X86OptimizeLEAs.cpp 27.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that performs some optimizations with LEA
// instructions in order to improve performance and code size.
// Currently, it does two things:
// 1) If there are two LEA instructions calculating addresses which only differ
//    by displacement inside a basic block, one of them is removed.
// 2) Address calculations in load and store instructions are replaced by
//    existing LEA def registers where possible.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "x86-optimize-LEAs"

static cl::opt<bool>
    DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
                     cl::desc("X86: Disable LEA optimizations."),
                     cl::init(false));

STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");

/// Returns true if two machine operands are identical and they are not
/// physical registers.
static inline bool isIdenticalOp(const MachineOperand &MO1,
                                 const MachineOperand &MO2);

/// Returns true if two address displacement operands are of the same
/// type and use the same symbol/index/address regardless of the offset.
static bool isSimilarDispOp(const MachineOperand &MO1,
                            const MachineOperand &MO2);

/// Returns true if the instruction is LEA.
static inline bool isLEA(const MachineInstr &MI);

namespace {

/// A key based on instruction's memory operands.
class MemOpKey {
public:
  MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
           const MachineOperand *Index, const MachineOperand *Segment,
           const MachineOperand *Disp)
      : Disp(Disp) {
    Operands[0] = Base;
    Operands[1] = Scale;
    Operands[2] = Index;
    Operands[3] = Segment;
  }

  bool operator==(const MemOpKey &Other) const {
    // Addresses' bases, scales, indices and segments must be identical.
    for (int i = 0; i < 4; ++i)
      if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
        return false;

    // Addresses' displacements don't have to be exactly the same. It only
    // matters that they use the same symbol/index/address. Immediates' or
    // offsets' differences will be taken care of during instruction
    // substitution.
    return isSimilarDispOp(*Disp, *Other.Disp);
  }

  // Address' base, scale, index and segment operands.
  const MachineOperand *Operands[4];

  // Address' displacement operand.
  const MachineOperand *Disp;
};

} // end anonymous namespace

/// Provide DenseMapInfo for MemOpKey.
namespace llvm {

template <> struct DenseMapInfo<MemOpKey> {
  using PtrInfo = DenseMapInfo<const MachineOperand *>;

  static inline MemOpKey getEmptyKey() {
    return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
                    PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
                    PtrInfo::getEmptyKey());
  }

  static inline MemOpKey getTombstoneKey() {
    return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
                    PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
                    PtrInfo::getTombstoneKey());
  }

  static unsigned getHashValue(const MemOpKey &Val) {
    // Checking any field of MemOpKey is enough to determine if the key is
    // empty or tombstone.
    assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
    assert(Val.Disp != PtrInfo::getTombstoneKey() &&
           "Cannot hash the tombstone key");

    hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
                                  *Val.Operands[2], *Val.Operands[3]);

    // If the address displacement is an immediate, it should not affect the
    // hash so that memory operands which differ only be immediate displacement
    // would have the same hash. If the address displacement is something else,
    // we should reflect symbol/index/address in the hash.
    switch (Val.Disp->getType()) {
    case MachineOperand::MO_Immediate:
      break;
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      Hash = hash_combine(Hash, Val.Disp->getIndex());
      break;
    case MachineOperand::MO_ExternalSymbol:
      Hash = hash_combine(Hash, Val.Disp->getSymbolName());
      break;
    case MachineOperand::MO_GlobalAddress:
      Hash = hash_combine(Hash, Val.Disp->getGlobal());
      break;
    case MachineOperand::MO_BlockAddress:
      Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
      break;
    case MachineOperand::MO_MCSymbol:
      Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
      break;
    case MachineOperand::MO_MachineBasicBlock:
      Hash = hash_combine(Hash, Val.Disp->getMBB());
      break;
    default:
      llvm_unreachable("Invalid address displacement operand");
    }

    return (unsigned)Hash;
  }

  static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
    // Checking any field of MemOpKey is enough to determine if the key is
    // empty or tombstone.
    if (RHS.Disp == PtrInfo::getEmptyKey())
      return LHS.Disp == PtrInfo::getEmptyKey();
    if (RHS.Disp == PtrInfo::getTombstoneKey())
      return LHS.Disp == PtrInfo::getTombstoneKey();
    return LHS == RHS;
  }
};

} // end namespace llvm

/// Returns a hash table key based on memory operands of \p MI. The
/// number of the first memory operand of \p MI is specified through \p N.
static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
  assert((isLEA(MI) || MI.mayLoadOrStore()) &&
         "The instruction must be a LEA, a load or a store");
  return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
                  &MI.getOperand(N + X86::AddrScaleAmt),
                  &MI.getOperand(N + X86::AddrIndexReg),
                  &MI.getOperand(N + X86::AddrSegmentReg),
                  &MI.getOperand(N + X86::AddrDisp));
}

static inline bool isIdenticalOp(const MachineOperand &MO1,
                                 const MachineOperand &MO2) {
  return MO1.isIdenticalTo(MO2) &&
         (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
}

#ifndef NDEBUG
static bool isValidDispOp(const MachineOperand &MO) {
  return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
         MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
}
#endif

static bool isSimilarDispOp(const MachineOperand &MO1,
                            const MachineOperand &MO2) {
  assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
         "Address displacement operand is not valid");
  return (MO1.isImm() && MO2.isImm()) ||
         (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
         (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
         (MO1.isSymbol() && MO2.isSymbol() &&
          MO1.getSymbolName() == MO2.getSymbolName()) ||
         (MO1.isGlobal() && MO2.isGlobal() &&
          MO1.getGlobal() == MO2.getGlobal()) ||
         (MO1.isBlockAddress() && MO2.isBlockAddress() &&
          MO1.getBlockAddress() == MO2.getBlockAddress()) ||
         (MO1.isMCSymbol() && MO2.isMCSymbol() &&
          MO1.getMCSymbol() == MO2.getMCSymbol()) ||
         (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
}

static inline bool isLEA(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
         Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}

namespace {

class X86OptimizeLEAPass : public MachineFunctionPass {
public:
  X86OptimizeLEAPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "X86 LEA Optimize"; }

  /// Loop over all of the basic blocks, replacing address
  /// calculations in load and store instructions, if it's already
  /// been calculated by LEA. Also, remove redundant LEAs.
  bool runOnMachineFunction(MachineFunction &MF) override;

  static char ID;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

private:
  using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;

  /// Returns a distance between two instructions inside one basic block.
  /// Negative result means, that instructions occur in reverse order.
  int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);

  /// Choose the best \p LEA instruction from the \p List to replace
  /// address calculation in \p MI instruction. Return the address displacement
  /// and the distance between \p MI and the chosen \p BestLEA in
  /// \p AddrDispShift and \p Dist.
  bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
                     const MachineInstr &MI, MachineInstr *&BestLEA,
                     int64_t &AddrDispShift, int &Dist);

  /// Returns the difference between addresses' displacements of \p MI1
  /// and \p MI2. The numbers of the first memory operands for the instructions
  /// are specified through \p N1 and \p N2.
  int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
                           const MachineInstr &MI2, unsigned N2) const;

  /// Returns true if the \p Last LEA instruction can be replaced by the
  /// \p First. The difference between displacements of the addresses calculated
  /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
  /// replacement of the \p Last LEA's uses with the \p First's def register.
  bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
                     int64_t &AddrDispShift) const;

  /// Find all LEA instructions in the basic block. Also, assign position
  /// numbers to all instructions in the basic block to speed up calculation of
  /// distance between them.
  void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);

  /// Removes redundant address calculations.
  bool removeRedundantAddrCalc(MemOpMap &LEAs);

  /// Replace debug value MI with a new debug value instruction using register
  /// VReg with an appropriate offset and DIExpression to incorporate the
  /// address displacement AddrDispShift. Return new debug value instruction.
  MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
                                  int64_t AddrDispShift);

  /// Removes LEAs which calculate similar addresses.
  bool removeRedundantLEAs(MemOpMap &LEAs);

  DenseMap<const MachineInstr *, unsigned> InstrPos;

  MachineRegisterInfo *MRI = nullptr;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
};

} // end anonymous namespace

char X86OptimizeLEAPass::ID = 0;

FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
                false)

int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
                                      const MachineInstr &Last) {
  // Both instructions must be in the same basic block and they must be
  // presented in InstrPos.
  assert(Last.getParent() == First.getParent() &&
         "Instructions are in different basic blocks");
  assert(InstrPos.find(&First) != InstrPos.end() &&
         InstrPos.find(&Last) != InstrPos.end() &&
         "Instructions' positions are undefined");

  return InstrPos[&Last] - InstrPos[&First];
}

// Find the best LEA instruction in the List to replace address recalculation in
// MI. Such LEA must meet these requirements:
// 1) The address calculated by the LEA differs only by the displacement from
//    the address used in MI.
// 2) The register class of the definition of the LEA is compatible with the
//    register class of the address base register of MI.
// 3) Displacement of the new memory operand should fit in 1 byte if possible.
// 4) The LEA should be as close to MI as possible, and prior to it if
//    possible.
bool X86OptimizeLEAPass::chooseBestLEA(
    const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
    MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
  const MachineFunction *MF = MI.getParent()->getParent();
  const MCInstrDesc &Desc = MI.getDesc();
  int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
                X86II::getOperandBias(Desc);

  BestLEA = nullptr;

  // Loop over all LEA instructions.
  for (auto DefMI : List) {
    // Get new address displacement.
    int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);

    // Make sure address displacement fits 4 bytes.
    if (!isInt<32>(AddrDispShiftTemp))
      continue;

    // Check that LEA def register can be used as MI address base. Some
    // instructions can use a limited set of registers as address base, for
    // example MOV8mr_NOREX. We could constrain the register class of the LEA
    // def to suit MI, however since this case is very rare and hard to
    // reproduce in a test it's just more reliable to skip the LEA.
    if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
        MRI->getRegClass(DefMI->getOperand(0).getReg()))
      continue;

    // Choose the closest LEA instruction from the list, prior to MI if
    // possible. Note that we took into account resulting address displacement
    // as well. Also note that the list is sorted by the order in which the LEAs
    // occur, so the break condition is pretty simple.
    int DistTemp = calcInstrDist(*DefMI, MI);
    assert(DistTemp != 0 &&
           "The distance between two different instructions cannot be zero");
    if (DistTemp > 0 || BestLEA == nullptr) {
      // Do not update return LEA, if the current one provides a displacement
      // which fits in 1 byte, while the new candidate does not.
      if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
          isInt<8>(AddrDispShift))
        continue;

      BestLEA = DefMI;
      AddrDispShift = AddrDispShiftTemp;
      Dist = DistTemp;
    }

    // FIXME: Maybe we should not always stop at the first LEA after MI.
    if (DistTemp < 0)
      break;
  }

  return BestLEA != nullptr;
}

// Get the difference between the addresses' displacements of the two
// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
// passed through \p N1 and \p N2.
int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
                                             unsigned N1,
                                             const MachineInstr &MI2,
                                             unsigned N2) const {
  const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
  const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);

  assert(isSimilarDispOp(Op1, Op2) &&
         "Address displacement operands are not compatible");

  // After the assert above we can be sure that both operands are of the same
  // valid type and use the same symbol/index/address, thus displacement shift
  // calculation is rather simple.
  if (Op1.isJTI())
    return 0;
  return Op1.isImm() ? Op1.getImm() - Op2.getImm()
                     : Op1.getOffset() - Op2.getOffset();
}

// Check that the Last LEA can be replaced by the First LEA. To be so,
// these requirements must be met:
// 1) Addresses calculated by LEAs differ only by displacement.
// 2) Def registers of LEAs belong to the same class.
// 3) All uses of the Last LEA def register are replaceable, thus the
//    register is used only as address base.
bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
                                       const MachineInstr &Last,
                                       int64_t &AddrDispShift) const {
  assert(isLEA(First) && isLEA(Last) &&
         "The function works only with LEA instructions");

  // Make sure that LEA def registers belong to the same class. There may be
  // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
  // be used as their operands, so we must be sure that replacing one LEA
  // with another won't lead to putting a wrong register in the instruction.
  if (MRI->getRegClass(First.getOperand(0).getReg()) !=
      MRI->getRegClass(Last.getOperand(0).getReg()))
    return false;

  // Get new address displacement.
  AddrDispShift = getAddrDispShift(Last, 1, First, 1);

  // Loop over all uses of the Last LEA to check that its def register is
  // used only as address base for memory accesses. If so, it can be
  // replaced, otherwise - no.
  for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
    MachineInstr &MI = *MO.getParent();

    // Get the number of the first memory operand.
    const MCInstrDesc &Desc = MI.getDesc();
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);

    // If the use instruction has no memory operand - the LEA is not
    // replaceable.
    if (MemOpNo < 0)
      return false;

    MemOpNo += X86II::getOperandBias(Desc);

    // If the address base of the use instruction is not the LEA def register -
    // the LEA is not replaceable.
    if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
      return false;

    // If the LEA def register is used as any other operand of the use
    // instruction - the LEA is not replaceable.
    for (unsigned i = 0; i < MI.getNumOperands(); i++)
      if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
          isIdenticalOp(MI.getOperand(i), MO))
        return false;

    // Check that the new address displacement will fit 4 bytes.
    if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
        !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
                   AddrDispShift))
      return false;
  }

  return true;
}

void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
                                  MemOpMap &LEAs) {
  unsigned Pos = 0;
  for (auto &MI : MBB) {
    // Assign the position number to the instruction. Note that we are going to
    // move some instructions during the optimization however there will never
    // be a need to move two instructions before any selected instruction. So to
    // avoid multiple positions' updates during moves we just increase position
    // counter by two leaving a free space for instructions which will be moved.
    InstrPos[&MI] = Pos += 2;

    if (isLEA(MI))
      LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
  }
}

// Try to find load and store instructions which recalculate addresses already
// calculated by some LEA and replace their memory operands with its def
// register.
bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
  bool Changed = false;

  assert(!LEAs.empty());
  MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();

  // Process all instructions in basic block.
  for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr &MI = *I++;

    // Instruction must be load or store.
    if (!MI.mayLoadOrStore())
      continue;

    // Get the number of the first memory operand.
    const MCInstrDesc &Desc = MI.getDesc();
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);

    // If instruction has no memory operand - skip it.
    if (MemOpNo < 0)
      continue;

    MemOpNo += X86II::getOperandBias(Desc);

    // Do not call chooseBestLEA if there was no matching LEA
    auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
    if (Insns == LEAs.end())
      continue;

    // Get the best LEA instruction to replace address calculation.
    MachineInstr *DefMI;
    int64_t AddrDispShift;
    int Dist;
    if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
      continue;

    // If LEA occurs before current instruction, we can freely replace
    // the instruction. If LEA occurs after, we can lift LEA above the
    // instruction and this way to be able to replace it. Since LEA and the
    // instruction have similar memory operands (thus, the same def
    // instructions for these operands), we can always do that, without
    // worries of using registers before their defs.
    if (Dist < 0) {
      DefMI->removeFromParent();
      MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
      InstrPos[DefMI] = InstrPos[&MI] - 1;

      // Make sure the instructions' position numbers are sane.
      assert(((InstrPos[DefMI] == 1 &&
               MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
              InstrPos[DefMI] >
                  InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
             "Instruction positioning is broken");
    }

    // Since we can possibly extend register lifetime, clear kill flags.
    MRI->clearKillFlags(DefMI->getOperand(0).getReg());

    ++NumSubstLEAs;
    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););

    // Change instruction operands.
    MI.getOperand(MemOpNo + X86::AddrBaseReg)
        .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
    MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
    MI.getOperand(MemOpNo + X86::AddrIndexReg)
        .ChangeToRegister(X86::NoRegister, false);
    MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
    MI.getOperand(MemOpNo + X86::AddrSegmentReg)
        .ChangeToRegister(X86::NoRegister, false);

    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););

    Changed = true;
  }

  return Changed;
}

MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
                                                    unsigned VReg,
                                                    int64_t AddrDispShift) {
  DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
  if (AddrDispShift != 0)
    Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);

  // Replace DBG_VALUE instruction with modified version.
  MachineBasicBlock *MBB = MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  bool IsIndirect = MI.isIndirectDebugValue();
  const MDNode *Var = MI.getDebugVariable();
  if (IsIndirect)
    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
  return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
                 IsIndirect, VReg, Var, Expr);
}

// Try to find similar LEAs in the list and replace one with another.
bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
  bool Changed = false;

  // Loop over all entries in the table.
  for (auto &E : LEAs) {
    auto &List = E.second;

    // Loop over all LEA pairs.
    auto I1 = List.begin();
    while (I1 != List.end()) {
      MachineInstr &First = **I1;
      auto I2 = std::next(I1);
      while (I2 != List.end()) {
        MachineInstr &Last = **I2;
        int64_t AddrDispShift;

        // LEAs should be in occurrence order in the list, so we can freely
        // replace later LEAs with earlier ones.
        assert(calcInstrDist(First, Last) > 0 &&
               "LEAs must be in occurrence order in the list");

        // Check that the Last LEA instruction can be replaced by the First.
        if (!isReplaceable(First, Last, AddrDispShift)) {
          ++I2;
          continue;
        }

        // Loop over all uses of the Last LEA and update their operands. Note
        // that the correctness of this has already been checked in the
        // isReplaceable function.
        Register FirstVReg = First.getOperand(0).getReg();
        Register LastVReg = Last.getOperand(0).getReg();
        for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
             UI != UE;) {
          MachineOperand &MO = *UI++;
          MachineInstr &MI = *MO.getParent();

          if (MI.isDebugValue()) {
            // Replace DBG_VALUE instruction with modified version using the
            // register from the replacing LEA and the address displacement
            // between the LEA instructions.
            replaceDebugValue(MI, FirstVReg, AddrDispShift);
            continue;
          }

          // Get the number of the first memory operand.
          const MCInstrDesc &Desc = MI.getDesc();
          int MemOpNo =
              X86II::getMemoryOperandNo(Desc.TSFlags) +
              X86II::getOperandBias(Desc);

          // Update address base.
          MO.setReg(FirstVReg);

          // Update address disp.
          MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
          if (Op.isImm())
            Op.setImm(Op.getImm() + AddrDispShift);
          else if (!Op.isJTI())
            Op.setOffset(Op.getOffset() + AddrDispShift);
        }

        // Since we can possibly extend register lifetime, clear kill flags.
        MRI->clearKillFlags(FirstVReg);

        ++NumRedundantLEAs;
        LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
                   Last.dump(););

        // By this moment, all of the Last LEA's uses must be replaced. So we
        // can freely remove it.
        assert(MRI->use_empty(LastVReg) &&
               "The LEA's def register must have no uses");
        Last.eraseFromParent();

        // Erase removed LEA from the list.
        I2 = List.erase(I2);

        Changed = true;
      }
      ++I1;
    }
  }

  return Changed;
}

bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
    return false;

  MRI = &MF.getRegInfo();
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
  auto *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
               &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
               nullptr;

  // Process all basic blocks.
  for (auto &MBB : MF) {
    MemOpMap LEAs;
    InstrPos.clear();

    // Find all LEA instructions in basic block.
    findLEAs(MBB, LEAs);

    // If current basic block has no LEAs, move on to the next one.
    if (LEAs.empty())
      continue;

    // Remove redundant LEA instructions.
    Changed |= removeRedundantLEAs(LEAs);

    // Remove redundant address calculations. Do it only for -Os/-Oz since only
    // a code size gain is expected from this part of the pass.
    bool OptForSize = MF.getFunction().hasOptSize() ||
                      llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
    if (OptForSize)
      Changed |= removeRedundantAddrCalc(LEAs);
  }

  return Changed;
}