X86SelectionDAGInfo.cpp
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86SelectionDAGInfo.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
Register BaseReg = TRI->getBaseRegister();
for (unsigned R : ClobberSet)
if (BaseReg == R)
return true;
return false;
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
#ifndef NDEBUG
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
#endif
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if ((Align & 3) != 0 || !ConstantSize ||
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
if (const char *bzeroName = (ValC && ValC->isNullValue())
? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
: nullptr) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(bzeroName, IntPtr),
std::move(Args))
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag;
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
unsigned BytesLeft = 0;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal, dl);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal, dl);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
InFlag = Chain.getValue(1);
}
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
Val,
DAG.getConstant(BytesLeft, dl, SizeVT),
Align, isVolatile, false,
DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
/// Emit a single REP MOVS{B,W,D,Q} instruction.
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
SDValue InFlag;
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
}
/// Emit a single REP MOVSB instruction for a particular constant size.
static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size) {
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns the best type to use with repmovs depending on alignment.
static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
uint64_t Align) {
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a load/store sequence or call the runtime memcpy function.
static SDValue emitConstantSizeRepmov(
SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If we have enhanced repmovs we use it.
if (Subtarget.hasERMSB())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
SDValue RepMovs =
emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepMov can process the whole length.
if (BytesLeft == 0)
return RepMovs;
assert(BytesLeft && "We have leftover at this point");
/// In case we optimize for size we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
unsigned Offset = Size - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
Results.push_back(DAG.getMemcpy(
Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile,
/*AlwaysInline*/ true, /*isTailCall*/ false,
DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base registers conflict with our physical registers, use the default
// lowering.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
/// Handle constant sizes,
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),
Size.getValueType(), Align, isVolatile,
AlwaysInline, DstPtrInfo, SrcPtrInfo);
return SDValue();
}