consecutive-access.ll
30.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -basicaa -slp-vectorizer -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.9.0"
@A = common global [2000 x double] zeroinitializer, align 16
@B = common global [2000 x double] zeroinitializer, align 16
@C = common global [2000 x float] zeroinitializer, align 16
@D = common global [2000 x float] zeroinitializer, align 16
; Currently SCEV isn't smart enough to figure out that accesses
; A[3*i], A[3*i+1] and A[3*i+2] are consecutive, but in future
; that would hopefully be fixed. For now, check that this isn't
; vectorized.
; Function Attrs: nounwind ssp uwtable
define void @foo_3double(i32 %u) #0 {
; CHECK-LABEL: @foo_3double(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 3
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[TMP0:%.*]] = load double, double* [[ARRAYIDX]], align 8
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[TMP1:%.*]] = load double, double* [[ARRAYIDX4]], align 8
; CHECK-NEXT: [[ADD5:%.*]] = fadd double [[TMP0]], [[TMP1]]
; CHECK-NEXT: store double [[ADD5]], double* [[ARRAYIDX]], align 8
; CHECK-NEXT: [[ADD11:%.*]] = add nsw i32 [[MUL]], 1
; CHECK-NEXT: [[IDXPROM12:%.*]] = sext i32 [[ADD11]] to i64
; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP2:%.*]] = load double, double* [[ARRAYIDX13]], align 8
; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP3:%.*]] = load double, double* [[ARRAYIDX17]], align 8
; CHECK-NEXT: [[ADD18:%.*]] = fadd double [[TMP2]], [[TMP3]]
; CHECK-NEXT: store double [[ADD18]], double* [[ARRAYIDX13]], align 8
; CHECK-NEXT: [[ADD24:%.*]] = add nsw i32 [[MUL]], 2
; CHECK-NEXT: [[IDXPROM25:%.*]] = sext i32 [[ADD24]] to i64
; CHECK-NEXT: [[ARRAYIDX26:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM25]]
; CHECK-NEXT: [[TMP4:%.*]] = load double, double* [[ARRAYIDX26]], align 8
; CHECK-NEXT: [[ARRAYIDX30:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM25]]
; CHECK-NEXT: [[TMP5:%.*]] = load double, double* [[ARRAYIDX30]], align 8
; CHECK-NEXT: [[ADD31:%.*]] = fadd double [[TMP4]], [[TMP5]]
; CHECK-NEXT: store double [[ADD31]], double* [[ARRAYIDX26]], align 8
; CHECK-NEXT: ret void
;
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 3
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double, double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double, double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double, double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
%add24 = add nsw i32 %mul, 2
%idxprom25 = sext i32 %add24 to i64
%arrayidx26 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom25
%4 = load double, double* %arrayidx26, align 8
%arrayidx30 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom25
%5 = load double, double* %arrayidx30, align 8
%add31 = fadd double %4, %5
store double %add31, double* %arrayidx26, align 8
ret void
}
; SCEV should be able to tell that accesses A[C1 + C2*i], A[C1 + C2*i], ...
; A[C1 + C2*i] are consecutive, if C2 is a power of 2, and C2 > C1 > 0.
; Thus, the following code should be vectorized.
; Function Attrs: nounwind ssp uwtable
define void @foo_2double(i32 %u) #0 {
; CHECK-LABEL: @foo_2double(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 2
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD11:%.*]] = add nsw i32 [[MUL]], 1
; CHECK-NEXT: [[IDXPROM12:%.*]] = sext i32 [[ADD11]] to i64
; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>*
; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8
; CHECK-NEXT: ret void
;
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 2
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double, double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double, double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double, double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
ret void
}
; Similar to the previous test, but with different datatype.
; Function Attrs: nounwind ssp uwtable
define void @foo_4float(i32 %u) #0 {
; CHECK-LABEL: @foo_4float(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[U]], 4
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD11:%.*]] = add nsw i32 [[MUL]], 1
; CHECK-NEXT: [[IDXPROM12:%.*]] = sext i32 [[ADD11]] to i64
; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[ADD24:%.*]] = add nsw i32 [[MUL]], 2
; CHECK-NEXT: [[IDXPROM25:%.*]] = sext i32 [[ADD24]] to i64
; CHECK-NEXT: [[ARRAYIDX26:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 [[IDXPROM25]]
; CHECK-NEXT: [[ARRAYIDX30:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 [[IDXPROM25]]
; CHECK-NEXT: [[ADD37:%.*]] = add nsw i32 [[MUL]], 3
; CHECK-NEXT: [[IDXPROM38:%.*]] = sext i32 [[ADD37]] to i64
; CHECK-NEXT: [[ARRAYIDX39:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 [[IDXPROM38]]
; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[ARRAYIDX]] to <4 x float>*
; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4
; CHECK-NEXT: [[ARRAYIDX43:%.*]] = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 [[IDXPROM38]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast float* [[ARRAYIDX4]] to <4 x float>*
; CHECK-NEXT: [[TMP3:%.*]] = load <4 x float>, <4 x float>* [[TMP2]], align 4
; CHECK-NEXT: [[TMP4:%.*]] = fadd <4 x float> [[TMP1]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast float* [[ARRAYIDX]] to <4 x float>*
; CHECK-NEXT: store <4 x float> [[TMP4]], <4 x float>* [[TMP5]], align 4
; CHECK-NEXT: ret void
;
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul nsw i32 %u, 4
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom
%0 = load float, float* %arrayidx, align 4
%arrayidx4 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom
%1 = load float, float* %arrayidx4, align 4
%add5 = fadd float %0, %1
store float %add5, float* %arrayidx, align 4
%add11 = add nsw i32 %mul, 1
%idxprom12 = sext i32 %add11 to i64
%arrayidx13 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom12
%2 = load float, float* %arrayidx13, align 4
%arrayidx17 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom12
%3 = load float, float* %arrayidx17, align 4
%add18 = fadd float %2, %3
store float %add18, float* %arrayidx13, align 4
%add24 = add nsw i32 %mul, 2
%idxprom25 = sext i32 %add24 to i64
%arrayidx26 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom25
%4 = load float, float* %arrayidx26, align 4
%arrayidx30 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom25
%5 = load float, float* %arrayidx30, align 4
%add31 = fadd float %4, %5
store float %add31, float* %arrayidx26, align 4
%add37 = add nsw i32 %mul, 3
%idxprom38 = sext i32 %add37 to i64
%arrayidx39 = getelementptr inbounds [2000 x float], [2000 x float]* @C, i32 0, i64 %idxprom38
%6 = load float, float* %arrayidx39, align 4
%arrayidx43 = getelementptr inbounds [2000 x float], [2000 x float]* @D, i32 0, i64 %idxprom38
%7 = load float, float* %arrayidx43, align 4
%add44 = fadd float %6, %7
store float %add44, float* %arrayidx39, align 4
ret void
}
; Similar to the previous tests, but now we are dealing with AddRec SCEV.
; Function Attrs: nounwind ssp uwtable
define i32 @foo_loop(double* %A, i32 %n) #0 {
; CHECK-LABEL: @foo_loop(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A_ADDR:%.*]] = alloca double*, align 8
; CHECK-NEXT: [[N_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: [[SUM:%.*]] = alloca double, align 8
; CHECK-NEXT: [[I:%.*]] = alloca i32, align 4
; CHECK-NEXT: store double* [[A:%.*]], double** [[A_ADDR]], align 8
; CHECK-NEXT: store i32 [[N:%.*]], i32* [[N_ADDR]], align 4
; CHECK-NEXT: store double 0.000000e+00, double* [[SUM]], align 8
; CHECK-NEXT: store i32 0, i32* [[I]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 0, [[N]]
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]]
; CHECK: for.body.lr.ph:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[TMP0]], 2
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD:%.*]] = add nsw i32 [[MUL]], 1
; CHECK-NEXT: [[IDXPROM3:%.*]] = sext i32 [[ADD]] to i64
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM3]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x double> [[TMP4]], i32 0
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x double> [[TMP4]], i32 1
; CHECK-NEXT: [[ADD6:%.*]] = fadd double [[TMP5]], [[TMP6]]
; CHECK-NEXT: [[ADD7]] = fadd double [[TMP1]], [[ADD6]]
; CHECK-NEXT: store double [[ADD7]], double* [[SUM]], align 8
; CHECK-NEXT: [[INC]] = add nsw i32 [[TMP0]], 1
; CHECK-NEXT: store i32 [[INC]], i32* [[I]], align 4
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]]
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]]
; CHECK: for.cond.for.end_crit_edge:
; CHECK-NEXT: [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ]
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32
; CHECK-NEXT: ret i32 [[CONV]]
;
entry:
%A.addr = alloca double*, align 8
%n.addr = alloca i32, align 4
%sum = alloca double, align 8
%i = alloca i32, align 4
store double* %A, double** %A.addr, align 8
store i32 %n, i32* %n.addr, align 4
store double 0.000000e+00, double* %sum, align 8
store i32 0, i32* %i, align 4
%cmp1 = icmp slt i32 0, %n
br i1 %cmp1, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
%mul = mul nsw i32 %0, 2
%idxprom = sext i32 %mul to i64
%arrayidx = getelementptr inbounds double, double* %A, i64 %idxprom
%2 = load double, double* %arrayidx, align 8
%mul1 = fmul double 7.000000e+00, %2
%add = add nsw i32 %mul, 1
%idxprom3 = sext i32 %add to i64
%arrayidx4 = getelementptr inbounds double, double* %A, i64 %idxprom3
%3 = load double, double* %arrayidx4, align 8
%mul5 = fmul double 7.000000e+00, %3
%add6 = fadd double %mul1, %mul5
%add7 = fadd double %1, %add6
store double %add7, double* %sum, align 8
%inc = add nsw i32 %0, 1
store i32 %inc, i32* %i, align 4
%cmp = icmp slt i32 %inc, %n
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
for.cond.for.end_crit_edge: ; preds = %for.body
%split = phi double [ %add7, %for.body ]
br label %for.end
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
%.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
%conv = fptosi double %.lcssa to i32
ret i32 %conv
}
; Similar to foo_2double but with a non-power-of-2 factor and potential
; wrapping (both indices wrap or both don't in the same time)
; Function Attrs: nounwind ssp uwtable
define void @foo_2double_non_power_of_2(i32 %u) #0 {
; CHECK-LABEL: @foo_2double_non_power_of_2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[U]], 6
; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[MUL]], 6
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[ADD6]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD7:%.*]] = add i32 [[MUL]], 7
; CHECK-NEXT: [[IDXPROM12:%.*]] = sext i32 [[ADD7]] to i64
; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>*
; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8
; CHECK-NEXT: ret void
;
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul i32 %u, 6
%add6 = add i32 %mul, 6
%idxprom = sext i32 %add6 to i64
%arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double, double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add7 = add i32 %mul, 7
%idxprom12 = sext i32 %add7 to i64
%arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double, double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double, double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
ret void
}
; Similar to foo_2double_non_power_of_2 but with zext's instead of sext's
; Function Attrs: nounwind ssp uwtable
define void @foo_2double_non_power_of_2_zext(i32 %u) #0 {
; CHECK-LABEL: @foo_2double_non_power_of_2_zext(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[U_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: store i32 [[U:%.*]], i32* [[U_ADDR]], align 4
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[U]], 6
; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[MUL]], 6
; CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[ADD6]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD7:%.*]] = add i32 [[MUL]], 7
; CHECK-NEXT: [[IDXPROM12:%.*]] = zext i32 [[ADD7]] to i64
; CHECK-NEXT: [[ARRAYIDX13:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP0:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP1:%.*]] = load <2 x double>, <2 x double>* [[TMP0]], align 8
; CHECK-NEXT: [[ARRAYIDX17:%.*]] = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 [[IDXPROM12]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX4]] to <2 x double>*
; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = fadd <2 x double> [[TMP1]], [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: store <2 x double> [[TMP4]], <2 x double>* [[TMP5]], align 8
; CHECK-NEXT: ret void
;
entry:
%u.addr = alloca i32, align 4
store i32 %u, i32* %u.addr, align 4
%mul = mul i32 %u, 6
%add6 = add i32 %mul, 6
%idxprom = zext i32 %add6 to i64
%arrayidx = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%arrayidx4 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom
%1 = load double, double* %arrayidx4, align 8
%add5 = fadd double %0, %1
store double %add5, double* %arrayidx, align 8
%add7 = add i32 %mul, 7
%idxprom12 = zext i32 %add7 to i64
%arrayidx13 = getelementptr inbounds [2000 x double], [2000 x double]* @A, i32 0, i64 %idxprom12
%2 = load double, double* %arrayidx13, align 8
%arrayidx17 = getelementptr inbounds [2000 x double], [2000 x double]* @B, i32 0, i64 %idxprom12
%3 = load double, double* %arrayidx17, align 8
%add18 = fadd double %2, %3
store double %add18, double* %arrayidx13, align 8
ret void
}
; Similar to foo_2double_non_power_of_2, but now we are dealing with AddRec SCEV.
; Alternatively, this is like foo_loop, but with a non-power-of-2 factor and
; potential wrapping (both indices wrap or both don't in the same time)
; Function Attrs: nounwind ssp uwtable
define i32 @foo_loop_non_power_of_2(double* %A, i32 %n) #0 {
; CHECK-LABEL: @foo_loop_non_power_of_2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A_ADDR:%.*]] = alloca double*, align 8
; CHECK-NEXT: [[N_ADDR:%.*]] = alloca i32, align 4
; CHECK-NEXT: [[SUM:%.*]] = alloca double, align 8
; CHECK-NEXT: [[I:%.*]] = alloca i32, align 4
; CHECK-NEXT: store double* [[A:%.*]], double** [[A_ADDR]], align 8
; CHECK-NEXT: store i32 [[N:%.*]], i32* [[N_ADDR]], align 4
; CHECK-NEXT: store double 0.000000e+00, double* [[SUM]], align 8
; CHECK-NEXT: store i32 0, i32* [[I]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 0, [[N]]
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]]
; CHECK: for.body.lr.ph:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0]], 12
; CHECK-NEXT: [[ADD_5:%.*]] = add i32 [[MUL]], 5
; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[ADD_5]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD_6:%.*]] = add i32 [[MUL]], 6
; CHECK-NEXT: [[IDXPROM3:%.*]] = sext i32 [[ADD_6]] to i64
; CHECK-NEXT: [[ARRAYIDX4:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM3]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP3:%.*]] = load <2 x double>, <2 x double>* [[TMP2]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x double> [[TMP4]], i32 0
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x double> [[TMP4]], i32 1
; CHECK-NEXT: [[ADD6:%.*]] = fadd double [[TMP5]], [[TMP6]]
; CHECK-NEXT: [[ADD7]] = fadd double [[TMP1]], [[ADD6]]
; CHECK-NEXT: store double [[ADD7]], double* [[SUM]], align 8
; CHECK-NEXT: [[INC]] = add i32 [[TMP0]], 1
; CHECK-NEXT: store i32 [[INC]], i32* [[I]], align 4
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]]
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]]
; CHECK: for.cond.for.end_crit_edge:
; CHECK-NEXT: [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ]
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32
; CHECK-NEXT: ret i32 [[CONV]]
;
entry:
%A.addr = alloca double*, align 8
%n.addr = alloca i32, align 4
%sum = alloca double, align 8
%i = alloca i32, align 4
store double* %A, double** %A.addr, align 8
store i32 %n, i32* %n.addr, align 4
store double 0.000000e+00, double* %sum, align 8
store i32 0, i32* %i, align 4
%cmp1 = icmp slt i32 0, %n
br i1 %cmp1, label %for.body.lr.ph, label %for.end
for.body.lr.ph: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
%mul = mul i32 %0, 12
%add.5 = add i32 %mul, 5
%idxprom = sext i32 %add.5 to i64
%arrayidx = getelementptr inbounds double, double* %A, i64 %idxprom
%2 = load double, double* %arrayidx, align 8
%mul1 = fmul double 7.000000e+00, %2
%add.6 = add i32 %mul, 6
%idxprom3 = sext i32 %add.6 to i64
%arrayidx4 = getelementptr inbounds double, double* %A, i64 %idxprom3
%3 = load double, double* %arrayidx4, align 8
%mul5 = fmul double 7.000000e+00, %3
%add6 = fadd double %mul1, %mul5
%add7 = fadd double %1, %add6
store double %add7, double* %sum, align 8
%inc = add i32 %0, 1
store i32 %inc, i32* %i, align 4
%cmp = icmp slt i32 %inc, %n
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
for.cond.for.end_crit_edge: ; preds = %for.body
%split = phi double [ %add7, %for.body ]
br label %for.end
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
%.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
%conv = fptosi double %.lcssa to i32
ret i32 %conv
}
; This is generated by `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm`
; with !{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"} and stripping off
; the !tbaa metadata nodes to fit the rest of the test file, where `cat main.c` is:
;
; double bar(double *a, unsigned n) {
; double x = 0.0;
; double y = 0.0;
; for (unsigned i = 0; i < n; i += 2) {
; x += a[i];
; y += a[i + 1];
; }
; return x * y;
; }
;
; The resulting IR is similar to @foo_loop, but with zext's instead of sext's.
;
; Make sure we are able to vectorize this from now on:
;
define double @bar(double* nocapture readonly %a, i32 %n) local_unnamed_addr #0 {
; CHECK-LABEL: @bar(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP15:%.*]] = icmp eq i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP15]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY:%.*]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: [[TMP0:%.*]] = phi <2 x double> [ zeroinitializer, [[ENTRY:%.*]] ], [ [[TMP6:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP1:%.*]] = extractelement <2 x double> [[TMP0]], i32 0
; CHECK-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[TMP0]], i32 1
; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret double [[MUL]]
; CHECK: for.body:
; CHECK-NEXT: [[I_018:%.*]] = phi i32 [ [[ADD5:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY]] ]
; CHECK-NEXT: [[TMP3:%.*]] = phi <2 x double> [ [[TMP6]], [[FOR_BODY]] ], [ zeroinitializer, [[ENTRY]] ]
; CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[I_018]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, double* [[A:%.*]], i64 [[IDXPROM]]
; CHECK-NEXT: [[ADD1:%.*]] = or i32 [[I_018]], 1
; CHECK-NEXT: [[IDXPROM2:%.*]] = zext i32 [[ADD1]] to i64
; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds double, double* [[A]], i64 [[IDXPROM2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast double* [[ARRAYIDX]] to <2 x double>*
; CHECK-NEXT: [[TMP5:%.*]] = load <2 x double>, <2 x double>* [[TMP4]], align 8
; CHECK-NEXT: [[TMP6]] = fadd <2 x double> [[TMP3]], [[TMP5]]
; CHECK-NEXT: [[ADD5]] = add i32 [[I_018]], 2
; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[ADD5]], [[N]]
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_CLEANUP]]
;
entry:
%cmp15 = icmp eq i32 %n, 0
br i1 %cmp15, label %for.cond.cleanup, label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
%x.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add, %for.body ]
%y.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add4, %for.body ]
%mul = fmul double %x.0.lcssa, %y.0.lcssa
ret double %mul
for.body: ; preds = %entry, %for.body
%i.018 = phi i32 [ %add5, %for.body ], [ 0, %entry ]
%y.017 = phi double [ %add4, %for.body ], [ 0.000000e+00, %entry ]
%x.016 = phi double [ %add, %for.body ], [ 0.000000e+00, %entry ]
%idxprom = zext i32 %i.018 to i64
%arrayidx = getelementptr inbounds double, double* %a, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%add = fadd double %x.016, %0
%add1 = or i32 %i.018, 1
%idxprom2 = zext i32 %add1 to i64
%arrayidx3 = getelementptr inbounds double, double* %a, i64 %idxprom2
%1 = load double, double* %arrayidx3, align 8
%add4 = fadd double %y.017, %1
%add5 = add i32 %i.018, 2
%cmp = icmp ult i32 %add5, %n
br i1 %cmp, label %for.body, label %for.cond.cleanup
}
; Globals/constant expressions are not normal constants.
; They should not be treated as the usual vectorization candidates.
@g1 = external global i32, align 4
@g2 = external global i32, align 4
define void @PR33958(i32** nocapture %p) {
; CHECK-LABEL: @PR33958(
; CHECK-NEXT: store i32* @g1, i32** [[P:%.*]], align 8
; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i32*, i32** [[P]], i64 1
; CHECK-NEXT: store i32* @g2, i32** [[ARRAYIDX1]], align 8
; CHECK-NEXT: ret void
;
store i32* @g1, i32** %p, align 8
%arrayidx1 = getelementptr inbounds i32*, i32** %p, i64 1
store i32* @g2, i32** %arrayidx1, align 8
ret void
}
define void @store_constant_expression(i64* %p) {
; CHECK-LABEL: @store_constant_expression(
; CHECK-NEXT: store i64 ptrtoint (i32* @g1 to i64), i64* [[P:%.*]], align 8
; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i64, i64* [[P]], i64 1
; CHECK-NEXT: store i64 ptrtoint (i32* @g2 to i64), i64* [[ARRAYIDX1]], align 8
; CHECK-NEXT: ret void
;
store i64 ptrtoint (i32* @g1 to i64), i64* %p, align 8
%arrayidx1 = getelementptr inbounds i64, i64* %p, i64 1
store i64 ptrtoint (i32* @g2 to i64), i64* %arrayidx1, align 8
ret void
}
attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "frame-pointer"="all" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.ident = !{!0}
!0 = !{!"clang version 3.5.0 "}