StraightLineStrengthReduce.cpp
28.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements straight-line strength reduction (SLSR). Unlike loop
// strength reduction, this algorithm is designed to reduce arithmetic
// redundancy in straight-line code instead of loops. It has proven to be
// effective in simplifying arithmetic statements derived from an unrolled loop.
// It can also simplify the logic of SeparateConstOffsetFromGEP.
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidates in the following forms:
//
// Form 1: B + i * S
// Form 2: (B + i) * S
// Form 3: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
// in a simpler way with respect to S1. For example,
//
// S1: X = B + i * S
// S2: Y = B + i' * S => X + (i' - i) * S
//
// S1: X = (B + i) * S
// S2: Y = (B + i') * S => X + (i' - i) * S
//
// S1: X = &B[i * S]
// S2: Y = &B[i' * S] => &X[(i' - i) * S]
//
// Note: (i' - i) * S is folded to the extent possible.
//
// This rewriting is in general a good idea. The code patterns we focus on
// usually come from loop unrolling, so (i' - i) * S is likely the same
// across iterations and can be reused. When that happens, the optimized form
// takes only one add starting from the second iteration.
//
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
// basis, the basis that is the closest ancestor in the dominator tree.
//
// TODO:
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
// left as future work.
//
// - When (i' - i) is constant but i and i' are not, we could still perform
// SLSR.
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <limits>
#include <list>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
static const unsigned UnknownAddressSpace =
std::numeric_limits<unsigned>::max();
namespace {
class StraightLineStrengthReduce : public FunctionPass {
public:
// SLSR candidate. Such a candidate must be in one of the forms described in
// the header comments.
struct Candidate {
enum Kind {
Invalid, // reserved for the default constructor
Add, // B + i * S
Mul, // (B + i) * S
GEP, // &B[..][i * S][..]
};
Candidate() = default;
Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I)
: CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
Kind CandidateKind = Invalid;
const SCEV *Base = nullptr;
// Note that Index and Stride of a GEP candidate do not necessarily have the
// same integer type. In that case, during rewriting, Stride will be
// sign-extended or truncated to Index's type.
ConstantInt *Index = nullptr;
Value *Stride = nullptr;
// The instruction this candidate corresponds to. It helps us to rewrite a
// candidate with respect to its immediate basis. Note that one instruction
// can correspond to multiple candidates depending on how you associate the
// expression. For instance,
//
// (a + 1) * (b + 2)
//
// can be treated as
//
// <Base: a, Index: 1, Stride: b + 2>
//
// or
//
// <Base: b, Index: 2, Stride: a + 1>
Instruction *Ins = nullptr;
// Points to the immediate basis of this candidate, or nullptr if we cannot
// find any basis for this candidate.
Candidate *Basis = nullptr;
};
static char ID;
StraightLineStrengthReduce() : FunctionPass(ID) {
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
// We do not modify the shape of the CFG.
AU.setPreservesCFG();
}
bool doInitialization(Module &M) override {
DL = &M.getDataLayout();
return false;
}
bool runOnFunction(Function &F) override;
private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
// Returns whether the candidate can be folded into an addressing mode.
bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
const DataLayout *DL);
// Returns true if C is already in a simplest form and not worth being
// rewritten.
bool isSimplestForm(const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
void allocateCandidatesAndFindBasis(Instruction *I);
// Allocate candidates and find bases for Add instructions.
void allocateCandidatesAndFindBasisForAdd(Instruction *I);
// Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
// candidate.
void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for Mul instructions.
void allocateCandidatesAndFindBasisForMul(Instruction *I);
// Splits LHS into Base + Index and, if succeeds, calls
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for GetElementPtr instructions.
void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
// A helper function that scales Idx with ElementSize before invoking
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
Value *S, uint64_t ElementSize,
Instruction *I);
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
// basis.
void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
ConstantInt *Idx, Value *S,
Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
// A helper function that factors ArrayIdx to a product of a stride and a
// constant index, and invokes allocateCandidatesAndFindBasis with the
// factorings.
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
GetElementPtrInst *GEP);
// Emit code that computes the "bump" from Basis to C. If the candidate is a
// GEP and the bump is not divisible by the element size of the GEP, this
// function sets the BumpWithUglyGEP flag to notify its caller to bump the
// basis using an ugly GEP.
static Value *emitBump(const Candidate &Basis, const Candidate &C,
IRBuilder<> &Builder, const DataLayout *DL,
bool &BumpWithUglyGEP);
const DataLayout *DL = nullptr;
DominatorTree *DT = nullptr;
ScalarEvolution *SE;
TargetTransformInfo *TTI = nullptr;
std::list<Candidate> Candidates;
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
// after all rewriting finishes.
std::vector<Instruction *> UnlinkedInstructions;
};
} // end anonymous namespace
char StraightLineStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
FunctionPass *llvm::createStraightLineStrengthReducePass() {
return new StraightLineStrengthReduce();
}
bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
const Candidate &C) {
return (Basis.Ins != C.Ins && // skip the same instruction
// They must have the same type too. Basis.Base == C.Base doesn't
// guarantee their types are the same (PR23975).
Basis.Ins->getType() == C.Ins->getType() &&
// Basis must dominate C in order to rewrite C with respect to Basis.
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
// They share the same base, stride, and candidate kind.
Basis.Base == C.Base && Basis.Stride == C.Stride &&
Basis.CandidateKind == C.CandidateKind);
}
static bool isGEPFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI) {
SmallVector<const Value*, 4> Indices;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
Indices.push_back(*I);
return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
Indices) == TargetTransformInfo::TCC_Free;
}
// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
TargetTransformInfo *TTI) {
// Index->getSExtValue() may crash if Index is wider than 64-bit.
return Index->getBitWidth() <= 64 &&
TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
Index->getSExtValue(), UnknownAddressSpace);
}
bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
TargetTransformInfo *TTI,
const DataLayout *DL) {
if (C.CandidateKind == Candidate::Add)
return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
if (C.CandidateKind == Candidate::GEP)
return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
return false;
}
// Returns true if GEP has zero or one non-zero index.
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
unsigned NumNonZeroIndices = 0;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
if (ConstIdx == nullptr || !ConstIdx->isZero())
++NumNonZeroIndices;
}
return NumNonZeroIndices <= 1;
}
bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
if (C.CandidateKind == Candidate::Add) {
// B + 1 * S or B + (-1) * S
return C.Index->isOne() || C.Index->isMinusOne();
}
if (C.CandidateKind == Candidate::Mul) {
// (B + 0) * S
return C.Index->isZero();
}
if (C.CandidateKind == Candidate::GEP) {
// (char*)B + S or (char*)B - S
return ((C.Index->isOne() || C.Index->isMinusOne()) &&
hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
}
return false;
}
// TODO: We currently implement an algorithm whose time complexity is linear in
// the number of existing candidates. However, we could do better by using
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
// maintain all the candidates that dominate the basic block being traversed in
// a ScopedHashTable. This hash table is indexed by the base and the stride of
// a candidate. Therefore, finding the immediate basis of a candidate boils down
// to one hash-table look up.
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I) {
Candidate C(CT, B, Idx, S, I);
// SLSR can complicate an instruction in two cases:
//
// 1. If we can fold I into an addressing mode, computing I is likely free or
// takes only one instruction.
//
// 2. I is already in a simplest form. For example, when
// X = B + 8 * S
// Y = B + S,
// rewriting Y to X - 7 * S is probably a bad idea.
//
// In the above cases, we still add I to the candidate list so that I can be
// the basis of other candidates, but we leave I's basis blank so that I
// won't be rewritten.
if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running in quadratice time.
static const unsigned MaxNumIterations = 50;
for (auto Basis = Candidates.rbegin();
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
++Basis, ++NumIterations) {
if (isBasisFor(*Basis, C)) {
C.Basis = &(*Basis);
break;
}
}
}
// Regardless of whether we find a basis for C, we need to push C to the
// candidate list so that it can be the basis of other candidates.
Candidates.push_back(C);
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
allocateCandidatesAndFindBasisForAdd(I);
break;
case Instruction::Mul:
allocateCandidatesAndFindBasisForMul(I);
break;
case Instruction::GetElementPtr:
allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
break;
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Instruction *I) {
// Try matching B + i * S.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I an add?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
if (LHS != RHS)
allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Value *LHS, Value *RHS, Instruction *I) {
Value *S = nullptr;
ConstantInt *Idx = nullptr;
if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + Idx * S
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
APInt One(Idx->getBitWidth(), 1);
Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else {
// At least, I = LHS + 1 * RHS
ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
I);
}
}
// Returns true if A matches B + C where C is constant.
static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
match(A, m_Add(m_ConstantInt(C), m_Value(B))));
}
// Returns true if A matches B | C where C is constant.
static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
match(A, m_Or(m_ConstantInt(C), m_Value(B))));
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
if (matchesAdd(LHS, B, Idx)) {
// If LHS is in the form of "Base + Index", then I is in the form of
// "(Base + Index) * RHS".
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
// If LHS is in the form of "Base | Index" and Base and Index have no common
// bits set, then
// Base | Index = Base + Index
// and I is thus in the form of "(Base + Index) * RHS".
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else {
// Otherwise, at least try the form (LHS + 0) * RHS.
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
I);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Instruction *I) {
// Try matching (B + i) * S.
// TODO: we could extend SLSR to float and vector types.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I a mul?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
if (LHS != RHS) {
// Symmetrically, try to split RHS to Base + Index.
allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
Instruction *I) {
// I = B + sext(Idx *nsw S) * ElementSize
// = B + (sext(Idx) * sext(S)) * ElementSize
// = B + (sext(Idx) * ElementSize) * sext(S)
// Casting to IntegerType is safe because we skipped vector GEPs.
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
ConstantInt *ScaledIdx = ConstantInt::get(
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
const SCEV *Base,
uint64_t ElementSize,
GetElementPtrInst *GEP) {
// At least, ArrayIdx = ArrayIdx *nsw 1.
allocateCandidatesAndFindBasisForGEP(
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
ArrayIdx, ElementSize, GEP);
Value *LHS = nullptr;
ConstantInt *RHS = nullptr;
// One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
// itself. This would allow us to handle the shl case for free. However,
// matching SCEVs has two issues:
//
// 1. this would complicate rewriting because the rewriting procedure
// would have to translate SCEVs back to IR instructions. This translation
// is difficult when LHS is further evaluated to a composite SCEV.
//
// 2. ScalarEvolution is designed to be control-flow oblivious. It tends
// to strip nsw/nuw flags which are critical for SLSR to trace into
// sext'ed multiplication.
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
// SLSR is currently unsafe if i * S may overflow.
// GEP = Base + sext(LHS *nsw RHS) * ElementSize
allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
} else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
// GEP = Base + sext(LHS <<nsw RHS) * ElementSize
// = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
APInt One(RHS->getBitWidth(), 1);
ConstantInt *PowerOf2 =
ConstantInt::get(RHS->getContext(), One << RHS->getValue());
allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
GetElementPtrInst *GEP) {
// TODO: handle vector GEPs
if (GEP->getType()->isVectorTy())
return;
SmallVector<const SCEV *, 4> IndexExprs;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
IndexExprs.push_back(SE->getSCEV(*I));
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (GTI.isStruct())
continue;
const SCEV *OrigIndexExpr = IndexExprs[I - 1];
IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
// The base of this candidate is GEP's base plus the offsets of all
// indices except this current one.
const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
Value *ArrayIdx = GEP->getOperand(I);
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
if (ArrayIdx->getType()->getIntegerBitWidth() <=
DL->getPointerSizeInBits(GEP->getAddressSpace())) {
// Skip factoring if ArrayIdx is wider than the pointer size, because
// ArrayIdx is implicitly truncated to the pointer size.
factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
}
// When ArrayIdx is the sext of a value, we try to factor that value as
// well. Handling this case is important because array indices are
// typically sign-extended to the pointer size.
Value *TruncatedArrayIdx = nullptr;
if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
DL->getPointerSizeInBits(GEP->getAddressSpace())) {
// Skip factoring if TruncatedArrayIdx is wider than the pointer size,
// because TruncatedArrayIdx is implicitly truncated to the pointer size.
factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
}
IndexExprs[I - 1] = OrigIndexExpr;
}
}
// A helper function that unifies the bitwidth of A and B.
static void unifyBitWidth(APInt &A, APInt &B) {
if (A.getBitWidth() < B.getBitWidth())
A = A.sext(B.getBitWidth());
else if (A.getBitWidth() > B.getBitWidth())
B = B.sext(A.getBitWidth());
}
Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
const Candidate &C,
IRBuilder<> &Builder,
const DataLayout *DL,
bool &BumpWithUglyGEP) {
APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
unifyBitWidth(Idx, BasisIdx);
APInt IndexOffset = Idx - BasisIdx;
BumpWithUglyGEP = false;
if (Basis.CandidateKind == Candidate::GEP) {
APInt ElementSize(
IndexOffset.getBitWidth(),
DL->getTypeAllocSize(
cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
APInt Q, R;
APInt::sdivrem(IndexOffset, ElementSize, Q, R);
if (R == 0)
IndexOffset = Q;
else
BumpWithUglyGEP = true;
}
// Compute Bump = C - Basis = (i' - i) * S.
// Common case 1: if (i' - i) is 1, Bump = S.
if (IndexOffset == 1)
return C.Stride;
// Common case 2: if (i' - i) is -1, Bump = -S.
if (IndexOffset.isAllOnesValue())
return Builder.CreateNeg(C.Stride);
// Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
// have different bit widths.
IntegerType *DeltaType =
IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
if (IndexOffset.isPowerOf2()) {
// If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
return Builder.CreateShl(ExtendedStride, Exponent);
}
if ((-IndexOffset).isPowerOf2()) {
// If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
ConstantInt *Exponent =
ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
}
Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
return Builder.CreateMul(ExtendedStride, Delta);
}
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
C.Stride == Basis.Stride);
// We run rewriteCandidateWithBasis on all candidates in a post-order, so the
// basis of a candidate cannot be unlinked before the candidate.
assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
// nullptr (i.e. unlink it) so that we can skip the candidates whose
// instruction is already rewritten.
if (!C.Ins->getParent())
return;
IRBuilder<> Builder(C.Ins);
bool BumpWithUglyGEP;
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
switch (C.CandidateKind) {
case Candidate::Add:
case Candidate::Mul: {
// C = Basis + Bump
Value *NegBump;
if (match(Bump, m_Neg(m_Value(NegBump)))) {
// If Bump is a neg instruction, emit C = Basis - (-Bump).
Reduced = Builder.CreateSub(Basis.Ins, NegBump);
// We only use the negative argument of Bump, and Bump itself may be
// trivially dead.
RecursivelyDeleteTriviallyDeadInstructions(Bump);
} else {
// It's tempting to preserve nsw on Bump and/or Reduced. However, it's
// usually unsound, e.g.,
//
// X = (-2 +nsw 1) *nsw INT_MAX
// Y = (-2 +nsw 3) *nsw INT_MAX
// =>
// Y = X + 2 * INT_MAX
//
// Neither + and * in the resultant expression are nsw.
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
}
break;
}
case Candidate::GEP:
{
Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
if (BumpWithUglyGEP) {
// C = (char *)Basis + Bump
unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
if (InBounds)
Reduced =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
else
Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
} else {
// C = gep Basis, Bump
// Canonicalize bump to pointer size.
Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
if (InBounds)
Reduced = Builder.CreateInBoundsGEP(
cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
Basis.Ins, Bump);
else
Reduced = Builder.CreateGEP(
cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
Basis.Ins, Bump);
}
break;
}
default:
llvm_unreachable("C.CandidateKind is invalid");
};
Reduced->takeName(C.Ins);
C.Ins->replaceAllUsesWith(Reduced);
// Unlink C.Ins so that we can skip other candidates also corresponding to
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
C.Ins->removeFromParent();
UnlinkedInstructions.push_back(C.Ins);
}
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
// Traverse the dominator tree in the depth-first order. This order makes sure
// all bases of a candidate are in Candidates when we process it.
for (const auto Node : depth_first(DT))
for (auto &I : *(Node->getBlock()))
allocateCandidatesAndFindBasis(&I);
// Rewrite candidates in the reverse depth-first order. This order makes sure
// a candidate being rewritten is not a basis for any other candidate.
while (!Candidates.empty()) {
const Candidate &C = Candidates.back();
if (C.Basis != nullptr) {
rewriteCandidateWithBasis(C, *C.Basis);
}
Candidates.pop_back();
}
// Delete all unlink instructions.
for (auto *UnlinkedInst : UnlinkedInstructions) {
for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
Value *Op = UnlinkedInst->getOperand(I);
UnlinkedInst->setOperand(I, nullptr);
RecursivelyDeleteTriviallyDeadInstructions(Op);
}
UnlinkedInst->deleteValue();
}
bool Ret = !UnlinkedInstructions.empty();
UnlinkedInstructions.clear();
return Ret;
}