run in parallel with
// the analyzeContextInfo loop so long as we process files with indices >=
// than those processed by analyzeContextInfo.
auto CloneLambda = [&](size_t i) {
auto &LinkContext = ObjectContexts[i];
if (!LinkContext.ObjectFile)
return;
// Then mark all the DIEs that need to be present in the linked output
// and collect some information about them.
// Note that this loop can not be merged with the previous one because
// cross-cu references require the ParentIdx to be setup for every CU in
// the object file before calling this.
if (LLVM_UNLIKELY(Options.Update)) {
for (auto &CurrentUnit : LinkContext.CompileUnits)
CurrentUnit->markEverythingAsKept();
Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
} else {
for (auto &CurrentUnit : LinkContext.CompileUnits)
lookForDIEsToKeep(*LinkContext.RelocMgr, LinkContext.Ranges,
LinkContext.CompileUnits,
CurrentUnit->getOrigUnit().getUnitDIE(),
LinkContext.DMO, *CurrentUnit, 0);
}
// The calls to applyValidRelocs inside cloneDIE will walk the reloc
// array again (in the same way findValidRelocsInDebugInfo() did). We
// need to reset the NextValidReloc index to the beginning.
if (LinkContext.RelocMgr->hasValidRelocs() || LLVM_UNLIKELY(Options.Update))
DIECloner(*this, *LinkContext.RelocMgr, DIEAlloc,
LinkContext.CompileUnits, Options)
.cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
LinkContext.Ranges, OffsetsStringPool,
LinkContext.DwarfContext->isLittleEndian());
if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
LLVM_LIKELY(!Options.Update))
patchFrameInfoForObject(
LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
// Clean-up before starting working on the next object.
endDebugObject(LinkContext);
};
auto EmitLambda = [&]() {
// Emit everything that's global.
if (!Options.NoOutput) {
Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
Streamer->emitStrings(OffsetsStringPool);
switch (Options.TheAccelTableKind) {
case AccelTableKind::Apple:
Streamer->emitAppleNames(AppleNames);
Streamer->emitAppleNamespaces(AppleNamespaces);
Streamer->emitAppleTypes(AppleTypes);
Streamer->emitAppleObjc(AppleObjc);
break;
case AccelTableKind::Dwarf:
Streamer->emitDebugNames(DebugNames);
break;
case AccelTableKind::Default:
llvm_unreachable("Default should have already been resolved.");
break;
}
}
};
remarks::RemarkLinker RL;
if (!Options.RemarksPrependPath.empty())
RL.setExternalFilePrependPath(Options.RemarksPrependPath);
auto RemarkLinkLambda = [&](size_t i) {
// Link remarks from one object file.
auto &LinkContext = ObjectContexts[i];
if (const object::ObjectFile *Obj = LinkContext.ObjectFile) {
Error E = RL.link(*Obj);
if (Error NewE = handleErrors(
std::move(E), [&](std::unique_ptr<FileError> EC) -> Error {
return remarksErrorHandler(LinkContext.DMO, *this,
std::move(EC));
}))
return NewE;
}
return Error(Error::success());
};
auto AnalyzeAll = [&]() {
for (unsigned i = 0, e = NumObjects; i != e; ++i) {
AnalyzeLambda(i);
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
ProcessedFiles.set(i);
ProcessedFilesConditionVariable.notify_one();
}
};
auto CloneAll = [&]() {
for (unsigned i = 0, e = NumObjects; i != e; ++i) {
{
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
if (!ProcessedFiles[i]) {
ProcessedFilesConditionVariable.wait(
LockGuard, [&]() { return ProcessedFiles[i]; });
}
}
CloneLambda(i);
}
EmitLambda();
};
auto EmitRemarksLambda = [&]() {
StringRef ArchName = Map.getTriple().getArchName();
return emitRemarks(Options, Map.getBinaryPath(), ArchName, RL);
};
// Instead of making error handling a lot more complicated using futures,
// write to one llvm::Error instance if something went wrong.
// We're assuming RemarkLinkAllError is alive longer than the thread
// executing RemarkLinkAll.
auto RemarkLinkAll = [&](Error &RemarkLinkAllError) {
// Allow assigning to the error only within the lambda.
ErrorAsOutParameter EAO(&RemarkLinkAllError);
for (unsigned i = 0, e = NumObjects; i != e; ++i)
if ((RemarkLinkAllError = RemarkLinkLambda(i)))
return;
if ((RemarkLinkAllError = EmitRemarksLambda()))
return;
};
// To limit memory usage in the single threaded case, analyze and clone are
// run sequentially so the LinkContext is freed after processing each object
// in endDebugObject.
if (Options.Threads == 1) {
for (unsigned i = 0, e = NumObjects; i != e; ++i) {
AnalyzeLambda(i);
CloneLambda(i);
if (Error E = RemarkLinkLambda(i))
return error(toString(std::move(E)));
}
EmitLambda();
if (Error E = EmitRemarksLambda())
return error(toString(std::move(E)));
} else {
// This should not be constructed on the single-threaded path to avoid fatal
// errors from unchecked llvm::Error objects.
Error RemarkLinkAllError = Error::success();
ThreadPool pool(3);
pool.async(AnalyzeAll);
pool.async(CloneAll);
pool.async(RemarkLinkAll, std::ref(RemarkLinkAllError));
pool.wait();
// Report errors from RemarkLinkAll, if any.
if (Error E = std::move(RemarkLinkAllError))
return error(toString(std::move(E)));
}
if (Options.NoOutput)
return true;
if (Options.ResourceDir && !ParseableSwiftInterfaces.empty()) {
StringRef ArchName = Triple::getArchTypeName(Map.getTriple().getArch());
if (auto E =
copySwiftInterfaces(ParseableSwiftInterfaces, ArchName, Options))
return error(toString(std::move(E)));
}
return Streamer->finish(Map, Options.Translator);
} // namespace dsymutil
bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
const DebugMap &DM, LinkOptions Options) {
DwarfLinkerForBinary Linker(OutFile, BinHolder, std::move(Options));
return Linker.link(DM);
}
} // namespace dsymutil
} // namespace llvm