X86ISelLowering.h 66.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H

#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"

namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;

  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType : unsigned {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// Bit scan forward.
      BSF,
      /// Bit scan reverse.
      BSR,

      /// Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      ///  Bitwise logical ANDNOT of floating point values. This
      /// corresponds to X86::ANDNPS or X86::ANDNPD.
      FANDN,

      /// These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      CALL,

      /// Same as call except it adds the NoTrack prefix.
      NT_CALL,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
      /// operand, usually produced by a CMP instruction.
      SETCC,

      /// X86 Select
      SELECTS,

      // Same as SETCC except it's materialized with a sbb and the value is all
      // one's or all zero's.
      SETCC_CARRY,  // R = carry_bit ? ~0 : 0

      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
      /// Operands are two FP values to compare; result is a mask of
      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
      FSETCC,

      /// X86 FP SETCC, similar to above, but with output as an i1 mask and
      /// and a version with SAE.
      FSETCCM, FSETCCM_SAE,

      /// X86 conditional moves. Operand 0 and operand 1 are the two values
      /// to select from. Operand 2 is the condition code, and operand 3 is the
      /// flag operand produced by a CMP or TEST instruction.
      CMOV,

      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
      /// is the block to branch if condition is true, operand 2 is the
      /// condition code, and operand 3 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
      /// operand 1 is the target address.
      NT_BRIND,

      /// Return with a flag operand. Operand 0 is the chain operand, operand
      /// 1 is the number of bytes of stack to pop.
      RET_FLAG,

      /// Return from interrupt. Operand 0 is the number of bytes to pop.
      IRET,

      /// Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// A wrapper node for TargetConstantPool, TargetJumpTable,
      /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
      /// MCSymbol and TargetBlockAddress.
      Wrapper,

      /// Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// Copies a 64-bit value from an MMX vector to the low word
      /// of an XMM vector, with the high word zero filled.
      MOVQ2DQ,

      /// Copies a 64-bit value from the low word of an XMM vector
      /// to an MMX vector.
      MOVDQ2Q,

      /// Copies a 32-bit value from the low word of a MMX
      /// vector to a GPR.
      MMX_MOVD2W,

      /// Copies a GPR into the low 32-bit word of a MMX vector
      /// and zero out the high word.
      MMX_MOVW2D,

      /// Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW,

      /// Shuffle 16 8-bit values within a vector.
      PSHUFB,

      /// Compute Sum of Absolute Differences.
      PSADBW,
      /// Compute Double Block Packed Sum-Absolute-Differences
      DBPSADBW,

      /// Bitwise Logical AND NOT of Packed FP values.
      ANDNP,

      /// Blend where the selector is an immediate.
      BLENDI,

      /// Dynamic (non-constant condition) vector blend where only the sign bits
      /// of the condition elements are used. This is used to enforce that the
      /// condition mask is not valid for generic VSELECT optimizations. This
      /// is also used to implement the intrinsics.
      /// Operands are in VSELECT order: MASK, TRUE, FALSE
      BLENDV,

      /// Combined add and sub on an FP vector.
      ADDSUB,

      //  FP vector ops with rounding mode.
      FADD_RND, FADDS, FADDS_RND,
      FSUB_RND, FSUBS, FSUBS_RND,
      FMUL_RND, FMULS, FMULS_RND,
      FDIV_RND, FDIVS, FDIVS_RND,
      FMAX_SAE, FMAXS_SAE,
      FMIN_SAE, FMINS_SAE,
      FSQRT_RND, FSQRTS, FSQRTS_RND,

      // FP vector get exponent.
      FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
      // Extract Normalized Mantissas.
      VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
      // FP Scale.
      SCALEF, SCALEF_RND,
      SCALEFS, SCALEFS_RND,

      // Unsigned Integer average.
      AVG,

      /// Integer horizontal add/sub.
      HADD,
      HSUB,

      /// Floating point horizontal add/sub.
      FHADD,
      FHSUB,

      // Detect Conflicts Within a Vector
      CONFLICT,

      /// Floating point max and min.
      FMAX, FMIN,

      /// Commutative FMIN and FMAX.
      FMAXC, FMINC,

      /// Scalar intrinsic floating point max and min.
      FMAXS, FMINS,

      /// Floating point reciprocal-sqrt and reciprocal approximation.
      /// Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // AVX-512 reciprocal approximations with a little more precision.
      RSQRT14, RSQRT14S, RCP14, RCP14S,

      // Thread Local Storage.
      TLSADDR,

      // Thread Local Storage. A call to get the start address
      // of the TLS block for the current module.
      TLSBASEADDR,

      // Thread Local Storage.  When calling to an OS provided
      // thunk at the address from an earlier relocation.
      TLSCALL,

      // Exception Handling helpers.
      EH_RETURN,

      // SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      // SjLj exception handling dispatch.
      EH_SJLJ_SETUP_DISPATCH,

      /// Tail call return. See X86TargetLowering::LowerCall for
      /// the list of operands.
      TC_RETURN,

      // Vector move to low scalar and zero higher vector elements.
      VZEXT_MOVL,

      // Vector integer truncate.
      VTRUNC,
      // Vector integer truncate with unsigned/signed saturation.
      VTRUNCUS, VTRUNCS,

      // Masked version of the above. Used when less than a 128-bit result is
      // produced since the mask only applies to the lower elements and can't
      // be represented by a select.
      // SRC, PASSTHRU, MASK
      VMTRUNC, VMTRUNCUS, VMTRUNCS,

      // Vector FP extend.
      VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,

      // Vector FP round.
      VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,

      // Masked version of above. Used for v2f64->v4f32.
      // SRC, PASSTHRU, MASK
      VMFPROUND,

      // 128-bit vector logical left / right shift
      VSHLDQ, VSRLDQ,

      // Vector shift elements
      VSHL, VSRL, VSRA,

      // Vector variable shift
      VSHLV, VSRLV, VSRAV,

      // Vector shift elements by immediate
      VSHLI, VSRLI, VSRAI,

      // Shifts of mask registers.
      KSHIFTL, KSHIFTR,

      // Bit rotate by immediate
      VROTLI, VROTRI,

      // Vector packed double/float comparison.
      CMPP,

      // Vector integer comparisons.
      PCMPEQ, PCMPGT,

      // v8i16 Horizontal minimum and position.
      PHMINPOS,

      MULTISHIFT,

      /// Vector comparison generating mask bits for fp and
      /// integer signed and unsigned data types.
      CMPM,
      // Vector comparison with SAE for FP values
      CMPM_SAE,

      // Arithmetic operations with FLAGS results.
      ADD, SUB, ADC, SBB, SMUL, UMUL,
      OR, XOR, AND,

      // Bit field extract.
      BEXTR,

      // Zero High Bits Starting with Specified Bit Position.
      BZHI,

      // X86-specific multiply by immediate.
      MUL_IMM,

      // Vector sign bit extraction.
      MOVMSK,

      // Vector bitwise comparisons.
      PTEST,

      // Vector packed fp sign bitwise comparisons.
      TESTP,

      // OR/AND test for masks.
      KORTEST,
      KTEST,

      // ADD for masks.
      KADD,

      // Several flavors of instructions with vector shuffle behaviors.
      // Saturated signed/unnsigned packing.
      PACKSS,
      PACKUS,
      // Intra-lane alignr.
      PALIGNR,
      // AVX512 inter-lane alignr.
      VALIGN,
      PSHUFD,
      PSHUFHW,
      PSHUFLW,
      SHUFP,
      // VBMI2 Concat & Shift.
      VSHLD,
      VSHRD,
      VSHLDV,
      VSHRDV,
      //Shuffle Packed Values at 128-bit granularity.
      SHUF128,
      MOVDDUP,
      MOVSHDUP,
      MOVSLDUP,
      MOVLHPS,
      MOVHLPS,
      MOVSD,
      MOVSS,
      UNPCKL,
      UNPCKH,
      VPERMILPV,
      VPERMILPI,
      VPERMI,
      VPERM2X128,

      // Variable Permute (VPERM).
      // Res = VPERMV MaskV, V0
      VPERMV,

      // 3-op Variable Permute (VPERMT2).
      // Res = VPERMV3 V0, MaskV, V1
      VPERMV3,

      // Bitwise ternary logic.
      VPTERNLOG,
      // Fix Up Special Packed Float32/64 values.
      VFIXUPIMM, VFIXUPIMM_SAE,
      VFIXUPIMMS, VFIXUPIMMS_SAE,
      // Range Restriction Calculation For Packed Pairs of Float32/64 values.
      VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
      // Reduce - Perform Reduction Transformation on scalar\packed FP.
      VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
      // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
      // Also used by the legacy (V)ROUND intrinsics where we mask out the
      // scaling part of the immediate.
      VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
      // Tests Types Of a FP Values for packed types.
      VFPCLASS,
      // Tests Types Of a FP Values for scalar types.
      VFPCLASSS,

      // Broadcast (splat) scalar or element 0 of a vector. If the operand is
      // a vector, this node may change the vector length as part of the splat.
      VBROADCAST,
      // Broadcast mask to vector.
      VBROADCASTM,
      // Broadcast subvector to vector.
      SUBV_BROADCAST,

      /// SSE4A Extraction and Insertion.
      EXTRQI, INSERTQI,

      // XOP arithmetic/logical shifts.
      VPSHA, VPSHL,
      // XOP signed/unsigned integer comparisons.
      VPCOM, VPCOMU,
      // XOP packed permute bytes.
      VPPERM,
      // XOP two source permutation.
      VPERMIL2,

      // Vector multiply packed unsigned doubleword integers.
      PMULUDQ,
      // Vector multiply packed signed doubleword integers.
      PMULDQ,
      // Vector Multiply Packed UnsignedIntegers with Round and Scale.
      MULHRS,

      // Multiply and Add Packed Integers.
      VPMADDUBSW, VPMADDWD,

      // AVX512IFMA multiply and add.
      // NOTE: These are different than the instruction and perform
      // op0 x op1 + op2.
      VPMADD52L, VPMADD52H,

      // VNNI
      VPDPBUSD,
      VPDPBUSDS,
      VPDPWSSD,
      VPDPWSSDS,

      // FMA nodes.
      // We use the target independent ISD::FMA for the non-inverted case.
      FNMADD,
      FMSUB,
      FNMSUB,
      FMADDSUB,
      FMSUBADD,

      // FMA with rounding mode.
      FMADD_RND,
      FNMADD_RND,
      FMSUB_RND,
      FNMSUB_RND,
      FMADDSUB_RND,
      FMSUBADD_RND,

      // Compress and expand.
      COMPRESS,
      EXPAND,

      // Bits shuffle
      VPSHUFBITQMB,

      // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
      SINT_TO_FP_RND, UINT_TO_FP_RND,
      SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
      SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,

      // Vector float/double to signed/unsigned integer.
      CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
      // Scalar float/double to signed/unsigned integer.
      CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,

      // Vector float/double to signed/unsigned integer with truncation.
      CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
      // Scalar float/double to signed/unsigned integer with truncation.
      CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,

      // Vector signed/unsigned integer to float/double.
      CVTSI2P, CVTUI2P,

      // Masked versions of above. Used for v2f64->v4f32.
      // SRC, PASSTHRU, MASK
      MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
      MCVTSI2P, MCVTUI2P,

      // Vector float to bfloat16.
      // Convert TWO packed single data to one packed BF16 data
      CVTNE2PS2BF16, 
      // Convert packed single data to packed BF16 data
      CVTNEPS2BF16,
      // Masked version of above.
      // SRC, PASSTHRU, MASK
      MCVTNEPS2BF16,

      // Dot product of BF16 pairs to accumulated into
      // packed single precision.
      DPBF16PS,

      // Save xmm argument registers to the stack, according to %al. An operator
      // is needed so that this can be expanded with control flow.
      VASTART_SAVE_XMM_REGS,

      // Windows's _chkstk call to do stack probing.
      WIN_ALLOCA,

      // For allocating variable amounts of stack space when using
      // segmented stacks. Check if the current stacklet has enough space, and
      // falls back to heap allocation if not.
      SEG_ALLOCA,

      // Memory barriers.
      MEMBARRIER,
      MFENCE,

      // Store FP status word into i16 register.
      FNSTSW16r,

      // Store contents of %ah into %eflags.
      SAHF,

      // Get a random integer and indicate whether it is valid in CF.
      RDRAND,

      // Get a NIST SP800-90B & C compliant random integer and
      // indicate whether it is valid in CF.
      RDSEED,

      // Protection keys
      // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
      // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
      // value for ECX.
      RDPKRU, WRPKRU,

      // SSE42 string comparisons.
      // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
      // will emit one or two instructions based on which results are used. If
      // flags and index/mask this allows us to use a single instruction since
      // we won't have to pick and opcode for flags. Instead we can rely on the
      // DAG to CSE everything and decide at isel.
      PCMPISTR,
      PCMPESTR,

      // Test if in transactional execution.
      XTEST,

      // ERI instructions.
      RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
      RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,

      // Conversions between float and half-float.
      CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,

      // Masked version of above.
      // SRC, RND, PASSTHRU, MASK
      MCVTPS2PH,

      // Galois Field Arithmetic Instructions
      GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,

      // LWP insert record.
      LWPINS,

      // User level wait
      UMWAIT, TPAUSE,

      // Enqueue Stores Instructions
      ENQCMD, ENQCMDS,

      // For avx512-vp2intersect
      VP2INTERSECT,

      /// X86 strict FP compare instructions.
      STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
      STRICT_FCMPS,

      // Vector packed double/float comparison.
      STRICT_CMPP,

      /// Vector comparison generating mask bits for fp and
      /// integer signed and unsigned data types.
      STRICT_CMPM,

      // Vector float/double to signed/unsigned integer with truncation.
      STRICT_CVTTP2SI, STRICT_CVTTP2UI,

      // Vector FP extend.
      STRICT_VFPEXT,

      // Vector FP round.
      STRICT_VFPROUND,

      // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
      // Also used by the legacy (V)ROUND intrinsics where we mask out the
      // scaling part of the immediate.
      STRICT_VRNDSCALE,

      // Vector signed/unsigned integer to float/double.
      STRICT_CVTSI2P, STRICT_CVTUI2P,

      // Compare and swap.
      LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
      LCMPXCHG8_DAG,
      LCMPXCHG16_DAG,
      LCMPXCHG8_SAVE_EBX_DAG,
      LCMPXCHG16_SAVE_RBX_DAG,

      /// LOCK-prefixed arithmetic read-modify-write instructions.
      /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
      LADD, LSUB, LOR, LXOR, LAND,

      // Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // extract_vector_elt, store.
      VEXTRACT_STORE,

      // scalar broadcast from memory
      VBROADCAST_LOAD,

      // Store FP control world into i16 memory.
      FNSTCW16m,

      /// This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain). Memory VT specifies the type to store to.
      FP_TO_INT_IN_MEM,

      /// This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has two inputs (token chain and address)
      /// and two outputs (FP value and token chain). FILD_FLAG also produces a
      /// flag). The integer source type is specified by the memory VT.
      FILD,
      FILD_FLAG,

      /// This instruction implements a fp->int store from FP stack
      /// slots. This corresponds to the fist instruction. It takes a
      /// chain operand, value to store, address, and glue. The memory VT
      /// specifies the type to store as.
      FIST,

      /// This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, and ptr to load from. The memory VT specifies the type to
      /// load from.
      FLD,

      /// This instruction implements a truncating store from FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and glue. The memory VT
      /// specifies the type to store as.
      FST,

      /// This instruction grabs the address of the next argument
      /// from a va_list. (reads and modifies the va_list in memory)
      VAARG_64,

      // Vector truncating store with unsigned/signed saturation
      VTRUNCSTOREUS, VTRUNCSTORES,
      // Vector truncating masked store with unsigned/signed saturation
      VMTRUNCSTOREUS, VMTRUNCSTORES,

      // X86 specific gather and scatter
      MGATHER, MSCATTER,

      // WARNING: Do not add anything in the end unless you want the node to
      // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
      // opcodes will be thought as target memory ops!
    };
  } // end namespace X86ISD

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement = true);

    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);

    /// If Op is a constant whose elements are all the same constant or
    /// undefined, return true and return the constant value in \p SplatVal.
    bool isConstantSplat(SDValue Op, APInt &SplatVal);
  } // end namespace X86

  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);

    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;

    void markLibCallAttributes(MachineFunction *MF, unsigned CC,
                               ArgListTy &Args) const override;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
      return MVT::i8;
    }

    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;

    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                            bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                            const AttributeList &FuncAttributes) const override;

    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;

    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
                                        MachineMemOperand::Flags Flags,
                                        bool *Fast) const override;

    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// Places new result values for the node in Results (their number
    /// and types must exactly match those of the original return values of
    /// the node), or leaves Results empty, which indicates that the node is not
    /// to be custom lowered after all.
    void LowerOperationWrapper(SDNode *N,
                               SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const override;

    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    // Return true if it is profitable to combine a BUILD_VECTOR with a
    // stride-pattern to a shuffle and a truncate.
    // Example of such a combine:
    // v4i32 build_vector((extract_elt V, 1),
    //                    (extract_elt V, 3),
    //                    (extract_elt V, 5),
    //                    (extract_elt V, 7))
    //  -->
    // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
    // v4i64)
    bool isDesirableToCombineBuildVectorToShuffleTruncate(
        ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;

    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;

    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;

    /// Return 1 if we can compute the negated form of the specified expression
    /// for the same cost as the expression itself, or 2 if we can compute the
    /// negated form more cheaply than the expression itself. Else return 0.
    char isNegatibleForFree(SDValue Op, SelectionDAG &DAG, bool LegalOperations,
                            bool ForCodeSize, unsigned Depth) const override;

    /// If isNegatibleForFree returns true, return the newly negated expression.
    SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
                                 bool LegalOperations, bool ForCodeSize,
                                 unsigned Depth) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;

    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    /// Do not merge vector stores after legalization because that may conflict
    /// with x86-specific store splitting optimizations.
    bool mergeStoresAfterLegalization(EVT MemVT) const override {
      return !MemVT.isVector();
    }

    bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                          const SelectionDAG &DAG) const override;

    bool isCheapToSpeculateCttz() const override;

    bool isCheapToSpeculateCtlz() const override;

    bool isCtlzFast() const override;

    bool hasBitPreservingFPLogic(EVT VT) const override {
      return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
    }

    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }

    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

    bool hasAndNotCompare(SDValue Y) const override;

    bool hasAndNot(SDValue Y) const override;

    bool hasBitTest(SDValue X, SDValue Y) const override;

    bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const override;

    bool shouldFoldConstantShiftPairToMask(const SDNode *N,
                                           CombineLevel Level) const override;

    bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;

    bool
    shouldTransformSignedTruncationCheck(EVT XVT,
                                         unsigned KeptBits) const override {
      // For vectors, we don't have a preference..
      if (XVT.isVector())
        return false;

      auto VTIsOk = [](EVT VT) -> bool {
        return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
               VT == MVT::i64;
      };

      // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
      // XVT will be larger than KeptBitsVT.
      MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
      return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
    }

    bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;

    bool shouldSplatInsEltVarIndex(EVT VT) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
    MVT hasFastEqualityCompare(unsigned NumBits) const override;

    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
                                      TargetLoweringOpt &TLO) const override;

    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const APInt &DemandedElts,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;

    bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
                                                 const APInt &DemandedElts,
                                                 APInt &KnownUndef,
                                                 APInt &KnownZero,
                                                 TargetLoweringOpt &TLO,
                                                 unsigned Depth) const override;

    bool SimplifyDemandedBitsForTargetNode(SDValue Op,
                                           const APInt &DemandedBits,
                                           const APInt &DemandedElts,
                                           KnownBits &Known,
                                           TargetLoweringOpt &TLO,
                                           unsigned Depth) const override;

    SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
        SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
        SelectionDAG &DAG, unsigned Depth) const override;

    const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;

    SDValue unwrapAddress(SDValue N) const override;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    bool ExpandInlineAsm(CallInst *CI) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                     const char *constraint) const override;

    const char *LowerXConstraint(EVT ConstraintVT) const override;

    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "v")
        return InlineAsm::Constraint_v;
      else if (ConstraintCode == "X")
        return InlineAsm::Constraint_X;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// Handle Lowering flag assembly outputs.
    SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
                                        const AsmOperandInfo &Constraint,
                                        SelectionDAG &DAG) const override;

    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    bool isLegalStoreImmediate(int64_t Imm) const override;

    /// Return the cost of the scaling factor used in the addressing
    /// mode represented by AM for this target, for a load/store
    /// of the specified type.
    /// If the AM is supported, the return value must be >= 0.
    /// If the AM is not supported, it returns a negative value.
    int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS) const override;

    bool isVectorShiftByScalarCheap(Type *Ty) const override;

    /// Add x86-specific opcodes to the default list.
    bool isBinOp(unsigned Opcode) const override;

    /// Returns true if the opcode is a commutative binary operation.
    bool isCommutativeBinOp(unsigned Opcode) const override;

    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;

    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;

    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                    EVT VT) const override;

    /// Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;

    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
    /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
    /// constant pool entry.
    bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Returns true if lowering to a jump table is allowed.
    bool areJTsAllowed(const Function *Fn) const override;

    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
             (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override;

    bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
                                SDValue C) const override;

    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                 unsigned Index) const override;

    /// Scalar ops always have equal or better analysis/performance/power than
    /// the vector equivalent, so this always makes sense if the scalar op is
    /// supported.
    bool shouldScalarizeBinop(SDValue) const override;

    /// Extract of a scalar FP value from index 0 of a vector is free.
    bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
      EVT EltVT = VT.getScalarType();
      return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
    }

    /// Overflow nodes should get combined/lowered to optimal instructions
    /// (they should allow eliminating explicit compares by getting flags from
    /// math ops).
    bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;

    bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
                                      unsigned AddrSpace) const override {
      // If we can replace more than 2 scalar stores, there will be a reduction
      // in instructions even after we add a vector constant load.
      return NumElem > 2;
    }

    bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
                                 const SelectionDAG &DAG,
                                 const MachineMemOperand &MMO) const override;

    /// Intel processors have a unified instruction and data cache
    const char * getClearCacheBuiltinName() const override {
      return nullptr; // nothing to do, move along.
    }

    Register getRegisterByName(const char* RegName, LLT VT,
                               const MachineFunction &MF) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    virtual bool needsFixedCatchObjects() const override;

    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;

    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilder<> &IRB) const override;

    bool useLoadStackGuardNode() const override;
    bool useStackGuardXorFP() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Function *getSSPStackGuardCheck(const Module &M) const override;
    SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
                                const SDLoc &DL) const override;


    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

    std::pair<SDValue, SDValue> BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
                                          SDValue StackSlot,
                                          SelectionDAG &DAG) const;

    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;

    /// Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;

    MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
                                      EVT VT) const override;

    unsigned getNumRegistersForCallingConv(LLVMContext &Context,
                                           CallingConv::ID CC,
                                           EVT VT) const override;

    unsigned getVectorTypeBreakdownForCallingConv(
        LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
        unsigned &NumIntermediates, MVT &RegisterVT) const override;

    bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

    bool supportSwiftError() const override;

    StringRef getStackProbeSymbolName(MachineFunction &MF) const override;

    unsigned getStackProbeSize(MachineFunction &MF) const;

    bool hasVectorBlend() const override { return true; }

    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

    /// Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;

    /// Lower interleaved store(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                               unsigned Factor) const override;

    SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
                                   SDValue Addr, SelectionDAG &DAG)
                                   const override;

  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;

  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;

    /// Select between SSE or x87 floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            uint32_t *RegMask) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const;

    // Call lowering helpers.

    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    unsigned getAddressSpace(void) const;

    SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned,
                            SDValue &Chain) const;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;

    unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
                                  const unsigned char OpFlags = 0) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;

    /// Creates target global address or external symbol nodes for calls or
    /// other uses.
    SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
                                  bool ForCall) const;

    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
                          RTLIB::Libcall Call) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;

    bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override;
    bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override;

    bool needsCmpXchgNb(Type *MemType) const;

    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARG64WithCustomInserter(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *
    EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
                                             MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
                                                 MachineInstr &MI2,
                                                 MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    void emitSetJmpShadowStackFix(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
                                                 MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
                                     MachineBasicBlock *MBB) const;

    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;

    /// Convert a comparison if required by the subtarget.
    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;

    /// Emit flags for the given setcc condition and operands. Also returns the
    /// corresponding X86 condition code constant in X86CC.
    SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC,
                              const SDLoc &dl, SelectionDAG &DAG,
                              SDValue &X86CC, SDValue &Chain,
                              bool IsSignaling) const;

    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;

    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;

    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;

    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;

    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86

  // Base class for all X86 non-masked store operations.
  class X86StoreSDNode : public MemSDNode {
  public:
    X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
                   SDVTList VTs, EVT MemVT,
                   MachineMemOperand *MMO)
      :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
    const SDValue &getValue() const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES ||
        N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // Base class for all X86 masked store operations.
  // The class has the same order of operands as MaskedStoreSDNode for
  // convenience.
  class X86MaskedStoreSDNode : public MemSDNode {
  public:
    X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getValue()   const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }
    const SDValue &getMask()    const { return getOperand(3); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
        N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 Truncating Store with Signed saturation.
  class TruncSStoreSDNode : public X86StoreSDNode {
  public:
    TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
                        SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES;
    }
  };

  // X86 Truncating Store with Unsigned saturation.
  class TruncUSStoreSDNode : public X86StoreSDNode {
  public:
    TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // X86 Truncating Masked Store with Signed saturation.
  class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncSStoreSDNode(unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES;
    }
  };

  // X86 Truncating Masked Store with Unsigned saturation.
  class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncUSStoreSDNode(unsigned Order,
                            const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                            MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 specific Gather/Scatter nodes.
  // The class has the same order of operands as MaskedGatherScatterSDNode for
  // convenience.
  class X86MaskedGatherScatterSDNode : public MemSDNode {
  public:
    X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
                                 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                                 MachineMemOperand *MMO)
        : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getBasePtr() const { return getOperand(3); }
    const SDValue &getIndex()   const { return getOperand(4); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getScale()   const { return getOperand(5); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER ||
             N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                          EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
                                       MMO) {}

    const SDValue &getPassThru() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER;
    }
  };

  class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
  public:
    X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                           EVT MemVT, MachineMemOperand *MMO)
        : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
                                       MMO) {}

    const SDValue &getValue() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  /// Generate unpacklo/unpackhi shuffle mask.
  template <typename T = int>
  void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
                               bool Unary) {
    assert(Mask.empty() && "Expected an empty shuffle mask vector");
    int NumElts = VT.getVectorNumElements();
    int NumEltsInLane = 128 / VT.getScalarSizeInBits();
    for (int i = 0; i < NumElts; ++i) {
      unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
      int Pos = (i % NumEltsInLane) / 2 + LaneStart;
      Pos += (Unary ? 0 : NumElts * (i % 2));
      Pos += (Lo ? 0 : NumEltsInLane / 2);
      Mask.push_back(Pos);
    }
  }

  /// Helper function to scale a shuffle or target shuffle mask, replacing each
  /// mask index with the scaled sequential indices for an equivalent narrowed
  /// mask. This is the reverse process to canWidenShuffleElements, but can
  /// always succeed.
  template <typename T>
  void scaleShuffleMask(size_t Scale, ArrayRef<T> Mask,
                        SmallVectorImpl<T> &ScaledMask) {
    assert(0 < Scale && "Unexpected scaling factor");
    size_t NumElts = Mask.size();
    ScaledMask.assign(NumElts * Scale, -1);

    for (size_t i = 0; i != NumElts; ++i) {
      int M = Mask[i];

      // Repeat sentinel values in every mask element.
      if (M < 0) {
        for (size_t s = 0; s != Scale; ++s)
          ScaledMask[(Scale * i) + s] = M;
        continue;
      }

      // Scale mask element and increment across each mask element.
      for (size_t s = 0; s != Scale; ++s)
        ScaledMask[(Scale * i) + s] = (Scale * M) + s;
    }
  }
} // end namespace llvm

#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H