X86InstrFMA.td 33.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes FMA (Fused Multiply-Add) instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// FMA3 - Intel 3 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//

// For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses
// defined below, both the register and memory variants are commutable.
// For the register form the commutable operands are 1, 2 and 3.
// For the memory variant the folded operand must be in 3. Thus,
// in that case, only the operands 1 and 2 can be swapped.
// Commuting some of operands may require the opcode change.
// FMA*213*:
//   operands 1 and 2 (memory & register forms): *213* --> *213*(no changes);
//   operands 1 and 3 (register forms only):     *213* --> *231*;
//   operands 2 and 3 (register forms only):     *213* --> *132*.
// FMA*132*:
//   operands 1 and 2 (memory & register forms): *132* --> *231*;
//   operands 1 and 3 (register forms only):     *132* --> *132*(no changes);
//   operands 2 and 3 (register forms only):     *132* --> *213*.
// FMA*231*:
//   operands 1 and 2 (memory & register forms): *231* --> *132*;
//   operands 1 and 3 (register forms only):     *231* --> *213*;
//   operands 2 and 3 (register forms only):     *231* --> *231*(no changes).

multiclass fma3p_rm_213<bits<8> opc, string OpcodeStr, RegisterClass RC,
                        ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
                        SDNode Op, X86FoldableSchedWrite sched> {
  def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, RC:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, RC:$src3)))]>,
                   Sched<[sched]>;

  let mayLoad = 1 in
  def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, x86memop:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set RC:$dst, (VT (Op RC:$src2, RC:$src1,
                                          (MemFrag addr:$src3))))]>,
                   Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

multiclass fma3p_rm_231<bits<8> opc, string OpcodeStr, RegisterClass RC,
                        ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
                        SDNode Op, X86FoldableSchedWrite sched> {
  let hasSideEffects = 0 in
  def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, RC:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   []>, Sched<[sched]>;

  let mayLoad = 1 in
  def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, x86memop:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set RC:$dst, (VT (Op RC:$src2, (MemFrag addr:$src3),
                                          RC:$src1)))]>,
                   Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

multiclass fma3p_rm_132<bits<8> opc, string OpcodeStr, RegisterClass RC,
                        ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
                        SDNode Op, X86FoldableSchedWrite sched> {
  let hasSideEffects = 0 in
  def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, RC:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   []>, Sched<[sched]>;

  // Pattern is 312 order so that the load is in a different place from the
  // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
  let mayLoad = 1 in
  def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
                   (ins RC:$src1, RC:$src2, x86memop:$src3),
                   !strconcat(OpcodeStr,
                              "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set RC:$dst, (VT (Op (MemFrag addr:$src3), RC:$src1,
                                          RC:$src2)))]>,
                   Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1,
    Uses = [MXCSR], mayRaiseFPException = 1 in
multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
                       string OpcodeStr, string PackTy, string Suff,
                       PatFrag MemFrag128, PatFrag MemFrag256,
                       SDNode Op, ValueType OpTy128, ValueType OpTy256,
                       X86SchedWriteWidths sched> {
  defm NAME#213#Suff : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
                                    VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
  defm NAME#231#Suff : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
                                    VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
  defm NAME#132#Suff : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
                                    VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;

  defm NAME#213#Suff#Y : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
                                      VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
                                      VEX_L;
  defm NAME#231#Suff#Y : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
                                      VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
                                      VEX_L;
  defm NAME#132#Suff#Y : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
                                      VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
                                      VEX_L;
}

// Fused Multiply-Add
let ExeDomain = SSEPackedSingle in {
  defm VFMADD    : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS",
                               loadv4f32, loadv8f32, X86any_Fmadd, v4f32, v8f32,
                               SchedWriteFMA>;
  defm VFMSUB    : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS",
                               loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32,
                               SchedWriteFMA>;
  defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS",
                               loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32,
                               SchedWriteFMA>;
  defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS",
                               loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32,
                               SchedWriteFMA>;
}

let ExeDomain = SSEPackedDouble in {
  defm VFMADD    : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD",
                               loadv2f64, loadv4f64, X86any_Fmadd, v2f64,
                               v4f64, SchedWriteFMA>, VEX_W;
  defm VFMSUB    : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD",
                               loadv2f64, loadv4f64, X86Fmsub, v2f64,
                               v4f64, SchedWriteFMA>, VEX_W;
  defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD",
                               loadv2f64, loadv4f64, X86Fmaddsub,
                               v2f64, v4f64, SchedWriteFMA>, VEX_W;
  defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD",
                               loadv2f64, loadv4f64, X86Fmsubadd,
                               v2f64, v4f64, SchedWriteFMA>, VEX_W;
}

// Fused Negative Multiply-Add
let ExeDomain = SSEPackedSingle in {
  defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32,
                             loadv8f32, X86Fnmadd, v4f32, v8f32, SchedWriteFMA>;
  defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32,
                             loadv8f32, X86Fnmsub, v4f32, v8f32, SchedWriteFMA>;
}
let ExeDomain = SSEPackedDouble in {
  defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64,
                             loadv4f64, X86Fnmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W;
  defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64,
                             loadv4f64, X86Fnmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W;
}

// All source register operands of FMA opcodes defined in fma3s_rm multiclass
// can be commuted. In many cases such commute transformation requres an opcode
// adjustment, for example, commuting the operands 1 and 2 in FMA*132 form
// would require an opcode change to FMA*231:
//     FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2;
//     -->
//     FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2;
// Please see more detailed comment at the very beginning of the section
// defining FMA3 opcodes above.
multiclass fma3s_rm_213<bits<8> opc, string OpcodeStr,
                        X86MemOperand x86memop, RegisterClass RC,
                        SDPatternOperator OpNode,
                        X86FoldableSchedWrite sched> {
  def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, RC:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>,
                Sched<[sched]>;

  let mayLoad = 1 in
  def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, x86memop:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                [(set RC:$dst,
                  (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>,
                Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

multiclass fma3s_rm_231<bits<8> opc, string OpcodeStr,
                        X86MemOperand x86memop, RegisterClass RC,
                        SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
  let hasSideEffects = 0 in
  def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, RC:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                []>, Sched<[sched]>;

  let mayLoad = 1 in
  def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, x86memop:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                [(set RC:$dst,
                  (OpNode RC:$src2, (load addr:$src3), RC:$src1))]>,
                Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

multiclass fma3s_rm_132<bits<8> opc, string OpcodeStr,
                        X86MemOperand x86memop, RegisterClass RC,
                        SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
  let hasSideEffects = 0 in
  def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, RC:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                []>, Sched<[sched]>;

  // Pattern is 312 order so that the load is in a different place from the
  // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
  let mayLoad = 1 in
  def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
                (ins RC:$src1, RC:$src2, x86memop:$src3),
                !strconcat(OpcodeStr,
                           "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                [(set RC:$dst,
                  (OpNode (load addr:$src3), RC:$src1, RC:$src2))]>,
                Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1,
    hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in
multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
                       string OpStr, string PackTy, string Suff,
                       SDNode OpNode, RegisterClass RC,
                       X86MemOperand x86memop, X86FoldableSchedWrite sched> {
  defm NAME#213#Suff : fma3s_rm_213<opc213, !strconcat(OpStr, "213", PackTy),
                                    x86memop, RC, OpNode, sched>;
  defm NAME#231#Suff : fma3s_rm_231<opc231, !strconcat(OpStr, "231", PackTy),
                                    x86memop, RC, OpNode, sched>;
  defm NAME#132#Suff : fma3s_rm_132<opc132, !strconcat(OpStr, "132", PackTy),
                                    x86memop, RC, OpNode, sched>;
}

// These FMA*_Int instructions are defined specially for being used when
// the scalar FMA intrinsics are lowered to machine instructions, and in that
// sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc.
// instructions.
//
// All of the FMA*_Int opcodes are defined as commutable here.
// Commuting the 2nd and 3rd source register operands of FMAs is quite trivial
// and the corresponding optimizations have been developed.
// Commuting the 1st operand of FMA*_Int requires some additional analysis,
// the commute optimization is legal only if all users of FMA*_Int use only
// the lowest element of the FMA*_Int instruction. Even though such analysis
// may be not implemented yet we allow the routines doing the actual commute
// transformation to decide if one or another instruction is commutable or not.
let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0,
    Uses = [MXCSR], mayRaiseFPException = 1 in
multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr,
                        Operand memopr, RegisterClass RC,
                        X86FoldableSchedWrite sched> {
  def r_Int : FMA3S_Int<opc, MRMSrcReg, (outs RC:$dst),
                        (ins RC:$src1, RC:$src2, RC:$src3),
                        !strconcat(OpcodeStr,
                                   "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                        []>, Sched<[sched]>;

  let mayLoad = 1 in
  def m_Int : FMA3S_Int<opc, MRMSrcMem, (outs RC:$dst),
                        (ins RC:$src1, RC:$src2, memopr:$src3),
                        !strconcat(OpcodeStr,
                                   "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                        []>, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
}

// The FMA 213 form is created for lowering of scalar FMA intrinscis
// to machine instructions.
// The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands
// of FMA 213 form.
// The FMA 231 form can be get only by commuting the 1st operand of 213 or 132
// forms and is possible only after special analysis of all uses of the initial
// instruction. Such analysis do not exist yet and thus introducing the 231
// form of FMA*_Int instructions is done using an optimistic assumption that
// such analysis will be implemented eventually.
multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
                           string OpStr, string PackTy, string Suff,
                           RegisterClass RC, Operand memop,
                           X86FoldableSchedWrite sched> {
  defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy),
                                    memop, RC, sched>;
  defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy),
                                    memop, RC, sched>;
  defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy),
                                    memop, RC, sched>;
}

multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
                 string OpStr, SDNode OpNode, X86FoldableSchedWrite sched> {
  let ExeDomain = SSEPackedSingle in
  defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode,
                          FR32, f32mem, sched>,
              fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS",
                              VR128, ssmem, sched>;

  let ExeDomain = SSEPackedDouble in
  defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode,
                        FR64, f64mem, sched>,
              fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD",
                              VR128, sdmem, sched>, VEX_W;
}

defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", X86any_Fmadd,
                    SchedWriteFMA.Scl>, VEX_LIG;
defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86Fmsub,
                    SchedWriteFMA.Scl>, VEX_LIG;

defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86Fnmadd,
                     SchedWriteFMA.Scl>, VEX_LIG;
defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86Fnmsub,
                     SchedWriteFMA.Scl>, VEX_LIG;

multiclass scalar_fma_patterns<SDNode Op, string Prefix, string Suffix,
                               SDNode Move, ValueType VT, ValueType EltVT,
                               RegisterClass RC, PatFrag mem_frag> {
  let Predicates = [HasFMA, NoAVX512] in {
    def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
                (Op RC:$src2,
                    (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
                    RC:$src3))))),
              (!cast<Instruction>(Prefix#"213"#Suffix#"r_Int")
               VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;

    def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
                (Op RC:$src2, RC:$src3,
                    (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
              (!cast<Instruction>(Prefix#"231"#Suffix#"r_Int")
               VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;

    def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
                (Op RC:$src2,
                    (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
                    (mem_frag addr:$src3)))))),
              (!cast<Instruction>(Prefix#"213"#Suffix#"m_Int")
               VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               addr:$src3)>;

    def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
                (Op (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
                    (mem_frag addr:$src3), RC:$src2))))),
              (!cast<Instruction>(Prefix#"132"#Suffix#"m_Int")
               VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               addr:$src3)>;

    def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
                (Op RC:$src2, (mem_frag addr:$src3),
                    (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
              (!cast<Instruction>(Prefix#"231"#Suffix#"m_Int")
               VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               addr:$src3)>;
  }
}

defm : scalar_fma_patterns<X86any_Fmadd, "VFMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;

defm : scalar_fma_patterns<X86any_Fmadd, "VFMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;

//===----------------------------------------------------------------------===//
// FMA4 - AMD 4 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//

let Uses = [MXCSR], mayRaiseFPException = 1 in
multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
                 X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
                 PatFrag mem_frag, X86FoldableSchedWrite sched> {
  let isCommutable = 1 in
  def rr : FMA4S<opc, MRMSrcRegOp4, (outs RC:$dst),
           (ins RC:$src1, RC:$src2, RC:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set RC:$dst,
             (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG,
           Sched<[sched]>;
  def rm : FMA4S<opc, MRMSrcMemOp4, (outs RC:$dst),
           (ins RC:$src1, RC:$src2, x86memop:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
                           (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG,
           Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
  def mr : FMA4S<opc, MRMSrcMem, (outs RC:$dst),
           (ins RC:$src1, x86memop:$src2, RC:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set RC:$dst,
             (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG,
           Sched<[sched.Folded, sched.ReadAfterFold,
                  // x86memop:$src2
                  ReadDefault, ReadDefault, ReadDefault, ReadDefault,
                  ReadDefault,
                  // RC:$src3
                  sched.ReadAfterFold]>;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
  def rr_REV : FMA4S<opc, MRMSrcReg, (outs RC:$dst),
               (ins RC:$src1, RC:$src2, RC:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
               VEX_LIG, FoldGenData<NAME#rr>, Sched<[sched]>;
}

multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
                     ValueType VT, X86FoldableSchedWrite sched> {
let isCodeGenOnly = 1, hasSideEffects = 0,
    Uses = [MXCSR], mayRaiseFPException = 1 in {
  def rr_Int : FMA4S_Int<opc, MRMSrcRegOp4, (outs VR128:$dst),
               (ins VR128:$src1, VR128:$src2, VR128:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
               []>, VEX_W, VEX_LIG, Sched<[sched]>;
  let mayLoad = 1 in
  def rm_Int : FMA4S_Int<opc, MRMSrcMemOp4, (outs VR128:$dst),
               (ins VR128:$src1, VR128:$src2, memop:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
               []>, VEX_W, VEX_LIG,
               Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
  let mayLoad = 1 in
  def mr_Int : FMA4S_Int<opc, MRMSrcMem, (outs VR128:$dst),
               (ins VR128:$src1, memop:$src2, VR128:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
               []>,
               VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold,
                               // memop:$src2
                               ReadDefault, ReadDefault, ReadDefault,
                               ReadDefault, ReadDefault,
                               // VR128::$src3
                               sched.ReadAfterFold]>;
  def rr_Int_REV : FMA4S_Int<opc, MRMSrcReg, (outs VR128:$dst),
               (ins VR128:$src1, VR128:$src2, VR128:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
               []>, VEX_LIG, FoldGenData<NAME#rr_Int>, Sched<[sched]>;
} // isCodeGenOnly = 1
}

let Uses = [MXCSR], mayRaiseFPException = 1 in
multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
                 ValueType OpVT128, ValueType OpVT256,
                 PatFrag ld_frag128, PatFrag ld_frag256,
                 X86SchedWriteWidths sched> {
  let isCommutable = 1 in
  def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
           (ins VR128:$src1, VR128:$src2, VR128:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR128:$dst,
             (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
           VEX_W, Sched<[sched.XMM]>;
  def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
           (ins VR128:$src1, VR128:$src2, f128mem:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
                              (ld_frag128 addr:$src3)))]>, VEX_W,
           Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold, sched.XMM.ReadAfterFold]>;
  def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
           (ins VR128:$src1, f128mem:$src2, VR128:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR128:$dst,
             (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>,
           Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold,
                  // f128mem:$src2
                  ReadDefault, ReadDefault, ReadDefault, ReadDefault,
                  ReadDefault,
                  // VR128::$src3
                  sched.XMM.ReadAfterFold]>;
  let isCommutable = 1 in
  def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst),
           (ins VR256:$src1, VR256:$src2, VR256:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR256:$dst,
             (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
           VEX_W, VEX_L, Sched<[sched.YMM]>;
  def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst),
           (ins VR256:$src1, VR256:$src2, f256mem:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
                              (ld_frag256 addr:$src3)))]>, VEX_W, VEX_L,
           Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold, sched.YMM.ReadAfterFold]>;
  def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
           (ins VR256:$src1, f256mem:$src2, VR256:$src3),
           !strconcat(OpcodeStr,
           "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
           [(set VR256:$dst, (OpNode VR256:$src1,
                              (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L,
           Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold,
                  // f256mem:$src2
                  ReadDefault, ReadDefault, ReadDefault, ReadDefault,
                  ReadDefault,
                  // VR256::$src3
                  sched.YMM.ReadAfterFold]>;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
  def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
               (ins VR128:$src1, VR128:$src2, VR128:$src3),
               !strconcat(OpcodeStr,
               "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
               Sched<[sched.XMM]>, FoldGenData<NAME#rr>;
  def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
                (ins VR256:$src1, VR256:$src2, VR256:$src3),
                !strconcat(OpcodeStr,
                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
                VEX_L, Sched<[sched.YMM]>, FoldGenData<NAME#Yrr>;
} // isCodeGenOnly = 1
}

let ExeDomain = SSEPackedSingle in {
  // Scalar Instructions
  defm VFMADDSS4  : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86any_Fmadd, loadf32,
                          SchedWriteFMA.Scl>,
                    fma4s_int<0x6A, "vfmaddss", ssmem, v4f32,
                              SchedWriteFMA.Scl>;
  defm VFMSUBSS4  : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32,
                          SchedWriteFMA.Scl>,
                    fma4s_int<0x6E, "vfmsubss", ssmem, v4f32,
                              SchedWriteFMA.Scl>;
  defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
                          X86Fnmadd, loadf32, SchedWriteFMA.Scl>,
                    fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32,
                              SchedWriteFMA.Scl>;
  defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
                          X86Fnmsub, loadf32, SchedWriteFMA.Scl>,
                    fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32,
                              SchedWriteFMA.Scl>;
  // Packed Instructions
  defm VFMADDPS4    : fma4p<0x68, "vfmaddps", X86any_Fmadd, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
  defm VFMSUBPS4    : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
  defm VFNMADDPS4   : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
  defm VFNMSUBPS4   : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
  defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
  defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
                            loadv4f32, loadv8f32, SchedWriteFMA>;
}

let ExeDomain = SSEPackedDouble in {
  // Scalar Instructions
  defm VFMADDSD4  : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86any_Fmadd, loadf64,
                          SchedWriteFMA.Scl>,
                    fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64,
                              SchedWriteFMA.Scl>;
  defm VFMSUBSD4  : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64,
                          SchedWriteFMA.Scl>,
                    fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64,
                              SchedWriteFMA.Scl>;
  defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
                          X86Fnmadd, loadf64, SchedWriteFMA.Scl>,
                    fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64,
                              SchedWriteFMA.Scl>;
  defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
                          X86Fnmsub, loadf64, SchedWriteFMA.Scl>,
                    fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64,
                              SchedWriteFMA.Scl>;
  // Packed Instructions
  defm VFMADDPD4    : fma4p<0x69, "vfmaddpd", X86any_Fmadd, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
  defm VFMSUBPD4    : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
  defm VFNMADDPD4   : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
  defm VFNMSUBPD4   : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
  defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
  defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
                            loadv2f64, loadv4f64, SchedWriteFMA>;
}

multiclass scalar_fma4_patterns<SDNode Op, string Name,
                               ValueType VT, ValueType EltVT,
                               RegisterClass RC, PatFrag mem_frag> {
  let Predicates = [HasFMA4] in {
    def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
                                  (Op RC:$src1, RC:$src2, RC:$src3))))),
              (!cast<Instruction>(Name#"rr_Int")
               (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
               (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
               (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;

    def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
                                  (Op RC:$src1, RC:$src2,
                                      (mem_frag addr:$src3)))))),
              (!cast<Instruction>(Name#"rm_Int")
               (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
               (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>;

    def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
                                  (Op RC:$src1, (mem_frag addr:$src2),
                                      RC:$src3))))),
              (!cast<Instruction>(Name#"mr_Int")
               (VT (COPY_TO_REGCLASS RC:$src1, VR128)), addr:$src2,
               (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
  }
}

defm : scalar_fma4_patterns<X86any_Fmadd, "VFMADDSS4", v4f32, f32, FR32, loadf32>;
defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSS4", v4f32, f32, FR32, loadf32>;
defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSS4", v4f32, f32, FR32, loadf32>;
defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSS4", v4f32, f32, FR32, loadf32>;

defm : scalar_fma4_patterns<X86any_Fmadd, "VFMADDSD4", v2f64, f64, FR64, loadf64>;
defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSD4", v2f64, f64, FR64, loadf64>;
defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSD4", v2f64, f64, FR64, loadf64>;
defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSD4", v2f64, f64, FR64, loadf64>;