X86ScheduleBtVer2.td
46.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//
def BtVer2Model : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and btver2 can
// decode 2 instructions per cycle.
let IssueWidth = 2;
let MicroOpBufferSize = 64; // Retire Control Unit
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
let HighLatency = 25;
let MispredictPenalty = 14; // Minimum branch misdirection penalty
let PostRAScheduler = 1;
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = BtVer2Model in {
// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
//
// The processor always keeps the different parts of an integer register
// together. An instruction that writes to a part of a register will therefore
// have a false dependence on any previous write to the same register or any
// part of it.
// Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register
// access" - Agner Fog's "microarchitecture.pdf".
def JIntegerPRF : RegisterFile<64, [GR64, CCR], [1, 1], [1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/
// The PRF in the floating point unit can eliminate a move from a MMX or SSE
// register that is know to be zero (i.e. it has been zeroed using a zero-idiom
// dependency breaking instruction, or via VZEROALL).
// Reference: Section 21.8 "AMD Bobcat and Jaguar pipeline: Dependency-breaking
// instructions" - Agner Fog's "microarchitecture.pdf"
def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2], [1, 1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def JRCU : RetireControlUnit<64, 2>;
// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
let BufferSize=20;
}
// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
let BufferSize=12;
}
// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
let BufferSize=18;
}
// Functional units
def JDiv : ProcResource<1>; // integer division
def JMul : ProcResource<1>; // integer multiplication
def JVALU0 : ProcResource<1>; // vector integer
def JVALU1 : ProcResource<1>; // vector integer
def JVIMUL : ProcResource<1>; // vector integer multiplication
def JSTC : ProcResource<1>; // vector store/convert
def JFPM : ProcResource<1>; // FP multiplication
def JFPA : ProcResource<1>; // FP addition
// Functional unit groups
def JFPX : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;
// Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available until 5
// cycles after the memory operand.
def : ReadAdvance<ReadAfterVecLd, 5>;
def : ReadAdvance<ReadAfterVecXLd, 5>;
def : ReadAdvance<ReadAfterVecYLd, 5>;
/// "Additional 6 cycle transfer operation which moves a floating point
/// operation input value from the integer unit to the floating point unit.
/// Reference: AMDfam16h SOG (Appendix A "Instruction Latencies", Section A.2).
def : ReadAdvance<ReadInt2Fpu, -6>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 3);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [2], int UOps = 2,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !listconcat([2], Res);
let NumMicroOps = !add(UOps, LoadUOps);
}
}
// Instructions that have local forwarding disabled have an extra +1cy latency.
// A folded store needs a cycle on the SAGU for the store data, most RMW
// instructions don't need an extra uop. ALU RMW operations don't seem to
// benefit from STLF, and their observed latency is 6cy. That is the reason why
// this write adds two extra cycles (instead of just 1cy for the store).
defm : X86WriteRes<WriteRMW, [JSAGU], 2, [1], 0>;
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
defm : JWriteResIntPair<WriteADC, [JALU01], 1, [2]>;
defm : X86WriteRes<WriteBSWAP32, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBSWAP64, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteCMPXCHG, [JALU01], 3, [3], 5>;
defm : X86WriteRes<WriteCMPXCHGRMW, [JALU01, JSAGU, JLAGU], 11, [3, 1, 1], 6>;
defm : X86WriteRes<WriteXCHG, [JALU01], 1, [2], 2>;
defm : JWriteResIntPair<WriteIMul8, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul16, [JALU1, JMul], 3, [1, 3], 3>;
defm : JWriteResIntPair<WriteIMul16Imm, [JALU1, JMul], 4, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul16Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32, [JALU1, JMul], 3, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul32Imm, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>;
defm : JWriteResIntPair<WriteIMul64Imm, [JALU1, JMul], 6, [1, 4], 1>;
defm : JWriteResIntPair<WriteIMul64Reg, [JALU1, JMul], 6, [1, 4], 1>;
defm : X86WriteRes<WriteIMulH, [JALU1], 6, [4], 1>;
defm : JWriteResIntPair<WriteDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move.
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def : WriteRes<WriteLAHFSAHF, [JALU01]>;
defm : X86WriteRes<WriteBitTest, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBitTestImmLd, [JALU01,JLAGU], 4, [1,1], 1>;
defm : X86WriteRes<WriteBitTestRegLd, [JALU01,JLAGU], 4, [1,1], 5>;
defm : X86WriteRes<WriteBitTestSet, [JALU01], 1, [1], 2>;
defm : X86WriteRes<WriteBitTestSetImmLd, [JALU01,JLAGU], 4, [1,1], 4>;
defm : X86WriteRes<WriteBitTestSetRegLd, [JALU01,JLAGU], 4, [1,1], 8>;
// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [JALU01]>;
// Bit counts.
defm : JWriteResIntPair<WriteBSF, [JALU01], 4, [8], 7>;
defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [8], 8>;
defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2], 2>;
// BMI1 BEXTR/BLS, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : JWriteResIntPair<WriteBLS, [JALU01], 2, [2], 2>;
defm : X86WriteResPairUnsupported<WriteBZHI>;
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
defm : JWriteResIntPair<WriteShiftCL, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotate, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotateCL, [JALU01], 1>;
// SHLD/SHRD.
defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>;
defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>;
defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>;
defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteStore, [JSAGU]>;
def : WriteRes<WriteStoreNT, [JSAGU]>;
def : WriteRes<WriteMove, [JALU01]>;
// Load/store MXCSR.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, []>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence, [JSAGU]>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
def JWriteCMPXCHG8rr : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def JWriteLOCK_CMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [3,16,16];
let NumMicroOps = 5;
}
def JWriteLOCK_CMPXCHGrm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 17;
let ResourceCycles = [3,17,17];
let NumMicroOps = 6;
}
def JWriteCMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 5;
}
def JWriteCMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 18;
}
def JWriteCMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 32;
let ResourceCycles = [6,1,1];
let NumMicroOps = 28;
}
def JWriteLOCK_CMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [3,19,19];
let NumMicroOps = 18;
}
def JWriteLOCK_CMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 38;
let ResourceCycles = [6,38,38];
let NumMicroOps = 28;
}
def JWriteCMPXCHGVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap8B>, [JWriteLOCK_CMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap16B>, [JWriteLOCK_CMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap_8>, [JWriteLOCK_CMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap>, [JWriteLOCK_CMPXCHGrm]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap8B>, [JWriteCMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap16B>, [JWriteCMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap_8>, [JWriteCMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap>, [WriteCMPXCHGRMW]>,
SchedVar<MCSchedPredicate<IsRegRegCompareAndSwap_8>, [JWriteCMPXCHG8rr]>,
SchedVar<NoSchedPred, [WriteCMPXCHG]>
]>;
// The first five reads are contributed by the memory load operand.
// We ignore those reads and set a read-advance for the other input operands
// including the implicit read of RAX.
def : InstRW<[JWriteCMPXCHGVariant,
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8, LCMPXCHG16,
LCMPXCHG32, LCMPXCHG64,
CMPXCHG8rm, CMPXCHG16rm,
CMPXCHG32rm, CMPXCHG64rm)>;
def : InstRW<[JWriteCMPXCHGVariant], (instrs CMPXCHG8rr, CMPXCHG16rr,
CMPXCHG32rr, CMPXCHG64rr)>;
def : InstRW<[JWriteCMPXCHGVariant,
// Ignore reads contributed by the memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Add a read-advance to every implicit register read.
ReadAfterLd, ReadAfterLd, ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8B, LCMPXCHG16B,
CMPXCHG8B, CMPXCHG16B)>;
def JWriteLOCK_ALURMW : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [1,19,19];
let NumMicroOps = 1;
}
def JWriteLOCK_ALURMWVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_ALURMW]>,
SchedVar<NoSchedPred, [WriteALURMW]>
]>;
def : InstRW<[JWriteLOCK_ALURMWVariant], (instrs INC8m, INC16m, INC32m, INC64m,
DEC8m, DEC16m, DEC32m, DEC64m,
NOT8m, NOT16m, NOT32m, NOT64m,
NEG8m, NEG16m, NEG32m, NEG64m)>;
def JWriteXCHG8rr_XADDrr : SchedWriteRes<[JALU01]> {
let Latency = 2;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def : InstRW<[JWriteXCHG8rr_XADDrr], (instrs XCHG8rr, XADD8rr, XADD16rr,
XADD32rr, XADD64rr)>;
// This write defines the latency of the in/out register operand of a non-atomic
// XADDrm. This is the first of a pair of writes that model non-atomic
// XADDrm instructions (the second write definition is JWriteXADDrm_LdSt_Part).
//
// We need two writes because the instruction latency differs from the output
// register operand latency. In particular, the first write describes the first
// (and only) output register operand of the instruction. However, the
// instruction latency is set to the MAX of all the write latencies. That's why
// a second write is needed in this case (see example below).
//
// Example:
// XADD %ecx, (%rsp) ## Instruction latency: 11cy
// ## ECX write Latency: 3cy
//
// Register ECX becomes available in 3 cycles. That is because the value of ECX
// is exchanged with the value read from the stack pointer, and the load-to-use
// latency is assumed to be 3cy.
def JWriteXADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 3; // load-to-use latency
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XADDrm. This is the first of a sequence of two writes used to model atomic
// XADD instructions. The second write of the sequence is JWriteXCHGrm_LdSt_Part.
//
//
// Example:
// LOCK XADD %ecx, (%rsp) ## Instruction Latency: 16cy
// ## ECX write Latency: 11cy
//
// The value of ECX becomes available only after 11cy from the start of
// execution. This write is used to specifically set that operand latency.
def JWriteLOCK_XADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XCHGrm. This write is the first of a sequence of two writes that describe
// atomic XCHG operations. We need two writes because the instruction latency
// differs from the output register write latency. We want to make sure that
// the output register operand becomes visible after 11cy. However, we want to
// set the instruction latency to 16cy.
def JWriteXCHGrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def JWriteXADDrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [1, 1];
let NumMicroOps = 1;
}
def JWriteXCHGrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [16, 16];
let NumMicroOps = 1;
}
def JWriteXADDrm_Part1 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_XADDrm_XCHG_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_XCHG_Part]>
]>;
def JWriteXADDrm_Part2 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteXCHGrm_LdSt_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_LdSt_Part]>
]>;
def : InstRW<[JWriteXADDrm_Part1, JWriteXADDrm_Part2, ReadAfterLd],
(instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm,
LXADD8, LXADD16, LXADD32, LXADD64)>;
def : InstRW<[JWriteXCHGrm_XCHG_Part, JWriteXCHGrm_LdSt_Part, ReadAfterLd],
(instrs XCHG8rm, XCHG16rm, XCHG32rm, XCHG64rm)>;
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteFLD0, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLD1, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLDC, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteFLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteFStoreNT, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTX, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTY, [JSAGU, JFPU1, JSTC], 3, [2, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedStore32, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 5, 5,4,4,4], 19>;
defm : X86WriteRes<WriteFMaskedStore64, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 13, [1,1, 2, 2,2,2,2], 10>;
defm : X86WriteRes<WriteFMaskedStore32Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 22, [1,1,10,10,8,8,8], 36>;
defm : X86WriteRes<WriteFMaskedStore64Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 4, 4,4,4,4], 18>;
defm : X86WriteRes<WriteFMove, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveX, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteRes<WriteEMMS, [JFPU01, JFPX], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAddX, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAddY, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : JWriteResFpuPair<WriteFAdd64, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAdd64X, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAdd64Y, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : JWriteResFpuPair<WriteFCmp, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmpX, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmpY, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : JWriteResFpuPair<WriteFCmp64, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmp64X, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmp64Y, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : JWriteResFpuPair<WriteFCom, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFMulX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFMulY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : JWriteResFpuPair<WriteFMul64, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y, [JFPU1, JFPM], 4, [2,4], 2>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : X86WriteResPairUnsupported<WriteFMA>;
defm : X86WriteResPairUnsupported<WriteFMAX>;
defm : X86WriteResPairUnsupported<WriteFMAY>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : JWriteResFpuPair<WriteDPPD, [JFPU1, JFPM, JFPA], 9, [1, 3, 3], 3>;
defm : JWriteResFpuPair<WriteDPPS, [JFPU1, JFPM, JFPA], 11, [1, 3, 3], 5>;
defm : JWriteResYMMPair<WriteDPPSY, [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : X86WriteResPairUnsupported<WriteDPPSZ>;
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRcpX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRcpY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRsqrtX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRsqrtY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : JWriteResFpuPair<WriteFDiv64, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY, [JFPU1, JFPM], 42, [2, 42], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : JWriteResFpuPair<WriteFSqrt64, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y, [JFPU1, JFPM], 54, [2, 54], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : JWriteResFpuPair<WriteFSqrt80, [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRnd, [JFPU1, JSTC], 3>;
defm : JWriteResYMMPair<WriteFRndY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : JWriteResFpuPair<WriteFLogic, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFLogicY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : JWriteResFpuPair<WriteFTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFShuffleY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 3, [1, 4], 3>; // +1cy latency.
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX], 4, [2, 6], 6>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFBlendY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [4, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY, [JFPU01, JFPX], 3, [6, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCvtSS2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPS2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2IY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : JWriteResFpuPair<WriteCvtSD2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPD2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2IY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;
defm : X86WriteRes<WriteCvtI2SS, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SSLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : X86WriteRes<WriteCvtI2SD, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SDLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PD, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PDY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;
defm : JWriteResFpuPair<WriteCvtSS2SD, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPS2PD, [JFPU1, JSTC], 2, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2PDY, [JFPU1, JSTC], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;
defm : JWriteResFpuPair<WriteCvtSD2SS, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPD2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2PSY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;
defm : JWriteResFpuPair<WriteCvtPH2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPH2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;
defm : X86WriteRes<WriteCvtPS2PH, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHY, [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : X86WriteRes<WriteCvtPS2PHSt, [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteVecLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteVecLoadNT, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNTY, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad, [JLAGU, JFPU01, JVALU], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY, [JLAGU, JFPU01, JVALU], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteVecStoreNT, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNTY, [JSAGU, JFPU1, JSTC], 2, [2, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedStore, [JSAGU, JFPU01, JVALU], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteVecMaskedStoreY, [JSAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>;
defm : X86WriteRes<WriteVecMove, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveX, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveY, [JFPU01, JVALU], 1, [2, 2], 2>;
defm : X86WriteRes<WriteVecMoveToGpr, [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr, [JFPU01, JFPX], 8, [1, 1], 2>;
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : X86WriteResPairUnsupported<WriteVarVecShift>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX, [JFPU0, JVIMUL], 2>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2], 3>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : JWriteResFpuPair<WritePSADBW, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWX, [JFPU01, JVALU], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : JWriteResFpuPair<WritePHMINPOS, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleY>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [4, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : JWriteResFpuPair<WriteVecTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY, [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : X86WriteResPairUnsupported<WriteShuffle256>;
defm : X86WriteResPairUnsupported<WriteVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecInsert, [JFPU01, JVALU], 1, [1,1], 2>;
defm : X86WriteRes<WriteVecInsertLd, [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtract, [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtractSt, [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>;
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 7, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 8, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU01, JVALU, JFPU0, JVIMUL], 3, [1,1,1,1], 2>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 4>; // +1cy latency.
defm : JWriteResYMMPair<WriteFHAddY, [JFPU0, JFPA], 4, [2,2], 2>; // +1cy latency.
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WritePHAddY>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
let Latency = 2;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteVecExtractF128: SchedWriteRes<[JFPU01, JFPX]>;
def : InstRW<[JWriteVecExtractF128], (instrs VEXTRACTF128rr)>;
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
let ResourceCycles = [1, 2, 4];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd], (instrs VBROADCASTSDYrm,
VBROADCASTSSYrm,
VBROADCASTF128)>;
def JWriteJVZEROALL: SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
///////////////////////////////////////////////////////////////////////////////
// SSE2/AVX Store Selected Bytes of Double Quadword - (V)MASKMOVDQ
///////////////////////////////////////////////////////////////////////////////
def JWriteMASKMOVDQU: SchedWriteRes<[JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01]> {
let Latency = 34;
let ResourceCycles = [1, 1, 2, 2, 2, 16, 42];
let NumMicroOps = 63;
}
def : InstRW<[JWriteMASKMOVDQU], (instrs MASKMOVDQU, MASKMOVDQU64,
VMASKMOVDQU, VMASKMOVDQU64)>;
///////////////////////////////////////////////////////////////////////////////
// SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////
def JWriteZeroLatency : SchedWriteRes<[]> {
let Latency = 0;
}
def JWriteZeroIdiomYmm : SchedWriteRes<[JFPU01, JFPX]> {
let NumMicroOps = 2;
}
// Certain instructions that use the same register for both source
// operands do not have a real dependency on the previous contents of the
// register, and thus, do not have to wait before completing. They can be
// optimized out at register renaming stage.
// Reference: Section 10.8 of the "Software Optimization Guide for AMD Family
// 15h Processors".
// Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs",
// Section 21.8 [Dependency-breaking instructions].
def JWriteZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
XOR32rr, XOR64rr)>;
def JWriteFZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteFLogic]>
]>;
def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr,
ANDNPSrr, VANDNPSrr,
ANDNPDrr, VANDNPDrr)>;
def JWriteFZeroIdiomY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFLogicY]>
]>;
def : InstRW<[JWriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr,
VANDNPSYrr, VANDNPDYrr)>;
def JWriteVZeroIdiomLogic : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogic]>
]>;
def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>;
def JWriteVZeroIdiomLogicX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogicX]>
]>;
def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
PANDNrr, VPANDNrr)>;
def JWriteVZeroIdiomALU : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALU]>
]>;
def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr,
MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr,
MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr,
MMX_PCMPGTWirr)>;
def JWriteVZeroIdiomALUX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALUX]>
]>;
def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
PSUBDrr, VPSUBDrr,
PSUBQrr, VPSUBQrr,
PSUBWrr, VPSUBWrr,
PSUBSBrr, VPSUBSBrr,
PSUBSWrr, VPSUBSWrr,
PSUBUSBrr, VPSUBUSBrr,
PSUBUSWrr, VPSUBUSWrr,
PCMPGTBrr, VPCMPGTBrr,
PCMPGTDrr, VPCMPGTDrr,
PCMPGTQrr, VPCMPGTQrr,
PCMPGTWrr, VPCMPGTWrr)>;
def JWriteVPERM2F128 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomVPERMPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFShuffle256]>
]>;
def : InstRW<[JWriteVPERM2F128], (instrs VPERM2F128rr)>;
// This write is used for slow LEA instructions.
def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> {
let Latency = 2;
}
// On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA
// with a `Scale` value different than 1.
def JSlowLEAPredicate : MCSchedPredicate<
CheckAny<[
// A 3-operand LEA (base, index, offset).
IsThreeOperandsLEAFn,
// An LEA with a "Scale" different than 1.
CheckAll<[
CheckIsImmOperand<2>,
CheckNot<CheckImmOperand<2, 1>>
]>
]>
>;
def JWriteLEA : SchedWriteVariant<[
SchedVar<JSlowLEAPredicate, [JWrite3OpsLEA]>,
SchedVar<NoSchedPred, [WriteLEA]>
]>;
def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
def JSlowLEA16r : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [4];
}
def : InstRW<[JSlowLEA16r], (instrs LEA16r)>;
///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////
def : IsZeroIdiomFunction<[
// GPR Zero-idioms.
DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>,
// MMX Zero-idioms.
DepBreakingClass<[
MMX_PXORirr, MMX_PANDNirr, MMX_PSUBBirr,
MMX_PSUBDirr, MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr, MMX_PCMPGTWirr
], ZeroIdiomPredicate>,
// SSE Zero-idioms.
DepBreakingClass<[
// fp variants.
XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr,
// int variants.
PXORrr, PANDNrr,
PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr,
PCMPGTBrr, PCMPGTDrr, PCMPGTQrr, PCMPGTWrr
], ZeroIdiomPredicate>,
// AVX Zero-idioms.
DepBreakingClass<[
// xmm fp variants.
VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr,
// xmm int variants.
VPXORrr, VPANDNrr,
VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,
// ymm variants.
VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr
], ZeroIdiomPredicate>,
DepBreakingClass<[ VPERM2F128rr ], ZeroIdiomVPERMPredicate>
]>;
def : IsDepBreakingFunction<[
// GPR
DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>,
DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >,
// MMX
DepBreakingClass<[
MMX_PCMPEQBirr, MMX_PCMPEQDirr, MMX_PCMPEQWirr
], ZeroIdiomPredicate>,
// SSE
DepBreakingClass<[
PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr
], ZeroIdiomPredicate>,
// AVX
DepBreakingClass<[
VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr
], ZeroIdiomPredicate>
]>;
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], TruePred >
]>;
} // SchedModel