X86ISelDAGToDAG.cpp
195 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <stdint.h>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
cl::desc("Enable setting constant bits to reduce size of mask immediates"),
cl::Hidden);
//===----------------------------------------------------------------------===//
// Pattern Matcher Implementation
//===----------------------------------------------------------------------===//
namespace {
/// This corresponds to X86AddressMode, but uses SDValue's instead of register
/// numbers for the leaves of the matched tree.
struct X86ISelAddressMode {
enum {
RegBase,
FrameIndexBase
} BaseType;
// This is really a union, discriminated by BaseType!
SDValue Base_Reg;
int Base_FrameIndex;
unsigned Scale;
SDValue IndexReg;
int32_t Disp;
SDValue Segment;
const GlobalValue *GV;
const Constant *CP;
const BlockAddress *BlockAddr;
const char *ES;
MCSymbol *MCSym;
int JT;
unsigned Align; // CP alignment.
unsigned char SymbolFlags; // X86II::MO_*
bool NegateIndex = false;
X86ISelAddressMode()
: BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
bool hasSymbolicDisplacement() const {
return GV != nullptr || CP != nullptr || ES != nullptr ||
MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
}
bool hasBaseOrIndexReg() const {
return BaseType == FrameIndexBase ||
IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
}
/// Return true if this addressing mode is already RIP-relative.
bool isRIPRelative() const {
if (BaseType != RegBase) return false;
if (RegisterSDNode *RegNode =
dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
return RegNode->getReg() == X86::RIP;
return false;
}
void setBaseReg(SDValue Reg) {
BaseType = RegBase;
Base_Reg = Reg;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump(SelectionDAG *DAG = nullptr) {
dbgs() << "X86ISelAddressMode " << this << '\n';
dbgs() << "Base_Reg ";
if (Base_Reg.getNode())
Base_Reg.getNode()->dump(DAG);
else
dbgs() << "nul\n";
if (BaseType == FrameIndexBase)
dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
dbgs() << " Scale " << Scale << '\n'
<< "IndexReg ";
if (NegateIndex)
dbgs() << "negate ";
if (IndexReg.getNode())
IndexReg.getNode()->dump(DAG);
else
dbgs() << "nul\n";
dbgs() << " Disp " << Disp << '\n'
<< "GV ";
if (GV)
GV->dump();
else
dbgs() << "nul";
dbgs() << " CP ";
if (CP)
CP->dump();
else
dbgs() << "nul";
dbgs() << '\n'
<< "ES ";
if (ES)
dbgs() << ES;
else
dbgs() << "nul";
dbgs() << " MCSym ";
if (MCSym)
dbgs() << MCSym;
else
dbgs() << "nul";
dbgs() << " JT" << JT << " Align" << Align << '\n';
}
#endif
};
}
namespace {
//===--------------------------------------------------------------------===//
/// ISel - X86-specific code to select X86 machine instructions for
/// SelectionDAG operations.
///
class X86DAGToDAGISel final : public SelectionDAGISel {
/// Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
/// If true, selector should try to optimize for code size instead of
/// performance.
bool OptForSize;
/// If true, selector should try to optimize for minimum code size.
bool OptForMinSize;
/// Disable direct TLS access through segment registers.
bool IndirectTlsSegRefs;
public:
explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForSize(false),
OptForMinSize(false), IndirectTlsSegRefs(false) {}
StringRef getPassName() const override {
return "X86 DAG->DAG Instruction Selection";
}
bool runOnMachineFunction(MachineFunction &MF) override {
// Reset the subtarget each time through.
Subtarget = &MF.getSubtarget<X86Subtarget>();
IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
"indirect-tls-seg-refs");
// OptFor[Min]Size are used in pattern predicates that isel is matching.
OptForSize = MF.getFunction().hasOptSize();
OptForMinSize = MF.getFunction().hasMinSize();
assert((!OptForMinSize || OptForSize) &&
"OptForMinSize implies OptForSize");
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
void EmitFunctionEntryCode() override;
bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"
private:
void Select(SDNode *N) override;
bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
bool matchAddress(SDValue N, X86ISelAddressMode &AM);
bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth);
bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectMOV64Imm32(SDValue N, SDValue &Imm);
bool selectLEAAddr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectLEA64_32Addr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectTLSADDRAddr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment,
SDValue &NodeWithChain);
bool selectRelocImm(SDValue N, SDValue &Op);
bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
// Convenience method where P is also root.
bool tryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
}
bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
/// Implement addressing mode selection for inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
void emitSpecialCodeForMain();
inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
MVT VT, SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
Base = CurDAG->getTargetFrameIndex(
AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
else if (AM.Base_Reg.getNode())
Base = AM.Base_Reg;
else
Base = CurDAG->getRegister(0, VT);
Scale = getI8Imm(AM.Scale, DL);
// Negate the index if needed.
if (AM.NegateIndex) {
unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
AM.IndexReg), 0);
AM.IndexReg = Neg;
}
if (AM.IndexReg.getNode())
Index = AM.IndexReg;
else
Index = CurDAG->getRegister(0, VT);
// These are 32-bit even in 64-bit mode since RIP-relative offset
// is 32-bit.
if (AM.GV)
Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
MVT::i32, AM.Disp,
AM.SymbolFlags);
else if (AM.CP)
Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
AM.Align, AM.Disp, AM.SymbolFlags);
else if (AM.ES) {
assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
} else if (AM.MCSym) {
assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
assert(AM.SymbolFlags == 0 && "oo");
Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
} else if (AM.JT != -1) {
assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
} else if (AM.BlockAddr)
Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
AM.SymbolFlags);
else
Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
if (AM.Segment.getNode())
Segment = AM.Segment;
else
Segment = CurDAG->getRegister(0, MVT::i16);
}
// Utility function to determine whether we should avoid selecting
// immediate forms of instructions for better code size or not.
// At a high level, we'd like to avoid such instructions when
// we have similar constants used within the same basic block
// that can be kept in a register.
//
bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
uint32_t UseCount = 0;
// Do not want to hoist if we're not optimizing for size.
// TODO: We'd like to remove this restriction.
// See the comment in X86InstrInfo.td for more info.
if (!CurDAG->shouldOptForSize())
return false;
// Walk all the users of the immediate.
for (SDNode::use_iterator UI = N->use_begin(),
UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
SDNode *User = *UI;
// This user is already selected. Count it as a legitimate use and
// move on.
if (User->isMachineOpcode()) {
UseCount++;
continue;
}
// We want to count stores of immediates as real uses.
if (User->getOpcode() == ISD::STORE &&
User->getOperand(1).getNode() == N) {
UseCount++;
continue;
}
// We don't currently match users that have > 2 operands (except
// for stores, which are handled above)
// Those instruction won't match in ISEL, for now, and would
// be counted incorrectly.
// This may change in the future as we add additional instruction
// types.
if (User->getNumOperands() != 2)
continue;
// If this can match to INC/DEC, don't count it as a use.
if (User->getOpcode() == ISD::ADD &&
(isOneConstant(SDValue(N, 0)) || isAllOnesConstant(SDValue(N, 0))))
continue;
// Immediates that are used for offsets as part of stack
// manipulation should be left alone. These are typically
// used to indicate SP offsets for argument passing and
// will get pulled into stores/pushes (implicitly).
if (User->getOpcode() == X86ISD::ADD ||
User->getOpcode() == ISD::ADD ||
User->getOpcode() == X86ISD::SUB ||
User->getOpcode() == ISD::SUB) {
// Find the other operand of the add/sub.
SDValue OtherOp = User->getOperand(0);
if (OtherOp.getNode() == N)
OtherOp = User->getOperand(1);
// Don't count if the other operand is SP.
RegisterSDNode *RegNode;
if (OtherOp->getOpcode() == ISD::CopyFromReg &&
(RegNode = dyn_cast_or_null<RegisterSDNode>(
OtherOp->getOperand(1).getNode())))
if ((RegNode->getReg() == X86::ESP) ||
(RegNode->getReg() == X86::RSP))
continue;
}
// ... otherwise, count this and move on.
UseCount++;
}
// If we have more than 1 use, then recommend for hoisting.
return (UseCount > 1);
}
/// Return a target constant with the specified value of type i8.
inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
}
/// Return a target constant with the specified value, of type i32.
inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
}
/// Return a target constant with the specified value, of type i64.
inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
}
SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
const SDLoc &DL) {
assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
uint64_t Index = N->getConstantOperandVal(1);
MVT VecVT = N->getOperand(0).getSimpleValueType();
return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
}
SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
const SDLoc &DL) {
assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
uint64_t Index = N->getConstantOperandVal(2);
MVT VecVT = N->getSimpleValueType(0);
return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
}
// Helper to detect unneeded and instructions on shift amounts. Called
// from PatFrags in tablegen.
bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
if (Val.countTrailingOnes() >= Width)
return true;
APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
return Mask.countTrailingOnes() >= Width;
}
/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
SDNode *getGlobalBaseReg();
/// Return a reference to the TargetMachine, casted to the target-specific
/// type.
const X86TargetMachine &getTargetMachine() const {
return static_cast<const X86TargetMachine &>(TM);
}
/// Return a reference to the TargetInstrInfo, casted to the target-specific
/// type.
const X86InstrInfo *getInstrInfo() const {
return Subtarget->getInstrInfo();
}
/// Address-mode matching performs shift-of-and to and-of-shift
/// reassociation in order to expose more scaled addressing
/// opportunities.
bool ComplexPatternFuncMutatesDAG() const override {
return true;
}
bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
/// Returns whether this is a relocatable immediate in the range
/// [-2^Width .. 2^Width-1].
template <unsigned Width> bool isSExtRelocImm(SDNode *N) const {
if (auto *CN = dyn_cast<ConstantSDNode>(N))
return isInt<Width>(CN->getSExtValue());
return isSExtAbsoluteSymbolRef(Width, N);
}
// Indicates we should prefer to use a non-temporal load for this load.
bool useNonTemporalLoad(LoadSDNode *N) const {
if (!N->isNonTemporal())
return false;
unsigned StoreSize = N->getMemoryVT().getStoreSize();
if (N->getAlignment() < StoreSize)
return false;
switch (StoreSize) {
default: llvm_unreachable("Unsupported store size");
case 4:
case 8:
return false;
case 16:
return Subtarget->hasSSE41();
case 32:
return Subtarget->hasAVX2();
case 64:
return Subtarget->hasAVX512();
}
}
bool foldLoadStoreIntoMemOperand(SDNode *Node);
MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
bool matchBitExtract(SDNode *Node);
bool shrinkAndImmediate(SDNode *N);
bool isMaskZeroExtended(SDNode *N) const;
bool tryShiftAmountMod(SDNode *N);
bool combineIncDecVector(SDNode *Node);
bool tryShrinkShlLogicImm(SDNode *N);
bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
bool tryMatchBitSelect(SDNode *N);
MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
const SDLoc &dl, MVT VT, SDNode *Node);
MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
const SDLoc &dl, MVT VT, SDNode *Node,
SDValue &InFlag);
bool tryOptimizeRem8Extend(SDNode *N);
bool onlyUsesZeroFlag(SDValue Flags) const;
bool hasNoSignFlagUses(SDValue Flags) const;
bool hasNoCarryFlagUses(SDValue Flags) const;
};
}
// Returns true if this masked compare can be implemented legally with this
// type.
static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode == X86ISD::CMPM || Opcode == X86ISD::STRICT_CMPM ||
Opcode == ISD::SETCC || Opcode == X86ISD::CMPM_SAE ||
Opcode == X86ISD::VFPCLASS) {
// We can get 256-bit 8 element types here without VLX being enabled. When
// this happens we will use 512-bit operations and the mask will not be
// zero extended.
EVT OpVT = N->getOperand(0).getValueType();
// The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
// second operand.
if (Opcode == X86ISD::STRICT_CMPM)
OpVT = N->getOperand(1).getValueType();
if (OpVT.is256BitVector() || OpVT.is128BitVector())
return Subtarget->hasVLX();
return true;
}
// Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
Opcode == X86ISD::FSETCCM_SAE)
return true;
return false;
}
// Returns true if we can assume the writer of the mask has zero extended it
// for us.
bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
// If this is an AND, check if we have a compare on either side. As long as
// one side guarantees the mask is zero extended, the AND will preserve those
// zeros.
if (N->getOpcode() == ISD::AND)
return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
return isLegalMaskCompare(N, Subtarget);
}
bool
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
if (OptLevel == CodeGenOpt::None) return false;
if (!N.hasOneUse())
return false;
// FIXME: Temporary hack to prevent strict floating point nodes from
// folding into masked operations illegally.
if (U == Root && Root->getOpcode() == ISD::VSELECT &&
N.getOpcode() != ISD::LOAD && N.getOpcode() != X86ISD::VBROADCAST_LOAD)
return false;
if (N.getOpcode() != ISD::LOAD)
return true;
// Don't fold non-temporal loads if we have an instruction for them.
if (useNonTemporalLoad(cast<LoadSDNode>(N)))
return false;
// If N is a load, do additional profitability checks.
if (U == Root) {
switch (U->getOpcode()) {
default: break;
case X86ISD::ADD:
case X86ISD::ADC:
case X86ISD::SUB:
case X86ISD::SBB:
case X86ISD::AND:
case X86ISD::XOR:
case X86ISD::OR:
case ISD::ADD:
case ISD::ADDCARRY:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
SDValue Op1 = U->getOperand(1);
// If the other operand is a 8-bit immediate we should fold the immediate
// instead. This reduces code size.
// e.g.
// movl 4(%esp), %eax
// addl $4, %eax
// vs.
// movl $4, %eax
// addl 4(%esp), %eax
// The former is 2 bytes shorter. In case where the increment is 1, then
// the saving can be 4 bytes (by using incl %eax).
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
if (Imm->getAPIntValue().isSignedIntN(8))
return false;
// If this is a 64-bit AND with an immediate that fits in 32-bits,
// prefer using the smaller and over folding the load. This is needed to
// make sure immediates created by shrinkAndImmediate are always folded.
// Ideally we would narrow the load during DAG combine and get the
// best of both worlds.
if (U->getOpcode() == ISD::AND &&
Imm->getAPIntValue().getBitWidth() == 64 &&
Imm->getAPIntValue().isIntN(32))
return false;
// If this really a zext_inreg that can be represented with a movzx
// instruction, prefer that.
// TODO: We could shrink the load and fold if it is non-volatile.
if (U->getOpcode() == ISD::AND &&
(Imm->getAPIntValue() == UINT8_MAX ||
Imm->getAPIntValue() == UINT16_MAX ||
Imm->getAPIntValue() == UINT32_MAX))
return false;
// ADD/SUB with can negate the immediate and use the opposite operation
// to fit 128 into a sign extended 8 bit immediate.
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
(-Imm->getAPIntValue()).isSignedIntN(8))
return false;
}
// If the other operand is a TLS address, we should fold it instead.
// This produces
// movl %gs:0, %eax
// leal i@NTPOFF(%eax), %eax
// instead of
// movl $i@NTPOFF, %eax
// addl %gs:0, %eax
// if the block also has an access to a second TLS address this will save
// a load.
// FIXME: This is probably also true for non-TLS addresses.
if (Op1.getOpcode() == X86ISD::Wrapper) {
SDValue Val = Op1.getOperand(0);
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
return false;
}
// Don't fold load if this matches the BTS/BTR/BTC patterns.
// BTS: (or X, (shl 1, n))
// BTR: (and X, (rotl -2, n))
// BTC: (xor X, (shl 1, n))
if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
if (U->getOperand(0).getOpcode() == ISD::SHL &&
isOneConstant(U->getOperand(0).getOperand(0)))
return false;
if (U->getOperand(1).getOpcode() == ISD::SHL &&
isOneConstant(U->getOperand(1).getOperand(0)))
return false;
}
if (U->getOpcode() == ISD::AND) {
SDValue U0 = U->getOperand(0);
SDValue U1 = U->getOperand(1);
if (U0.getOpcode() == ISD::ROTL) {
auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
if (C && C->getSExtValue() == -2)
return false;
}
if (U1.getOpcode() == ISD::ROTL) {
auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
if (C && C->getSExtValue() == -2)
return false;
}
}
break;
}
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
// Don't fold a load into a shift by immediate. The BMI2 instructions
// support folding a load, but not an immediate. The legacy instructions
// support folding an immediate, but can't fold a load. Folding an
// immediate is preferable to folding a load.
if (isa<ConstantSDNode>(U->getOperand(1)))
return false;
break;
}
}
// Prevent folding a load if this can implemented with an insert_subreg or
// a move that implicitly zeroes.
if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
isNullConstant(Root->getOperand(2)) &&
(Root->getOperand(0).isUndef() ||
ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
return false;
return true;
}
/// Replace the original chain operand of the call with
/// load's chain operand and move load below the call's chain operand.
static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
SDValue Call, SDValue OrigChain) {
SmallVector<SDValue, 8> Ops;
SDValue Chain = OrigChain.getOperand(0);
if (Chain.getNode() == Load.getNode())
Ops.push_back(Load.getOperand(0));
else {
assert(Chain.getOpcode() == ISD::TokenFactor &&
"Unexpected chain operand");
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
if (Chain.getOperand(i).getNode() == Load.getNode())
Ops.push_back(Load.getOperand(0));
else
Ops.push_back(Chain.getOperand(i));
SDValue NewChain =
CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
Ops.clear();
Ops.push_back(NewChain);
}
Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
Load.getOperand(1), Load.getOperand(2));
Ops.clear();
Ops.push_back(SDValue(Load.getNode(), 1));
Ops.append(Call->op_begin() + 1, Call->op_end());
CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
}
/// Return true if call address is a load and it can be
/// moved below CALLSEQ_START and the chains leading up to the call.
/// Return the CALLSEQ_START by reference as a second output.
/// In the case of a tail call, there isn't a callseq node between the call
/// chain and the load.
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
// The transformation is somewhat dangerous if the call's chain was glued to
// the call. After MoveBelowOrigChain the load is moved between the call and
// the chain, this can create a cycle if the load is not folded. So it is
// *really* important that we are sure the load will be folded.
if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
return false;
LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
if (!LD ||
!LD->isSimple() ||
LD->getAddressingMode() != ISD::UNINDEXED ||
LD->getExtensionType() != ISD::NON_EXTLOAD)
return false;
// Now let's find the callseq_start.
while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
if (!Chain.hasOneUse())
return false;
Chain = Chain.getOperand(0);
}
if (!Chain.getNumOperands())
return false;
// Since we are not checking for AA here, conservatively abort if the chain
// writes to memory. It's not safe to move the callee (a load) across a store.
if (isa<MemSDNode>(Chain.getNode()) &&
cast<MemSDNode>(Chain.getNode())->writeMem())
return false;
if (Chain.getOperand(0).getNode() == Callee.getNode())
return true;
if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
Callee.getValue(1).hasOneUse())
return true;
return false;
}
void X86DAGToDAGISel::PreprocessISelDAG() {
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
E = CurDAG->allnodes_end(); I != E; ) {
SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
// If this is a target specific AND node with no flag usages, turn it back
// into ISD::AND to enable test instruction matching.
if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
CurDAG->DeleteNode(N);
continue;
}
switch (N->getOpcode()) {
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT: {
// Replace vector fp_to_s/uint with their X86 specific equivalent so we
// don't need 2 sets of patterns.
if (!N->getSimpleValueType(0).isVector())
break;
unsigned NewOpc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break;
case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break;
case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
}
SDValue Res;
if (N->isStrictFPOpcode())
Res =
CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
{N->getOperand(0), N->getOperand(1)});
else
Res =
CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0));
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
CurDAG->DeleteNode(N);
continue;
}
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: {
// Replace vector shifts with their X86 specific equivalent so we don't
// need 2 sets of patterns.
if (!N->getValueType(0).isVector())
break;
unsigned NewOpc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
}
SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
CurDAG->DeleteNode(N);
continue;
}
case ISD::ANY_EXTEND:
case ISD::ANY_EXTEND_VECTOR_INREG: {
// Replace vector any extend with the zero extend equivalents so we don't
// need 2 sets of patterns. Ignore vXi1 extensions.
if (!N->getValueType(0).isVector() ||
N->getOperand(0).getScalarValueSizeInBits() == 1)
break;
unsigned NewOpc = N->getOpcode() == ISD::ANY_EXTEND
? ISD::ZERO_EXTEND
: ISD::ZERO_EXTEND_VECTOR_INREG;
SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
N->getOperand(0));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
CurDAG->DeleteNode(N);
continue;
}
case ISD::FCEIL:
case ISD::STRICT_FCEIL:
case ISD::FFLOOR:
case ISD::STRICT_FFLOOR:
case ISD::FTRUNC:
case ISD::STRICT_FTRUNC:
case ISD::FNEARBYINT:
case ISD::STRICT_FNEARBYINT:
case ISD::FRINT:
case ISD::STRICT_FRINT: {
// Replace fp rounding with their X86 specific equivalent so we don't
// need 2 sets of patterns.
unsigned Imm;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::STRICT_FCEIL:
case ISD::FCEIL: Imm = 0xA; break;
case ISD::STRICT_FFLOOR:
case ISD::FFLOOR: Imm = 0x9; break;
case ISD::STRICT_FTRUNC:
case ISD::FTRUNC: Imm = 0xB; break;
case ISD::STRICT_FNEARBYINT:
case ISD::FNEARBYINT: Imm = 0xC; break;
case ISD::STRICT_FRINT:
case ISD::FRINT: Imm = 0x4; break;
}
SDLoc dl(N);
bool IsStrict = N->isStrictFPOpcode();
SDValue Res;
if (IsStrict)
Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
{N->getValueType(0), MVT::Other},
{N->getOperand(0), N->getOperand(1),
CurDAG->getTargetConstant(Imm, dl, MVT::i8)});
else
Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
N->getOperand(0),
CurDAG->getTargetConstant(Imm, dl, MVT::i8));
--I;
CurDAG->ReplaceAllUsesWith(N, Res.getNode());
++I;
CurDAG->DeleteNode(N);
continue;
}
case X86ISD::FANDN:
case X86ISD::FAND:
case X86ISD::FOR:
case X86ISD::FXOR: {
// Widen scalar fp logic ops to vector to reduce isel patterns.
// FIXME: Can we do this during lowering/combine.
MVT VT = N->getSimpleValueType(0);
if (VT.isVector() || VT == MVT::f128)
break;
MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
SDLoc dl(N);
SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
N->getOperand(0));
SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
N->getOperand(1));
SDValue Res;
if (Subtarget->hasSSE2()) {
EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
unsigned Opc;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
case X86ISD::FAND: Opc = ISD::AND; break;
case X86ISD::FOR: Opc = ISD::OR; break;
case X86ISD::FXOR: Opc = ISD::XOR; break;
}
Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
} else {
Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
}
Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
CurDAG->getIntPtrConstant(0, dl));
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
++I;
CurDAG->DeleteNode(N);
continue;
}
}
if (OptLevel != CodeGenOpt::None &&
// Only do this when the target can fold the load into the call or
// jmp.
!Subtarget->useRetpolineIndirectCalls() &&
((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
(N->getOpcode() == X86ISD::TC_RETURN &&
(Subtarget->is64Bit() ||
!getTargetMachine().isPositionIndependent())))) {
/// Also try moving call address load from outside callseq_start to just
/// before the call to allow it to be folded.
///
/// [Load chain]
/// ^
/// |
/// [Load]
/// ^ ^
/// | |
/// / \--
/// / |
///[CALLSEQ_START] |
/// ^ |
/// | |
/// [LOAD/C2Reg] |
/// | |
/// \ /
/// \ /
/// [CALL]
bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
SDValue Chain = N->getOperand(0);
SDValue Load = N->getOperand(1);
if (!isCalleeLoad(Load, Chain, HasCallSeq))
continue;
moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
++NumLoadMoved;
continue;
}
// Lower fpround and fpextend nodes that target the FP stack to be store and
// load to the stack. This is a gross hack. We would like to simply mark
// these as being illegal, but when we do that, legalize produces these when
// it expands calls, then expands these in the same legalize pass. We would
// like dag combine to be able to hack on these between the call expansion
// and the node legalization. As such this pass basically does "really
// late" legalization of these inline with the X86 isel pass.
// FIXME: This should only happen when not compiled with -O0.
switch (N->getOpcode()) {
default: continue;
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
{
MVT SrcVT = N->getOperand(0).getSimpleValueType();
MVT DstVT = N->getSimpleValueType(0);
// If any of the sources are vectors, no fp stack involved.
if (SrcVT.isVector() || DstVT.isVector())
continue;
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
const X86TargetLowering *X86Lowering =
static_cast<const X86TargetLowering *>(TLI);
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
continue;
if (!SrcIsSSE && !DstIsSSE) {
// If this is an FPStack extension, it is a noop.
if (N->getOpcode() == ISD::FP_EXTEND)
continue;
// If this is a value-preserving FPStack truncation, it is a noop.
if (N->getConstantOperandVal(1))
continue;
}
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
// FPStack has extload and truncstore. SSE can fold direct loads into other
// operations. Based on this, decide what we want to do.
MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
SDLoc dl(N);
// FIXME: optimize the case where the src/dest is a load or store?
SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0),
MemTmp, MachinePointerInfo(), MemVT);
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
MachinePointerInfo(), MemVT);
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
// extload we created. This will cause general havok on the dag because
// anything below the conversion could be folded into other existing nodes.
// To avoid invalidating 'I', back it up to the convert node.
--I;
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
break;
}
//The sequence of events for lowering STRICT_FP versions of these nodes requires
//dealing with the chain differently, as there is already a preexisting chain.
case ISD::STRICT_FP_ROUND:
case ISD::STRICT_FP_EXTEND:
{
MVT SrcVT = N->getOperand(1).getSimpleValueType();
MVT DstVT = N->getSimpleValueType(0);
// If any of the sources are vectors, no fp stack involved.
if (SrcVT.isVector() || DstVT.isVector())
continue;
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
const X86TargetLowering *X86Lowering =
static_cast<const X86TargetLowering *>(TLI);
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
continue;
if (!SrcIsSSE && !DstIsSSE) {
// If this is an FPStack extension, it is a noop.
if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
continue;
// If this is a value-preserving FPStack truncation, it is a noop.
if (N->getConstantOperandVal(2))
continue;
}
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
// FPStack has extload and truncstore. SSE can fold direct loads into other
// operations. Based on this, decide what we want to do.
MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
SDLoc dl(N);
// FIXME: optimize the case where the src/dest is a load or store?
//Since the operation is StrictFP, use the preexisting chain.
SDValue Store, Result;
if (!SrcIsSSE) {
SDVTList VTs = CurDAG->getVTList(MVT::Other);
SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
MachinePointerInfo(), 0,
MachineMemOperand::MOStore);
if (N->getFlags().hasNoFPExcept()) {
SDNodeFlags Flags = Store->getFlags();
Flags.setNoFPExcept(true);
Store->setFlags(Flags);
}
} else {
assert(SrcVT == MemVT && "Unexpected VT!");
Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
MachinePointerInfo());
}
if (!DstIsSSE) {
SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
SDValue Ops[] = {Store, MemTmp};
Result = CurDAG->getMemIntrinsicNode(X86ISD::FLD, dl, VTs, Ops, MemVT,
MachinePointerInfo(), 0,
MachineMemOperand::MOLoad);
if (N->getFlags().hasNoFPExcept()) {
SDNodeFlags Flags = Result->getFlags();
Flags.setNoFPExcept(true);
Result->setFlags(Flags);
}
} else {
assert(DstVT == MemVT && "Unexpected VT!");
Result =
CurDAG->getLoad(DstVT, dl, Store, MemTmp, MachinePointerInfo());
}
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
// extload we created. This will cause general havok on the dag because
// anything below the conversion could be folded into other existing nodes.
// To avoid invalidating 'I', back it up to the convert node.
--I;
CurDAG->ReplaceAllUsesWith(N, Result.getNode());
break;
}
}
// Now that we did that, the node is dead. Increment the iterator to the
// next node to process, then delete N.
++I;
CurDAG->DeleteNode(N);
}
// The load+call transform above can leave some dead nodes in the graph. Make
// sure we remove them. Its possible some of the other transforms do to so
// just remove dead nodes unconditionally.
CurDAG->RemoveDeadNodes();
}
// Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
unsigned Opc = N->getMachineOpcode();
if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
Opc != X86::MOVSX64rr8)
return false;
SDValue N0 = N->getOperand(0);
// We need to be extracting the lower bit of an extend.
if (!N0.isMachineOpcode() ||
N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
N0.getConstantOperandVal(1) != X86::sub_8bit)
return false;
// We're looking for either a movsx or movzx to match the original opcode.
unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
: X86::MOVSX32rr8_NOREX;
SDValue N00 = N0.getOperand(0);
if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
return false;
if (Opc == X86::MOVSX64rr8) {
// If we had a sign extend from 8 to 64 bits. We still need to go from 32
// to 64.
MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
MVT::i64, N00);
ReplaceUses(N, Extend);
} else {
// Ok we can drop this extend and just use the original extend.
ReplaceUses(N, N00.getNode());
}
return true;
}
void X86DAGToDAGISel::PostprocessISelDAG() {
// Skip peepholes at -O0.
if (TM.getOptLevel() == CodeGenOpt::None)
return;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
// Skip dead nodes and any non-machine opcodes.
if (N->use_empty() || !N->isMachineOpcode())
continue;
if (tryOptimizeRem8Extend(N)) {
MadeChange = true;
continue;
}
// Look for a TESTrr+ANDrr pattern where both operands of the test are
// the same. Rewrite to remove the AND.
unsigned Opc = N->getMachineOpcode();
if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
N->getOperand(0) == N->getOperand(1) &&
N->isOnlyUserOf(N->getOperand(0).getNode()) &&
N->getOperand(0).isMachineOpcode()) {
SDValue And = N->getOperand(0);
unsigned N0Opc = And.getMachineOpcode();
if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
MVT::i32,
And.getOperand(0),
And.getOperand(1));
ReplaceUses(N, Test);
MadeChange = true;
continue;
}
if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
unsigned NewOpc;
switch (N0Opc) {
case X86::AND8rm: NewOpc = X86::TEST8mr; break;
case X86::AND16rm: NewOpc = X86::TEST16mr; break;
case X86::AND32rm: NewOpc = X86::TEST32mr; break;
case X86::AND64rm: NewOpc = X86::TEST64mr; break;
}
// Need to swap the memory and register operand.
SDValue Ops[] = { And.getOperand(1),
And.getOperand(2),
And.getOperand(3),
And.getOperand(4),
And.getOperand(5),
And.getOperand(0),
And.getOperand(6) /* Chain */ };
MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
MVT::i32, MVT::Other, Ops);
ReplaceUses(N, Test);
MadeChange = true;
continue;
}
}
// Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
// used. We're doing this late so we can prefer to fold the AND into masked
// comparisons. Doing that can be better for the live range of the mask
// register.
if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
N->getOperand(0) == N->getOperand(1) &&
N->isOnlyUserOf(N->getOperand(0).getNode()) &&
N->getOperand(0).isMachineOpcode() &&
onlyUsesZeroFlag(SDValue(N, 0))) {
SDValue And = N->getOperand(0);
unsigned N0Opc = And.getMachineOpcode();
// KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
// KAND instructions and KTEST use the same ISA feature.
if (N0Opc == X86::KANDBrr ||
(N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
unsigned NewOpc;
switch (Opc) {
default: llvm_unreachable("Unexpected opcode!");
case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
}
MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
MVT::i32,
And.getOperand(0),
And.getOperand(1));
ReplaceUses(N, KTest);
MadeChange = true;
continue;
}
}
// Attempt to remove vectors moves that were inserted to zero upper bits.
if (Opc != TargetOpcode::SUBREG_TO_REG)
continue;
unsigned SubRegIdx = N->getConstantOperandVal(2);
if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
continue;
SDValue Move = N->getOperand(1);
if (!Move.isMachineOpcode())
continue;
// Make sure its one of the move opcodes we recognize.
switch (Move.getMachineOpcode()) {
default:
continue;
case X86::VMOVAPDrr: case X86::VMOVUPDrr:
case X86::VMOVAPSrr: case X86::VMOVUPSrr:
case X86::VMOVDQArr: case X86::VMOVDQUrr:
case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
break;
}
SDValue In = Move.getOperand(0);
if (!In.isMachineOpcode() ||
In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
continue;
// Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
// the SHA instructions which use a legacy encoding.
uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
(TSFlags & X86II::EncodingMask) != X86II::EVEX &&
(TSFlags & X86II::EncodingMask) != X86II::XOP)
continue;
// Producing instruction is another vector instruction. We can drop the
// move.
CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
MadeChange = true;
}
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
/// Emit any code that needs to be executed only in the main function.
void X86DAGToDAGISel::emitSpecialCodeForMain() {
if (Subtarget->isTargetCygMing()) {
TargetLowering::ArgListTy Args;
auto &DL = CurDAG->getDataLayout();
TargetLowering::CallLoweringInfo CLI(*CurDAG);
CLI.setChain(CurDAG->getRoot())
.setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
std::move(Args));
const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
CurDAG->setRoot(Result.second);
}
}
void X86DAGToDAGISel::EmitFunctionEntryCode() {
// If this is main, emit special code for main.
const Function &F = MF->getFunction();
if (F.hasExternalLinkage() && F.getName() == "main")
emitSpecialCodeForMain();
}
static bool isDispSafeForFrameIndex(int64_t Val) {
// On 64-bit platforms, we can run into an issue where a frame index
// includes a displacement that, when added to the explicit displacement,
// will overflow the displacement field. Assuming that the frame index
// displacement fits into a 31-bit integer (which is only slightly more
// aggressive than the current fundamental assumption that it fits into
// a 32-bit integer), a 31-bit disp should always be safe.
return isInt<31>(Val);
}
bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
X86ISelAddressMode &AM) {
// If there's no offset to fold, we don't need to do any work.
if (Offset == 0)
return false;
// Cannot combine ExternalSymbol displacements with integer offsets.
if (AM.ES || AM.MCSym)
return true;
int64_t Val = AM.Disp + Offset;
CodeModel::Model M = TM.getCodeModel();
if (Subtarget->is64Bit()) {
if (!X86::isOffsetSuitableForCodeModel(Val, M,
AM.hasSymbolicDisplacement()))
return true;
// In addition to the checks required for a register base, check that
// we do not try to use an unsafe Disp with a frame index.
if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
!isDispSafeForFrameIndex(Val))
return true;
}
AM.Disp = Val;
return false;
}
bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
SDValue Address = N->getOperand(1);
// load gs:0 -> GS segment register.
// load fs:0 -> FS segment register.
//
// This optimization is valid because the GNU TLS model defines that
// gs:0 (or fs:0 on X86-64) contains its own address.
// For more information see http://people.redhat.com/drepper/tls.pdf
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
!IndirectTlsSegRefs &&
(Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetFuchsia()))
switch (N->getPointerInfo().getAddrSpace()) {
case 256:
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
return false;
case 257:
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
return false;
// Address space 258 is not handled here, because it is not used to
// address TLS areas.
}
return true;
}
/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
/// mode. These wrap things that will resolve down into a symbol reference.
/// If no match is possible, this returns true, otherwise it returns false.
bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
// If the addressing mode already has a symbol as the displacement, we can
// never match another symbol.
if (AM.hasSymbolicDisplacement())
return true;
bool IsRIPRelTLS = false;
bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
if (IsRIPRel) {
SDValue Val = N.getOperand(0);
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
IsRIPRelTLS = true;
}
// We can't use an addressing mode in the 64-bit large code model.
// Global TLS addressing is an exception. In the medium code model,
// we use can use a mode when RIP wrappers are present.
// That signifies access to globals that are known to be "near",
// such as the GOT itself.
CodeModel::Model M = TM.getCodeModel();
if (Subtarget->is64Bit() &&
((M == CodeModel::Large && !IsRIPRelTLS) ||
(M == CodeModel::Medium && !IsRIPRel)))
return true;
// Base and index reg must be 0 in order to use %rip as base.
if (IsRIPRel && AM.hasBaseOrIndexReg())
return true;
// Make a local copy in case we can't do this fold.
X86ISelAddressMode Backup = AM;
int64_t Offset = 0;
SDValue N0 = N.getOperand(0);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
AM.GV = G->getGlobal();
AM.SymbolFlags = G->getTargetFlags();
Offset = G->getOffset();
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
AM.CP = CP->getConstVal();
AM.Align = CP->getAlignment();
AM.SymbolFlags = CP->getTargetFlags();
Offset = CP->getOffset();
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
AM.ES = S->getSymbol();
AM.SymbolFlags = S->getTargetFlags();
} else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
AM.MCSym = S->getMCSymbol();
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
AM.JT = J->getIndex();
AM.SymbolFlags = J->getTargetFlags();
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
AM.BlockAddr = BA->getBlockAddress();
AM.SymbolFlags = BA->getTargetFlags();
Offset = BA->getOffset();
} else
llvm_unreachable("Unhandled symbol reference node.");
if (foldOffsetIntoAddress(Offset, AM)) {
AM = Backup;
return true;
}
if (IsRIPRel)
AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
// Commit the changes now that we know this fold is safe.
return false;
}
/// Add the specified node to the specified addressing mode, returning true if
/// it cannot be done. This just pattern matches for the addressing mode.
bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
if (matchAddressRecursively(N, AM, 0))
return true;
// Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
// a smaller encoding and avoids a scaled-index.
if (AM.Scale == 2 &&
AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr) {
AM.Base_Reg = AM.IndexReg;
AM.Scale = 1;
}
// Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
// because it has a smaller encoding.
// TODO: Which other code models can use this?
switch (TM.getCodeModel()) {
default: break;
case CodeModel::Small:
case CodeModel::Kernel:
if (Subtarget->is64Bit() &&
AM.Scale == 1 &&
AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
AM.IndexReg.getNode() == nullptr &&
AM.SymbolFlags == X86II::MO_NO_FLAG &&
AM.hasSymbolicDisplacement())
AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
break;
}
return false;
}
bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
unsigned Depth) {
// Add an artificial use to this node so that we can keep track of
// it if it gets CSE'd with a different node.
HandleSDNode Handle(N);
X86ISelAddressMode Backup = AM;
if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
return false;
AM = Backup;
// Try again after commuting the operands.
if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
!matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
return false;
AM = Backup;
// If we couldn't fold both operands into the address at the same time,
// see if we can just put each operand into a register and fold at least
// the add.
if (AM.BaseType == X86ISelAddressMode::RegBase &&
!AM.Base_Reg.getNode() &&
!AM.IndexReg.getNode()) {
N = Handle.getValue();
AM.Base_Reg = N.getOperand(0);
AM.IndexReg = N.getOperand(1);
AM.Scale = 1;
return false;
}
N = Handle.getValue();
return true;
}
// Insert a node into the DAG at least before the Pos node's position. This
// will reposition the node as needed, and will assign it a node ID that is <=
// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
// IDs! The selection DAG must no longer depend on their uniqueness when this
// is used.
static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
if (N->getNodeId() == -1 ||
(SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
DAG.RepositionNode(Pos->getIterator(), N.getNode());
// Mark Node as invalid for pruning as after this it may be a successor to a
// selected node but otherwise be in the same position of Pos.
// Conservatively mark it with the same -abs(Id) to assure node id
// invariant is preserved.
N->setNodeId(Pos->getNodeId());
SelectionDAGISel::InvalidateNodeId(N.getNode());
}
}
// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
// safe. This allows us to convert the shift and and into an h-register
// extract and a scaled index. Returns false if the simplification is
// performed.
static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM) {
if (Shift.getOpcode() != ISD::SRL ||
!isa<ConstantSDNode>(Shift.getOperand(1)) ||
!Shift.hasOneUse())
return true;
int ScaleLog = 8 - Shift.getConstantOperandVal(1);
if (ScaleLog <= 0 || ScaleLog >= 4 ||
Mask != (0xffu << ScaleLog))
return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
SDValue NewMask = DAG.getConstant(0xff, DL, VT);
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, Eight);
insertDAGNode(DAG, N, Srl);
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, And);
insertDAGNode(DAG, N, ShlCount);
insertDAGNode(DAG, N, Shl);
DAG.ReplaceAllUsesWith(N, Shl);
DAG.RemoveDeadNode(N.getNode());
AM.IndexReg = And;
AM.Scale = (1 << ScaleLog);
return false;
}
// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
// allows us to fold the shift into this addressing mode. Returns false if the
// transform succeeded.
static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
X86ISelAddressMode &AM) {
SDValue Shift = N.getOperand(0);
// Use a signed mask so that shifting right will insert sign bits. These
// bits will be removed when we shift the result left so it doesn't matter
// what we use. This might allow a smaller immediate encoding.
int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
// If we have an any_extend feeding the AND, look through it to see if there
// is a shift behind it. But only if the AND doesn't use the extended bits.
// FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
bool FoundAnyExtend = false;
if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
isUInt<32>(Mask)) {
FoundAnyExtend = true;
Shift = Shift.getOperand(0);
}
if (Shift.getOpcode() != ISD::SHL ||
!isa<ConstantSDNode>(Shift.getOperand(1)))
return true;
SDValue X = Shift.getOperand(0);
// Not likely to be profitable if either the AND or SHIFT node has more
// than one use (unless all uses are for address computation). Besides,
// isel mechanism requires their node ids to be reused.
if (!N.hasOneUse() || !Shift.hasOneUse())
return true;
// Verify that the shift amount is something we can fold.
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
if (FoundAnyExtend) {
SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
insertDAGNode(DAG, N, NewX);
X = NewX;
}
SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, NewAnd);
insertDAGNode(DAG, N, NewShift);
DAG.ReplaceAllUsesWith(N, NewShift);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << ShiftAmt;
AM.IndexReg = NewAnd;
return false;
}
// Implement some heroics to detect shifts of masked values where the mask can
// be replaced by extending the shift and undoing that in the addressing mode
// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
// the addressing mode. This results in code such as:
//
// int f(short *y, int *lookup_table) {
// ...
// return *y + lookup_table[*y >> 11];
// }
//
// Turning into:
// movzwl (%rdi), %eax
// movl %eax, %ecx
// shrl $11, %ecx
// addl (%rsi,%rcx,4), %eax
//
// Instead of:
// movzwl (%rdi), %eax
// movl %eax, %ecx
// shrl $9, %ecx
// andl $124, %rcx
// addl (%rsi,%rcx), %eax
//
// Note that this function assumes the mask is provided as a mask *after* the
// value is shifted. The input chain may or may not match that, but computing
// such a mask is trivial.
static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM) {
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
!isa<ConstantSDNode>(Shift.getOperand(1)))
return true;
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
unsigned MaskLZ = countLeadingZeros(Mask);
unsigned MaskTZ = countTrailingZeros(Mask);
// The amount of shift we're trying to fit into the addressing mode is taken
// from the trailing zeros of the mask.
unsigned AMShiftAmt = MaskTZ;
// There is nothing we can do here unless the mask is removing some bits.
// Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
// We also need to ensure that mask is a continuous run of bits.
if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
// Scale the leading zero count down based on the actual size of the value.
// Also scale it down based on the size of the shift.
unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
if (MaskLZ < ScaleDown)
return true;
MaskLZ -= ScaleDown;
// The final check is to ensure that any masked out high bits of X are
// already known to be zero. Otherwise, the mask has a semantic impact
// other than masking out a couple of low bits. Unfortunately, because of
// the mask, zero extensions will be removed from operands in some cases.
// This code works extra hard to look through extensions because we can
// replace them with zero extensions cheaply if necessary.
bool ReplacingAnyExtend = false;
if (X.getOpcode() == ISD::ANY_EXTEND) {
unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
X.getOperand(0).getSimpleValueType().getSizeInBits();
// Assume that we'll replace the any-extend with a zero-extend, and
// narrow the search to the extended value.
X = X.getOperand(0);
MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
ReplacingAnyExtend = true;
}
APInt MaskedHighBits =
APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
KnownBits Known = DAG.computeKnownBits(X);
if (MaskedHighBits != Known.Zero) return true;
// We've identified a pattern that can be transformed into a single shift
// and an addressing mode. Make it so.
MVT VT = N.getSimpleValueType();
if (ReplacingAnyExtend) {
assert(X.getValueType() != VT);
// We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
insertDAGNode(DAG, N, NewX);
X = NewX;
}
SDLoc DL(N);
SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewSRLAmt);
insertDAGNode(DAG, N, NewSRL);
insertDAGNode(DAG, N, NewSHLAmt);
insertDAGNode(DAG, N, NewSHL);
DAG.ReplaceAllUsesWith(N, NewSHL);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << AMShiftAmt;
AM.IndexReg = NewSRL;
return false;
}
// Transform "(X >> SHIFT) & (MASK << C1)" to
// "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
// matched to a BEXTR later. Returns false if the simplification is performed.
static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
X86ISelAddressMode &AM,
const X86Subtarget &Subtarget) {
if (Shift.getOpcode() != ISD::SRL ||
!isa<ConstantSDNode>(Shift.getOperand(1)) ||
!Shift.hasOneUse() || !N.hasOneUse())
return true;
// Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
if (!Subtarget.hasTBM() &&
!(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
return true;
// We need to ensure that mask is a continuous run of bits.
if (!isShiftedMask_64(Mask)) return true;
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
// The amount of shift we're trying to fit into the addressing mode is taken
// from the trailing zeros of the mask.
unsigned AMShiftAmt = countTrailingZeros(Mask);
// There is nothing we can do here unless the mask is removing some bits.
// Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
// Insert the new nodes into the topological ordering. We must do this in
// a valid topological ordering as nothing is going to go back and re-sort
// these nodes. We continually insert before 'N' in sequence as this is
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
// hierarchy left to express.
insertDAGNode(DAG, N, NewSRLAmt);
insertDAGNode(DAG, N, NewSRL);
insertDAGNode(DAG, N, NewMask);
insertDAGNode(DAG, N, NewAnd);
insertDAGNode(DAG, N, NewSHLAmt);
insertDAGNode(DAG, N, NewSHL);
DAG.ReplaceAllUsesWith(N, NewSHL);
DAG.RemoveDeadNode(N.getNode());
AM.Scale = 1 << AMShiftAmt;
AM.IndexReg = NewAnd;
return false;
}
bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth) {
SDLoc dl(N);
LLVM_DEBUG({
dbgs() << "MatchAddress: ";
AM.dump(CurDAG);
});
// Limit recursion.
if (Depth > 5)
return matchAddressBase(N, AM);
// If this is already a %rip relative address, we can only merge immediates
// into it. Instead of handling this in every case, we handle it here.
// RIP relative addressing: %rip + 32-bit displacement!
if (AM.isRIPRelative()) {
// FIXME: JumpTable and ExternalSymbol address currently don't like
// displacements. It isn't very important, but this should be fixed for
// consistency.
if (!(AM.ES || AM.MCSym) && AM.JT != -1)
return true;
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
return false;
return true;
}
switch (N.getOpcode()) {
default: break;
case ISD::LOCAL_RECOVER: {
if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
// Use the symbol and don't prefix it.
AM.MCSym = ESNode->getMCSymbol();
return false;
}
break;
}
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (!foldOffsetIntoAddress(Val, AM))
return false;
break;
}
case X86ISD::Wrapper:
case X86ISD::WrapperRIP:
if (!matchWrapper(N, AM))
return false;
break;
case ISD::LOAD:
if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
return false;
break;
case ISD::FrameIndex:
if (AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
(!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
return false;
}
break;
case ISD::SHL:
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
break;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
unsigned Val = CN->getZExtValue();
// Note that we handle x<<1 as (,x,2) rather than (x,x) here so
// that the base operand remains free for further matching. If
// the base doesn't end up getting used, a post-processing step
// in MatchAddress turns (,x,2) into (x,x), which is cheaper.
if (Val == 1 || Val == 2 || Val == 3) {
AM.Scale = 1 << Val;
SDValue ShVal = N.getOperand(0);
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (CurDAG->isBaseWithConstantOffset(ShVal)) {
AM.IndexReg = ShVal.getOperand(0);
ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
if (!foldOffsetIntoAddress(Disp, AM))
return false;
}
AM.IndexReg = ShVal;
return false;
}
}
break;
case ISD::SRL: {
// Scale must not be used already.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
// We only handle up to 64-bit values here as those are what matter for
// addressing mode optimizations.
assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
"Unexpected value size!");
SDValue And = N.getOperand(0);
if (And.getOpcode() != ISD::AND) break;
SDValue X = And.getOperand(0);
// The mask used for the transform is expected to be post-shift, but we
// found the shift first so just apply the shift to the mask before passing
// it down.
if (!isa<ConstantSDNode>(N.getOperand(1)) ||
!isa<ConstantSDNode>(And.getOperand(1)))
break;
uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
// Try to fold the mask and shift into the scale, and return false if we
// succeed.
if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
return false;
break;
}
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
// A mul_lohi where we need the low part can be folded as a plain multiply.
if (N.getResNo() != 0) break;
LLVM_FALLTHROUGH;
case ISD::MUL:
case X86ISD::MUL_IMM:
// X*[3,5,9] -> X+X*[2,4,8]
if (AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base_Reg.getNode() == nullptr &&
AM.IndexReg.getNode() == nullptr) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
CN->getZExtValue() == 9) {
AM.Scale = unsigned(CN->getZExtValue())-1;
SDValue MulVal = N.getOperand(0);
SDValue Reg;
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
isa<ConstantSDNode>(MulVal.getOperand(1))) {
Reg = MulVal.getOperand(0);
ConstantSDNode *AddVal =
cast<ConstantSDNode>(MulVal.getOperand(1));
uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
if (foldOffsetIntoAddress(Disp, AM))
Reg = N.getOperand(0);
} else {
Reg = N.getOperand(0);
}
AM.IndexReg = AM.Base_Reg = Reg;
return false;
}
}
break;
case ISD::SUB: {
// Given A-B, if A can be completely folded into the address and
// the index field with the index field unused, use -B as the index.
// This is a win if a has multiple parts that can be folded into
// the address. Also, this saves a mov if the base register has
// other uses, since it avoids a two-address sub instruction, however
// it costs an additional mov if the index register has other uses.
// Add an artificial use to this node so that we can keep track of
// it if it gets CSE'd with a different node.
HandleSDNode Handle(N);
// Test if the LHS of the sub can be folded.
X86ISelAddressMode Backup = AM;
if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
N = Handle.getValue();
AM = Backup;
break;
}
N = Handle.getValue();
// Test if the index field is free for use.
if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
AM = Backup;
break;
}
int Cost = 0;
SDValue RHS = N.getOperand(1);
// If the RHS involves a register with multiple uses, this
// transformation incurs an extra mov, due to the neg instruction
// clobbering its operand.
if (!RHS.getNode()->hasOneUse() ||
RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
(RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOperand(0).getValueType() == MVT::i32))
++Cost;
// If the base is a register with multiple uses, this
// transformation may save a mov.
if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
!AM.Base_Reg.getNode()->hasOneUse()) ||
AM.BaseType == X86ISelAddressMode::FrameIndexBase)
--Cost;
// If the folded LHS was interesting, this transformation saves
// address arithmetic.
if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
((AM.Disp != 0) && (Backup.Disp == 0)) +
(AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
--Cost;
// If it doesn't look like it may be an overall win, don't do it.
if (Cost >= 0) {
AM = Backup;
break;
}
// Ok, the transformation is legal and appears profitable. Go for it.
// Negation will be emitted later to avoid creating dangling nodes if this
// was an unprofitable LEA.
AM.IndexReg = RHS;
AM.NegateIndex = true;
AM.Scale = 1;
return false;
}
case ISD::ADD:
if (!matchAdd(N, AM, Depth))
return false;
break;
case ISD::OR:
// We want to look through a transform in InstCombine and DAGCombiner that
// turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
// Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
// An 'lea' can then be used to match the shift (multiply) and add:
// and $1, %esi
// lea (%rsi, %rdi, 8), %rax
if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
!matchAdd(N, AM, Depth))
return false;
break;
case ISD::AND: {
// Perform some heroic transforms on an and of a constant-count shift
// with a constant to enable use of the scaled offset field.
// Scale must not be used already.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
// We only handle up to 64-bit values here as those are what matter for
// addressing mode optimizations.
assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
"Unexpected value size!");
if (!isa<ConstantSDNode>(N.getOperand(1)))
break;
if (N.getOperand(0).getOpcode() == ISD::SRL) {
SDValue Shift = N.getOperand(0);
SDValue X = Shift.getOperand(0);
uint64_t Mask = N.getConstantOperandVal(1);
// Try to fold the mask and shift into an extract and scale.
if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
return false;
// Try to fold the mask and shift directly into the scale.
if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
return false;
// Try to fold the mask and shift into BEXTR and scale.
if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
return false;
}
// Try to swap the mask and shift to place shifts which can be done as
// a scale on the outside of the mask.
if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
return false;
break;
}
case ISD::ZERO_EXTEND: {
// Try to widen a zexted shift left to the same size as its use, so we can
// match the shift as a scale factor.
if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
break;
if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
break;
// Give up if the shift is not a valid scale factor [1,2,3].
SDValue Shl = N.getOperand(0);
auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
if (!ShAmtC || ShAmtC->getZExtValue() > 3)
break;
// The narrow shift must only shift out zero bits (it must be 'nuw').
// That makes it safe to widen to the destination type.
APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
ShAmtC->getZExtValue());
if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
break;
// zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
MVT VT = N.getSimpleValueType();
SDLoc DL(N);
SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
// Convert the shift to scale factor.
AM.Scale = 1 << ShAmtC->getZExtValue();
AM.IndexReg = Zext;
insertDAGNode(*CurDAG, N, Zext);
insertDAGNode(*CurDAG, N, NewShl);
CurDAG->ReplaceAllUsesWith(N, NewShl);
CurDAG->RemoveDeadNode(N.getNode());
return false;
}
}
return matchAddressBase(N, AM);
}
/// Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
// Is the base register already occupied?
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
// If so, check to see if the scale index register is set.
if (!AM.IndexReg.getNode()) {
AM.IndexReg = N;
AM.Scale = 1;
return false;
}
// Otherwise, we cannot select it.
return true;
}
// Default, generate it as a register.
AM.BaseType = X86ISelAddressMode::RegBase;
AM.Base_Reg = N;
return false;
}
/// Helper for selectVectorAddr. Handles things that can be folded into a
/// gather scatter address. The index register and scale should have already
/// been handled.
bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
// TODO: Support other operations.
switch (N.getOpcode()) {
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (!foldOffsetIntoAddress(Val, AM))
return false;
break;
}
case X86ISD::Wrapper:
if (!matchWrapper(N, AM))
return false;
break;
}
return matchAddressBase(N, AM);
}
bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
X86ISelAddressMode AM;
auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent);
AM.IndexReg = Mgs->getIndex();
AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue();
unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
if (AddrSpace == X86AS::GS)
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
if (AddrSpace == X86AS::FS)
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
if (AddrSpace == X86AS::SS)
AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
// Try to match into the base and displacement fields.
if (matchVectorAddress(N, AM))
return false;
getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
return true;
}
/// Returns true if it is able to pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
///
/// Parent is the parent node of the addr operand that is being matched. It
/// is always a load, store, atomic node, or null. It is only null when
/// checking memory operands for inline asm nodes.
bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
X86ISelAddressMode AM;
if (Parent &&
// This list of opcodes are all the nodes that have an "addr:$ptr" operand
// that are not a MemSDNode, and thus don't have proper addrspace info.
Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
unsigned AddrSpace =
cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
// AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
if (AddrSpace == 256)
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
if (AddrSpace == 257)
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
if (AddrSpace == 258)
AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
}
// Save the DL and VT before calling matchAddress, it can invalidate N.
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
if (matchAddress(N, AM))
return false;
getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
return true;
}
// We can only fold a load if all nodes between it and the root node have a
// single use. If there are additional uses, we could end up duplicating the
// load.
static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) {
while (User != Root) {
if (!User->hasOneUse())
return false;
User = *User->use_begin();
}
return true;
}
/// Match a scalar SSE load. In particular, we want to match a load whose top
/// elements are either undef or zeros. The load flavor is derived from the
/// type of N, which is either v4f32 or v2f64.
///
/// We also return:
/// PatternChainNode: this is the matched node that has a chain input and
/// output.
bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent,
SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment,
SDValue &PatternNodeWithChain) {
if (!hasSingleUsesFromRoot(Root, Parent))
return false;
// We can allow a full vector load here since narrowing a load is ok unless
// it's volatile or atomic.
if (ISD::isNON_EXTLoad(N.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->isSimple() &&
IsProfitableToFold(N, LD, Root) &&
IsLegalToFold(N, Parent, Root, OptLevel)) {
PatternNodeWithChain = N;
return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
Segment);
}
}
// We can also match the special zero extended load opcode.
if (N.getOpcode() == X86ISD::VZEXT_LOAD) {
PatternNodeWithChain = N;
if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain);
return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp,
Segment);
}
}
// Need to make sure that the SCALAR_TO_VECTOR and load are both only used
// once. Otherwise the load might get duplicated and the chain output of the
// duplicate load will not be observed by all dependencies.
if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) {
PatternNodeWithChain = N.getOperand(0);
if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
Segment);
}
}
return false;
}
bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
uint64_t ImmVal = CN->getZExtValue();
if (!isUInt<32>(ImmVal))
return false;
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
return true;
}
// In static codegen with small code model, we can get the address of a label
// into a register with 'movl'
if (N->getOpcode() != X86ISD::Wrapper)
return false;
N = N.getOperand(0);
// At least GNU as does not accept 'movl' for TPOFF relocations.
// FIXME: We could use 'movl' when we know we are targeting MC.
if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
return false;
Imm = N;
if (N->getOpcode() != ISD::TargetGlobalAddress)
return TM.getCodeModel() == CodeModel::Small;
Optional<ConstantRange> CR =
cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
if (!CR)
return TM.getCodeModel() == CodeModel::Small;
return CR->getUnsignedMax().ult(1ull << 32);
}
bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
// Save the debug loc before calling selectLEAAddr, in case it invalidates N.
SDLoc DL(N);
if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
return false;
RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
if (RN && RN->getReg() == 0)
Base = CurDAG->getRegister(0, MVT::i64);
else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
// Base could already be %rip, particularly in the x32 ABI.
SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
MVT::i64), 0);
Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
Base);
}
RN = dyn_cast<RegisterSDNode>(Index);
if (RN && RN->getReg() == 0)
Index = CurDAG->getRegister(0, MVT::i64);
else {
assert(Index.getValueType() == MVT::i32 &&
"Expect to be extending 32-bit registers for use in LEA");
SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
MVT::i64), 0);
Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
Index);
}
return true;
}
/// Calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
X86ISelAddressMode AM;
// Save the DL and VT before calling matchAddress, it can invalidate N.
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
// Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
// segments.
SDValue Copy = AM.Segment;
SDValue T = CurDAG->getRegister(0, MVT::i32);
AM.Segment = T;
if (matchAddress(N, AM))
return false;
assert (T == AM.Segment);
AM.Segment = Copy;
unsigned Complexity = 0;
if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
Complexity = 1;
else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
Complexity = 4;
if (AM.IndexReg.getNode())
Complexity++;
// Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
// a simple shift.
if (AM.Scale > 1)
Complexity++;
// FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
// to a LEA. This is determined with some experimentation but is by no means
// optimal (especially for code size consideration). LEA is nice because of
// its three-address nature. Tweak the cost function again when we can run
// convertToThreeAddress() at register allocation time.
if (AM.hasSymbolicDisplacement()) {
// For X86-64, always use LEA to materialize RIP-relative addresses.
if (Subtarget->is64Bit())
Complexity = 4;
else
Complexity += 2;
}
// Heuristic: try harder to form an LEA from ADD if the operands set flags.
// Unlike ADD, LEA does not affect flags, so we will be less likely to require
// duplicating flag-producing instructions later in the pipeline.
if (N.getOpcode() == ISD::ADD) {
auto isMathWithFlags = [](SDValue V) {
switch (V.getOpcode()) {
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::ADC:
case X86ISD::SBB:
/* TODO: These opcodes can be added safely, but we may want to justify
their inclusion for different reasons (better for reg-alloc).
case X86ISD::SMUL:
case X86ISD::UMUL:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
*/
// Value 1 is the flag output of the node - verify it's not dead.
return !SDValue(V.getNode(), 1).use_empty();
default:
return false;
}
};
// TODO: This could be an 'or' rather than 'and' to make the transform more
// likely to happen. We might want to factor in whether there's a
// load folding opportunity for the math op that disappears with LEA.
if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
Complexity++;
}
if (AM.Disp)
Complexity++;
// If it isn't worth using an LEA, reject it.
if (Complexity <= 2)
return false;
getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
return true;
}
/// This is only run on TargetGlobalTLSAddress nodes.
bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
X86ISelAddressMode AM;
AM.GV = GA->getGlobal();
AM.Disp += GA->getOffset();
AM.SymbolFlags = GA->getTargetFlags();
MVT VT = N.getSimpleValueType();
if (VT == MVT::i32) {
AM.Scale = 1;
AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
}
getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
return true;
}
bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN),
N.getValueType());
return true;
}
// Keep track of the original value type and whether this value was
// truncated. If we see a truncation from pointer type to VT that truncates
// bits that are known to be zero, we can use a narrow reference.
EVT VT = N.getValueType();
bool WasTruncated = false;
if (N.getOpcode() == ISD::TRUNCATE) {
WasTruncated = true;
N = N.getOperand(0);
}
if (N.getOpcode() != X86ISD::Wrapper)
return false;
// We can only use non-GlobalValues as immediates if they were not truncated,
// as we do not have any range information. If we have a GlobalValue and the
// address was not truncated, we can select it as an operand directly.
unsigned Opc = N.getOperand(0)->getOpcode();
if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
Op = N.getOperand(0);
// We can only select the operand directly if we didn't have to look past a
// truncate.
return !WasTruncated;
}
// Check that the global's range fits into VT.
auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
return false;
// Okay, we can use a narrow reference.
Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
GA->getOffset(), GA->getTargetFlags());
return true;
}
bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
assert(Root && P && "Unknown root/parent nodes");
if (!ISD::isNON_EXTLoad(N.getNode()) ||
!IsProfitableToFold(N, P, Root) ||
!IsLegalToFold(N, P, Root, OptLevel))
return false;
return selectAddr(N.getNode(),
N.getOperand(1), Base, Scale, Index, Disp, Segment);
}
bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
assert(Root && P && "Unknown root/parent nodes");
if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
!IsProfitableToFold(N, P, Root) ||
!IsLegalToFold(N, P, Root, OptLevel))
return false;
return selectAddr(N.getNode(),
N.getOperand(1), Base, Scale, Index, Disp, Segment);
}
/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
auto &DL = MF->getDataLayout();
return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
}
bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
if (N->getOpcode() == ISD::TRUNCATE)
N = N->getOperand(0).getNode();
if (N->getOpcode() != X86ISD::Wrapper)
return false;
auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
if (!GA)
return false;
Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
return CR && CR->getSignedMin().sge(-1ull << Width) &&
CR->getSignedMax().slt(1ull << Width);
}
static X86::CondCode getCondFromNode(SDNode *N) {
assert(N->isMachineOpcode() && "Unexpected node");
X86::CondCode CC = X86::COND_INVALID;
unsigned Opc = N->getMachineOpcode();
if (Opc == X86::JCC_1)
CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
else if (Opc == X86::SETCCr)
CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
else if (Opc == X86::SETCCm)
CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
Opc == X86::CMOV64rr)
CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
Opc == X86::CMOV64rm)
CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
return CC;
}
/// Test whether the given X86ISD::CMP node has any users that use a flag
/// other than ZF.
bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
// Examine each user of the node.
for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
UI != UE; ++UI) {
// Only check things that use the flags.
if (UI.getUse().getResNo() != Flags.getResNo())
continue;
// Only examine CopyToReg uses that copy to EFLAGS.
if (UI->getOpcode() != ISD::CopyToReg ||
cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
return false;
// Examine each user of the CopyToReg use.
for (SDNode::use_iterator FlagUI = UI->use_begin(),
FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
// Only examine the Flag result.
if (FlagUI.getUse().getResNo() != 1) continue;
// Anything unusual: assume conservatively.
if (!FlagUI->isMachineOpcode()) return false;
// Examine the condition code of the user.
X86::CondCode CC = getCondFromNode(*FlagUI);
switch (CC) {
// Comparisons which only use the zero flag.
case X86::COND_E: case X86::COND_NE:
continue;
// Anything else: assume conservatively.
default:
return false;
}
}
}
return true;
}
/// Test whether the given X86ISD::CMP node has any uses which require the SF
/// flag to be accurate.
bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
// Examine each user of the node.
for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
UI != UE; ++UI) {
// Only check things that use the flags.
if (UI.getUse().getResNo() != Flags.getResNo())
continue;
// Only examine CopyToReg uses that copy to EFLAGS.
if (UI->getOpcode() != ISD::CopyToReg ||
cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
return false;
// Examine each user of the CopyToReg use.
for (SDNode::use_iterator FlagUI = UI->use_begin(),
FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
// Only examine the Flag result.
if (FlagUI.getUse().getResNo() != 1) continue;
// Anything unusual: assume conservatively.
if (!FlagUI->isMachineOpcode()) return false;
// Examine the condition code of the user.
X86::CondCode CC = getCondFromNode(*FlagUI);
switch (CC) {
// Comparisons which don't examine the SF flag.
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
case X86::COND_E: case X86::COND_NE:
case X86::COND_O: case X86::COND_NO:
case X86::COND_P: case X86::COND_NP:
continue;
// Anything else: assume conservatively.
default:
return false;
}
}
}
return true;
}
static bool mayUseCarryFlag(X86::CondCode CC) {
switch (CC) {
// Comparisons which don't examine the CF flag.
case X86::COND_O: case X86::COND_NO:
case X86::COND_E: case X86::COND_NE:
case X86::COND_S: case X86::COND_NS:
case X86::COND_P: case X86::COND_NP:
case X86::COND_L: case X86::COND_GE:
case X86::COND_G: case X86::COND_LE:
return false;
// Anything else: assume conservatively.
default:
return true;
}
}
/// Test whether the given node which sets flags has any uses which require the
/// CF flag to be accurate.
bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
// Examine each user of the node.
for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
UI != UE; ++UI) {
// Only check things that use the flags.
if (UI.getUse().getResNo() != Flags.getResNo())
continue;
unsigned UIOpc = UI->getOpcode();
if (UIOpc == ISD::CopyToReg) {
// Only examine CopyToReg uses that copy to EFLAGS.
if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
return false;
// Examine each user of the CopyToReg use.
for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
FlagUI != FlagUE; ++FlagUI) {
// Only examine the Flag result.
if (FlagUI.getUse().getResNo() != 1)
continue;
// Anything unusual: assume conservatively.
if (!FlagUI->isMachineOpcode())
return false;
// Examine the condition code of the user.
X86::CondCode CC = getCondFromNode(*FlagUI);
if (mayUseCarryFlag(CC))
return false;
}
// This CopyToReg is ok. Move on to the next user.
continue;
}
// This might be an unselected node. So look for the pre-isel opcodes that
// use flags.
unsigned CCOpNo;
switch (UIOpc) {
default:
// Something unusual. Be conservative.
return false;
case X86ISD::SETCC: CCOpNo = 0; break;
case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
case X86ISD::CMOV: CCOpNo = 2; break;
case X86ISD::BRCOND: CCOpNo = 2; break;
}
X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
if (mayUseCarryFlag(CC))
return false;
}
return true;
}
/// Check whether or not the chain ending in StoreNode is suitable for doing
/// the {load; op; store} to modify transformation.
static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
SDValue StoredVal, SelectionDAG *CurDAG,
unsigned LoadOpNo,
LoadSDNode *&LoadNode,
SDValue &InputChain) {
// Is the stored value result 0 of the operation?
if (StoredVal.getResNo() != 0) return false;
// Are there other uses of the operation other than the store?
if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
// Is the store non-extending and non-indexed?
if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
return false;
SDValue Load = StoredVal->getOperand(LoadOpNo);
// Is the stored value a non-extending and non-indexed load?
if (!ISD::isNormalLoad(Load.getNode())) return false;
// Return LoadNode by reference.
LoadNode = cast<LoadSDNode>(Load);
// Is store the only read of the loaded value?
if (!Load.hasOneUse())
return false;
// Is the address of the store the same as the load?
if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
LoadNode->getOffset() != StoreNode->getOffset())
return false;
bool FoundLoad = false;
SmallVector<SDValue, 4> ChainOps;
SmallVector<const SDNode *, 4> LoopWorklist;
SmallPtrSet<const SDNode *, 16> Visited;
const unsigned int Max = 1024;
// Visualization of Load-Op-Store fusion:
// -------------------------
// Legend:
// *-lines = Chain operand dependencies.
// |-lines = Normal operand dependencies.
// Dependencies flow down and right. n-suffix references multiple nodes.
//
// C Xn C
// * * *
// * * *
// Xn A-LD Yn TF Yn
// * * \ | * |
// * * \ | * |
// * * \ | => A--LD_OP_ST
// * * \| \
// TF OP \
// * | \ Zn
// * | \
// A-ST Zn
//
// This merge induced dependences from: #1: Xn -> LD, OP, Zn
// #2: Yn -> LD
// #3: ST -> Zn
// Ensure the transform is safe by checking for the dual
// dependencies to make sure we do not induce a loop.
// As LD is a predecessor to both OP and ST we can do this by checking:
// a). if LD is a predecessor to a member of Xn or Yn.
// b). if a Zn is a predecessor to ST.
// However, (b) can only occur through being a chain predecessor to
// ST, which is the same as Zn being a member or predecessor of Xn,
// which is a subset of LD being a predecessor of Xn. So it's
// subsumed by check (a).
SDValue Chain = StoreNode->getChain();
// Gather X elements in ChainOps.
if (Chain == Load.getValue(1)) {
FoundLoad = true;
ChainOps.push_back(Load.getOperand(0));
} else if (Chain.getOpcode() == ISD::TokenFactor) {
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
SDValue Op = Chain.getOperand(i);
if (Op == Load.getValue(1)) {
FoundLoad = true;
// Drop Load, but keep its chain. No cycle check necessary.
ChainOps.push_back(Load.getOperand(0));
continue;
}
LoopWorklist.push_back(Op.getNode());
ChainOps.push_back(Op);
}
}
if (!FoundLoad)
return false;
// Worklist is currently Xn. Add Yn to worklist.
for (SDValue Op : StoredVal->ops())
if (Op.getNode() != LoadNode)
LoopWorklist.push_back(Op.getNode());
// Check (a) if Load is a predecessor to Xn + Yn
if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
true))
return false;
InputChain =
CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
return true;
}
// Change a chain of {load; op; store} of the same value into a simple op
// through memory of that value, if the uses of the modified value and its
// address are suitable.
//
// The tablegen pattern memory operand pattern is currently not able to match
// the case where the EFLAGS on the original operation are used.
//
// To move this to tablegen, we'll need to improve tablegen to allow flags to
// be transferred from a node in the pattern to the result node, probably with
// a new keyword. For example, we have this
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
// (implicit EFLAGS)]>;
// but maybe need something like this
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
// (transferrable EFLAGS)]>;
//
// Until then, we manually fold these and instruction select the operation
// here.
bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
SDValue StoredVal = StoreNode->getOperand(1);
unsigned Opc = StoredVal->getOpcode();
// Before we try to select anything, make sure this is memory operand size
// and opcode we can handle. Note that this must match the code below that
// actually lowers the opcodes.
EVT MemVT = StoreNode->getMemoryVT();
if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
MemVT != MVT::i8)
return false;
bool IsCommutable = false;
bool IsNegate = false;
switch (Opc) {
default:
return false;
case X86ISD::SUB:
IsNegate = isNullConstant(StoredVal.getOperand(0));
break;
case X86ISD::SBB:
break;
case X86ISD::ADD:
case X86ISD::ADC:
case X86ISD::AND:
case X86ISD::OR:
case X86ISD::XOR:
IsCommutable = true;
break;
}
unsigned LoadOpNo = IsNegate ? 1 : 0;
LoadSDNode *LoadNode = nullptr;
SDValue InputChain;
if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
LoadNode, InputChain)) {
if (!IsCommutable)
return false;
// This operation is commutable, try the other operand.
LoadOpNo = 1;
if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
LoadNode, InputChain))
return false;
}
SDValue Base, Scale, Index, Disp, Segment;
if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
Segment))
return false;
auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
unsigned Opc8) {
switch (MemVT.getSimpleVT().SimpleTy) {
case MVT::i64:
return Opc64;
case MVT::i32:
return Opc32;
case MVT::i16:
return Opc16;
case MVT::i8:
return Opc8;
default:
llvm_unreachable("Invalid size!");
}
};
MachineSDNode *Result;
switch (Opc) {
case X86ISD::SUB:
// Handle negate.
if (IsNegate) {
unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
X86::NEG8m);
const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
MVT::Other, Ops);
break;
}
LLVM_FALLTHROUGH;
case X86ISD::ADD:
// Try to match inc/dec.
if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
bool IsOne = isOneConstant(StoredVal.getOperand(1));
bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
// ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
unsigned NewOpc =
((Opc == X86ISD::ADD) == IsOne)
? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
: SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
MVT::Other, Ops);
break;
}
}
LLVM_FALLTHROUGH;
case X86ISD::ADC:
case X86ISD::SBB:
case X86ISD::AND:
case X86ISD::OR:
case X86ISD::XOR: {
auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
switch (Opc) {
case X86ISD::ADD:
return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
X86::ADD8mr);
case X86ISD::ADC:
return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
X86::ADC8mr);
case X86ISD::SUB:
return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
X86::SUB8mr);
case X86ISD::SBB:
return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
X86::SBB8mr);
case X86ISD::AND:
return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
X86::AND8mr);
case X86ISD::OR:
return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
case X86ISD::XOR:
return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
X86::XOR8mr);
default:
llvm_unreachable("Invalid opcode!");
}
};
auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
switch (Opc) {
case X86ISD::ADD:
return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
case X86ISD::ADC:
return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
case X86ISD::SUB:
return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
case X86ISD::SBB:
return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
case X86ISD::AND:
return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
case X86ISD::OR:
return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
case X86ISD::XOR:
return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
default:
llvm_unreachable("Invalid opcode!");
}
};
auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
switch (Opc) {
case X86ISD::ADD:
return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
X86::ADD8mi);
case X86ISD::ADC:
return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
X86::ADC8mi);
case X86ISD::SUB:
return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
X86::SUB8mi);
case X86ISD::SBB:
return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
X86::SBB8mi);
case X86ISD::AND:
return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
X86::AND8mi);
case X86ISD::OR:
return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
X86::OR8mi);
case X86ISD::XOR:
return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
X86::XOR8mi);
default:
llvm_unreachable("Invalid opcode!");
}
};
unsigned NewOpc = SelectRegOpcode(Opc);
SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
// See if the operand is a constant that we can fold into an immediate
// operand.
if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
int64_t OperandV = OperandC->getSExtValue();
// Check if we can shrink the operand enough to fit in an immediate (or
// fit into a smaller immediate) by negating it and switching the
// operation.
if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
(MemVT == MVT::i64 && !isInt<32>(OperandV) &&
isInt<32>(-OperandV))) &&
hasNoCarryFlagUses(StoredVal.getValue(1))) {
OperandV = -OperandV;
Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
}
// First try to fit this into an Imm8 operand. If it doesn't fit, then try
// the larger immediate operand.
if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
NewOpc = SelectImm8Opcode(Opc);
} else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
NewOpc = SelectImmOpcode(Opc);
}
}
if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
SDValue CopyTo =
CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
StoredVal.getOperand(2), SDValue());
const SDValue Ops[] = {Base, Scale, Index, Disp,
Segment, Operand, CopyTo, CopyTo.getValue(1)};
Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
Ops);
} else {
const SDValue Ops[] = {Base, Scale, Index, Disp,
Segment, Operand, InputChain};
Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
Ops);
}
break;
}
default:
llvm_unreachable("Invalid opcode!");
}
MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
LoadNode->getMemOperand()};
CurDAG->setNodeMemRefs(Result, MemOps);
// Update Load Chain uses as well.
ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
CurDAG->RemoveDeadNode(Node);
return true;
}
// See if this is an X & Mask that we can match to BEXTR/BZHI.
// Where Mask is one of the following patterns:
// a) x & (1 << nbits) - 1
// b) x & ~(-1 << nbits)
// c) x & (-1 >> (32 - y))
// d) x << (32 - y) >> (32 - y)
bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
assert(
(Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
"Should be either an and-mask, or right-shift after clearing high bits.");
// BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
return false;
MVT NVT = Node->getSimpleValueType(0);
// Only supported for 32 and 64 bits.
if (NVT != MVT::i32 && NVT != MVT::i64)
return false;
SDValue NBits;
// If we have BMI2's BZHI, we are ok with muti-use patterns.
// Else, if we only have BMI1's BEXTR, we require one-use.
const bool CanHaveExtraUses = Subtarget->hasBMI2();
auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
return CanHaveExtraUses ||
Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
};
auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
assert(V.getSimpleValueType() == MVT::i32 &&
V.getOperand(0).getSimpleValueType() == MVT::i64 &&
"Expected i64 -> i32 truncation");
V = V.getOperand(0);
}
return V;
};
// a) x & ((1 << nbits) + (-1))
auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
&NBits](SDValue Mask) -> bool {
// Match `add`. Must only have one use!
if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
return false;
// We should be adding all-ones constant (i.e. subtracting one.)
if (!isAllOnesConstant(Mask->getOperand(1)))
return false;
// Match `1 << nbits`. Might be truncated. Must only have one use!
SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
return false;
if (!isOneConstant(M0->getOperand(0)))
return false;
NBits = M0->getOperand(1);
return true;
};
auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
V = peekThroughOneUseTruncation(V);
return CurDAG->MaskedValueIsAllOnes(
V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
NVT.getSizeInBits()));
};
// b) x & ~(-1 << nbits)
auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
&NBits](SDValue Mask) -> bool {
// Match `~()`. Must only have one use!
if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
return false;
// The -1 only has to be all-ones for the final Node's NVT.
if (!isAllOnes(Mask->getOperand(1)))
return false;
// Match `-1 << nbits`. Might be truncated. Must only have one use!
SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
return false;
// The -1 only has to be all-ones for the final Node's NVT.
if (!isAllOnes(M0->getOperand(0)))
return false;
NBits = M0->getOperand(1);
return true;
};
// Match potentially-truncated (bitwidth - y)
auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
unsigned Bitwidth) {
// Skip over a truncate of the shift amount.
if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
ShiftAmt = ShiftAmt.getOperand(0);
// The trunc should have been the only user of the real shift amount.
if (!checkOneUse(ShiftAmt))
return false;
}
// Match the shift amount as: (bitwidth - y). It should go away, too.
if (ShiftAmt.getOpcode() != ISD::SUB)
return false;
auto V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
if (!V0 || V0->getZExtValue() != Bitwidth)
return false;
NBits = ShiftAmt.getOperand(1);
return true;
};
// c) x & (-1 >> (32 - y))
auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
matchShiftAmt](SDValue Mask) -> bool {
// The mask itself may be truncated.
Mask = peekThroughOneUseTruncation(Mask);
unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
// Match `l>>`. Must only have one use!
if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
return false;
// We should be shifting truly all-ones constant.
if (!isAllOnesConstant(Mask.getOperand(0)))
return false;
SDValue M1 = Mask.getOperand(1);
// The shift amount should not be used externally.
if (!checkOneUse(M1))
return false;
return matchShiftAmt(M1, Bitwidth);
};
SDValue X;
// d) x << (32 - y) >> (32 - y)
auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
&X](SDNode *Node) -> bool {
if (Node->getOpcode() != ISD::SRL)
return false;
SDValue N0 = Node->getOperand(0);
if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
return false;
unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
SDValue N1 = Node->getOperand(1);
SDValue N01 = N0->getOperand(1);
// Both of the shifts must be by the exact same value.
// There should not be any uses of the shift amount outside of the pattern.
if (N1 != N01 || !checkTwoUse(N1))
return false;
if (!matchShiftAmt(N1, Bitwidth))
return false;
X = N0->getOperand(0);
return true;
};
auto matchLowBitMask = [matchPatternA, matchPatternB,
matchPatternC](SDValue Mask) -> bool {
return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
};
if (Node->getOpcode() == ISD::AND) {
X = Node->getOperand(0);
SDValue Mask = Node->getOperand(1);
if (matchLowBitMask(Mask)) {
// Great.
} else {
std::swap(X, Mask);
if (!matchLowBitMask(Mask))
return false;
}
} else if (!matchPatternD(Node))
return false;
SDLoc DL(Node);
// Truncate the shift amount.
NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
// Insert 8-bit NBits into lowest 8 bits of 32-bit register.
// All the other bits are undefined, we do not care about them.
SDValue ImplDef = SDValue(
CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
NBits = SDValue(
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
NBits, SRIdxVal), 0);
insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
if (Subtarget->hasBMI2()) {
// Great, just emit the the BZHI..
if (NVT != MVT::i32) {
// But have to place the bit count into the wide-enough register first.
NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
}
SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
ReplaceNode(Node, Extract.getNode());
SelectCode(Extract.getNode());
return true;
}
// Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
// *logically* shifted (potentially with one-use trunc inbetween),
// and the truncation was the only use of the shift,
// and if so look past one-use truncation.
{
SDValue RealX = peekThroughOneUseTruncation(X);
// FIXME: only if the shift is one-use?
if (RealX != X && RealX.getOpcode() == ISD::SRL)
X = RealX;
}
MVT XVT = X.getSimpleValueType();
// Else, emitting BEXTR requires one more step.
// The 'control' of BEXTR has the pattern of:
// [15...8 bit][ 7...0 bit] location
// [ bit count][ shift] name
// I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
// Shift NBits left by 8 bits, thus producing 'control'.
// This makes the low 8 bits to be zero.
SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
// If the 'X' is *logically* shifted, we can fold that shift into 'control'.
// FIXME: only if the shift is one-use?
if (X.getOpcode() == ISD::SRL) {
SDValue ShiftAmt = X.getOperand(1);
X = X.getOperand(0);
assert(ShiftAmt.getValueType() == MVT::i8 &&
"Expected shift amount to be i8");
// Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
// We could zext to i16 in some form, but we intentionally don't do that.
SDValue OrigShiftAmt = ShiftAmt;
ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
// And now 'or' these low 8 bits of shift amount into the 'control'.
Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
}
// But have to place the 'control' into the wide-enough register first.
if (XVT != MVT::i32) {
Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
}
// And finally, form the BEXTR itself.
SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
// The 'X' was originally truncated. Do that now.
if (XVT != NVT) {
insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
}
ReplaceNode(Node, Extract.getNode());
SelectCode(Extract.getNode());
return true;
}
// See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
MVT NVT = Node->getSimpleValueType(0);
SDLoc dl(Node);
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
// If we have TBM we can use an immediate for the control. If we have BMI
// we should only do this if the BEXTR instruction is implemented well.
// Otherwise moving the control into a register makes this more costly.
// TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
// hoisting the move immediate would make it worthwhile with a less optimal
// BEXTR?
bool PreferBEXTR =
Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
if (!PreferBEXTR && !Subtarget->hasBMI2())
return nullptr;
// Must have a shift right.
if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
return nullptr;
// Shift can't have additional users.
if (!N0->hasOneUse())
return nullptr;
// Only supported for 32 and 64 bits.
if (NVT != MVT::i32 && NVT != MVT::i64)
return nullptr;
// Shift amount and RHS of and must be constant.
ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
if (!MaskCst || !ShiftCst)
return nullptr;
// And RHS must be a mask.
uint64_t Mask = MaskCst->getZExtValue();
if (!isMask_64(Mask))
return nullptr;
uint64_t Shift = ShiftCst->getZExtValue();
uint64_t MaskSize = countPopulation(Mask);
// Don't interfere with something that can be handled by extracting AH.
// TODO: If we are able to fold a load, BEXTR might still be better than AH.
if (Shift == 8 && MaskSize == 8)
return nullptr;
// Make sure we are only using bits that were in the original value, not
// shifted in.
if (Shift + MaskSize > NVT.getSizeInBits())
return nullptr;
// BZHI, if available, is always fast, unlike BEXTR. But even if we decide
// that we can't use BEXTR, it is only worthwhile using BZHI if the mask
// does not fit into 32 bits. Load folding is not a sufficient reason.
if (!PreferBEXTR && MaskSize <= 32)
return nullptr;
SDValue Control;
unsigned ROpc, MOpc;
if (!PreferBEXTR) {
assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
// If we can't make use of BEXTR then we can't fuse shift+mask stages.
// Let's perform the mask first, and apply shift later. Note that we need to
// widen the mask to account for the fact that we'll apply shift afterwards!
Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
} else {
// The 'control' of BEXTR has the pattern of:
// [15...8 bit][ 7...0 bit] location
// [ bit count][ shift] name
// I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
if (Subtarget->hasTBM()) {
ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
} else {
assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
// BMI requires the immediate to placed in a register.
ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
}
}
MachineSDNode *NewNode;
SDValue Input = N0->getOperand(0);
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = {
Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
// Update the chain.
ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
// Record the mem-refs
CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
} else {
NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
}
if (!PreferBEXTR) {
// We still need to apply the shift.
SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
NewNode =
CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
}
return NewNode;
}
// Emit a PCMISTR(I/M) instruction.
MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
bool MayFoldLoad, const SDLoc &dl,
MVT VT, SDNode *Node) {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
SDValue Imm = Node->getOperand(2);
const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
// Try to fold a load. No need to check alignment.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
N1.getOperand(0) };
SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
return CNode;
}
SDValue Ops[] = { N0, N1, Imm };
SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
return CNode;
}
// Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
// to emit a second instruction after this one. This is needed since we have two
// copyToReg nodes glued before this and we need to continue that glue through.
MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
bool MayFoldLoad, const SDLoc &dl,
MVT VT, SDNode *Node,
SDValue &InFlag) {
SDValue N0 = Node->getOperand(0);
SDValue N2 = Node->getOperand(2);
SDValue Imm = Node->getOperand(4);
const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
// Try to fold a load. No need to check alignment.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
N2.getOperand(0), InFlag };
SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
InFlag = SDValue(CNode, 3);
// Update the chain.
ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
return CNode;
}
SDValue Ops[] = { N0, N2, Imm, InFlag };
SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
InFlag = SDValue(CNode, 2);
return CNode;
}
bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
EVT VT = N->getValueType(0);
// Only handle scalar shifts.
if (VT.isVector())
return false;
// Narrower shifts only mask to 5 bits in hardware.
unsigned Size = VT == MVT::i64 ? 64 : 32;
SDValue OrigShiftAmt = N->getOperand(1);
SDValue ShiftAmt = OrigShiftAmt;
SDLoc DL(N);
// Skip over a truncate of the shift amount.
if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
ShiftAmt = ShiftAmt->getOperand(0);
// This function is called after X86DAGToDAGISel::matchBitExtract(),
// so we are not afraid that we might mess up BZHI/BEXTR pattern.
SDValue NewShiftAmt;
if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
SDValue Add0 = ShiftAmt->getOperand(0);
SDValue Add1 = ShiftAmt->getOperand(1);
// If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
// to avoid the ADD/SUB.
if (isa<ConstantSDNode>(Add1) &&
cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
NewShiftAmt = Add0;
// If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
// generate a NEG instead of a SUB of a constant.
} else if (ShiftAmt->getOpcode() == ISD::SUB &&
isa<ConstantSDNode>(Add0) &&
cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
// Insert a negate op.
// TODO: This isn't guaranteed to replace the sub if there is a logic cone
// that uses it that's not a shift.
EVT SubVT = ShiftAmt.getValueType();
SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
NewShiftAmt = Neg;
// Insert these operands into a valid topological order so they can
// get selected independently.
insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
} else
return false;
} else
return false;
if (NewShiftAmt.getValueType() != MVT::i8) {
// Need to truncate the shift amount.
NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
// Add to a correct topological ordering.
insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
}
// Insert a new mask to keep the shift amount legal. This should be removed
// by isel patterns.
NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
CurDAG->getConstant(Size - 1, DL, MVT::i8));
// Place in a correct topological ordering.
insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
NewShiftAmt);
if (UpdatedNode != N) {
// If we found an existing node, we should replace ourselves with that node
// and wait for it to be selected after its other users.
ReplaceNode(N, UpdatedNode);
return true;
}
// If the original shift amount is now dead, delete it so that we don't run
// it through isel.
if (OrigShiftAmt.getNode()->use_empty())
CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
// Now that we've optimized the shift amount, defer to normal isel to get
// load folding and legacy vs BMI2 selection without repeating it here.
SelectCode(N);
return true;
}
bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
MVT NVT = N->getSimpleValueType(0);
unsigned Opcode = N->getOpcode();
SDLoc dl(N);
// For operations of the form (x << C1) op C2, check if we can use a smaller
// encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
SDValue Shift = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
if (!Cst)
return false;
int64_t Val = Cst->getSExtValue();
// If we have an any_extend feeding the AND, look through it to see if there
// is a shift behind it. But only if the AND doesn't use the extended bits.
// FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
bool FoundAnyExtend = false;
if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
isUInt<32>(Val)) {
FoundAnyExtend = true;
Shift = Shift.getOperand(0);
}
if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
return false;
// i8 is unshrinkable, i16 should be promoted to i32.
if (NVT != MVT::i32 && NVT != MVT::i64)
return false;
ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
if (!ShlCst)
return false;
uint64_t ShAmt = ShlCst->getZExtValue();
// Make sure that we don't change the operation by removing bits.
// This only matters for OR and XOR, AND is unaffected.
uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
return false;
// Check the minimum bitwidth for the new constant.
// TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
if (Opcode == ISD::AND) {
// AND32ri is the same as AND64ri32 with zext imm.
// Try this before sign extended immediates below.
ShiftedVal = (uint64_t)Val >> ShAmt;
if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
return true;
// Also swap order when the AND can become MOVZX.
if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
return true;
}
ShiftedVal = Val >> ShAmt;
if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
(!isInt<32>(Val) && isInt<32>(ShiftedVal)))
return true;
if (Opcode != ISD::AND) {
// MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
ShiftedVal = (uint64_t)Val >> ShAmt;
if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
return true;
}
return false;
};
int64_t ShiftedVal;
if (!CanShrinkImmediate(ShiftedVal))
return false;
// Ok, we can reorder to get a smaller immediate.
// But, its possible the original immediate allowed an AND to become MOVZX.
// Doing this late due to avoid the MakedValueIsZero call as late as
// possible.
if (Opcode == ISD::AND) {
// Find the smallest zext this could possibly be.
unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
// Figure out which bits need to be zero to achieve that mask.
APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
ZExtWidth);
NeededMask &= ~Cst->getAPIntValue();
if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
return false;
}
SDValue X = Shift.getOperand(0);
if (FoundAnyExtend) {
SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
X = NewX;
}
SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
Shift.getOperand(1));
ReplaceNode(N, NewSHL.getNode());
SelectCode(NewSHL.getNode());
return true;
}
/// Convert vector increment or decrement to sub/add with an all-ones constant:
/// add X, <1, 1...> --> sub X, <-1, -1...>
/// sub X, <1, 1...> --> add X, <-1, -1...>
/// The all-ones vector constant can be materialized using a pcmpeq instruction
/// that is commonly recognized as an idiom (has no register dependency), so
/// that's better/smaller than loading a splat 1 constant.
bool X86DAGToDAGISel::combineIncDecVector(SDNode *Node) {
assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB) &&
"Unexpected opcode for increment/decrement transform");
EVT VT = Node->getValueType(0);
assert(VT.isVector() && "Should only be called for vectors.");
SDValue X = Node->getOperand(0);
SDValue OneVec = Node->getOperand(1);
APInt SplatVal;
if (!X86::isConstantSplat(OneVec, SplatVal) || !SplatVal.isOneValue())
return false;
SDLoc DL(Node);
SDValue OneConstant, AllOnesVec;
APInt Ones = APInt::getAllOnesValue(32);
assert(VT.getSizeInBits() % 32 == 0 &&
"Expected bit count to be a multiple of 32");
OneConstant = CurDAG->getConstant(Ones, DL, MVT::i32);
insertDAGNode(*CurDAG, X, OneConstant);
unsigned NumElts = VT.getSizeInBits() / 32;
assert(NumElts > 0 && "Expected to get non-empty vector.");
AllOnesVec = CurDAG->getSplatBuildVector(MVT::getVectorVT(MVT::i32, NumElts),
DL, OneConstant);
insertDAGNode(*CurDAG, X, AllOnesVec);
AllOnesVec = CurDAG->getBitcast(VT, AllOnesVec);
insertDAGNode(*CurDAG, X, AllOnesVec);
unsigned NewOpcode = Node->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
SDValue NewNode = CurDAG->getNode(NewOpcode, DL, VT, X, AllOnesVec);
ReplaceNode(Node, NewNode.getNode());
SelectCode(NewNode.getNode());
return true;
}
/// If the high bits of an 'and' operand are known zero, try setting the
/// high bits of an 'and' constant operand to produce a smaller encoding by
/// creating a small, sign-extended negative immediate rather than a large
/// positive one. This reverses a transform in SimplifyDemandedBits that
/// shrinks mask constants by clearing bits. There is also a possibility that
/// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
/// case, just replace the 'and'. Return 'true' if the node is replaced.
bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
// i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
// have immediate operands.
MVT VT = And->getSimpleValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return false;
auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
if (!And1C)
return false;
// Bail out if the mask constant is already negative. It's can't shrink more.
// If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
// patterns to use a 32-bit and instead of a 64-bit and by relying on the
// implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
// are negative too.
APInt MaskVal = And1C->getAPIntValue();
unsigned MaskLZ = MaskVal.countLeadingZeros();
if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
return false;
// Don't extend into the upper 32 bits of a 64 bit mask.
if (VT == MVT::i64 && MaskLZ >= 32) {
MaskLZ -= 32;
MaskVal = MaskVal.trunc(32);
}
SDValue And0 = And->getOperand(0);
APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
APInt NegMaskVal = MaskVal | HighZeros;
// If a negative constant would not allow a smaller encoding, there's no need
// to continue. Only change the constant when we know it's a win.
unsigned MinWidth = NegMaskVal.getMinSignedBits();
if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
return false;
// Extend masks if we truncated above.
if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
NegMaskVal = NegMaskVal.zext(64);
HighZeros = HighZeros.zext(64);
}
// The variable operand must be all zeros in the top bits to allow using the
// new, negative constant as the mask.
if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
return false;
// Check if the mask is -1. In that case, this is an unnecessary instruction
// that escaped earlier analysis.
if (NegMaskVal.isAllOnesValue()) {
ReplaceNode(And, And0.getNode());
return true;
}
// A negative mask allows a smaller encoding. Create a new 'and' node.
SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
ReplaceNode(And, NewAnd.getNode());
SelectCode(NewAnd.getNode());
return true;
}
static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
bool FoldedBCast, bool Masked) {
if (Masked) {
if (FoldedLoad) {
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v16i8:
return IsTestN ? X86::VPTESTNMBZ128rmk : X86::VPTESTMBZ128rmk;
case MVT::v8i16:
return IsTestN ? X86::VPTESTNMWZ128rmk : X86::VPTESTMWZ128rmk;
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rmk : X86::VPTESTMDZ128rmk;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rmk : X86::VPTESTMQZ128rmk;
case MVT::v32i8:
return IsTestN ? X86::VPTESTNMBZ256rmk : X86::VPTESTMBZ256rmk;
case MVT::v16i16:
return IsTestN ? X86::VPTESTNMWZ256rmk : X86::VPTESTMWZ256rmk;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rmk : X86::VPTESTMDZ256rmk;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rmk : X86::VPTESTMQZ256rmk;
case MVT::v64i8:
return IsTestN ? X86::VPTESTNMBZrmk : X86::VPTESTMBZrmk;
case MVT::v32i16:
return IsTestN ? X86::VPTESTNMWZrmk : X86::VPTESTMWZrmk;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrmk : X86::VPTESTMDZrmk;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrmk : X86::VPTESTMQZrmk;
}
}
if (FoldedBCast) {
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rmbk : X86::VPTESTMDZ128rmbk;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rmbk : X86::VPTESTMQZ128rmbk;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rmbk : X86::VPTESTMDZ256rmbk;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rmbk : X86::VPTESTMQZ256rmbk;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrmbk : X86::VPTESTMDZrmbk;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrmbk : X86::VPTESTMQZrmbk;
}
}
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v16i8:
return IsTestN ? X86::VPTESTNMBZ128rrk : X86::VPTESTMBZ128rrk;
case MVT::v8i16:
return IsTestN ? X86::VPTESTNMWZ128rrk : X86::VPTESTMWZ128rrk;
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rrk : X86::VPTESTMDZ128rrk;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rrk : X86::VPTESTMQZ128rrk;
case MVT::v32i8:
return IsTestN ? X86::VPTESTNMBZ256rrk : X86::VPTESTMBZ256rrk;
case MVT::v16i16:
return IsTestN ? X86::VPTESTNMWZ256rrk : X86::VPTESTMWZ256rrk;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rrk : X86::VPTESTMDZ256rrk;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rrk : X86::VPTESTMQZ256rrk;
case MVT::v64i8:
return IsTestN ? X86::VPTESTNMBZrrk : X86::VPTESTMBZrrk;
case MVT::v32i16:
return IsTestN ? X86::VPTESTNMWZrrk : X86::VPTESTMWZrrk;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrrk : X86::VPTESTMDZrrk;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrrk : X86::VPTESTMQZrrk;
}
}
if (FoldedLoad) {
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v16i8:
return IsTestN ? X86::VPTESTNMBZ128rm : X86::VPTESTMBZ128rm;
case MVT::v8i16:
return IsTestN ? X86::VPTESTNMWZ128rm : X86::VPTESTMWZ128rm;
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rm : X86::VPTESTMDZ128rm;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rm : X86::VPTESTMQZ128rm;
case MVT::v32i8:
return IsTestN ? X86::VPTESTNMBZ256rm : X86::VPTESTMBZ256rm;
case MVT::v16i16:
return IsTestN ? X86::VPTESTNMWZ256rm : X86::VPTESTMWZ256rm;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rm : X86::VPTESTMDZ256rm;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rm : X86::VPTESTMQZ256rm;
case MVT::v64i8:
return IsTestN ? X86::VPTESTNMBZrm : X86::VPTESTMBZrm;
case MVT::v32i16:
return IsTestN ? X86::VPTESTNMWZrm : X86::VPTESTMWZrm;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrm : X86::VPTESTMDZrm;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrm : X86::VPTESTMQZrm;
}
}
if (FoldedBCast) {
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rmb : X86::VPTESTMDZ128rmb;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rmb : X86::VPTESTMQZ128rmb;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rmb : X86::VPTESTMDZ256rmb;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rmb : X86::VPTESTMQZ256rmb;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrmb : X86::VPTESTMDZrmb;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrmb : X86::VPTESTMQZrmb;
}
}
switch (TestVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v16i8:
return IsTestN ? X86::VPTESTNMBZ128rr : X86::VPTESTMBZ128rr;
case MVT::v8i16:
return IsTestN ? X86::VPTESTNMWZ128rr : X86::VPTESTMWZ128rr;
case MVT::v4i32:
return IsTestN ? X86::VPTESTNMDZ128rr : X86::VPTESTMDZ128rr;
case MVT::v2i64:
return IsTestN ? X86::VPTESTNMQZ128rr : X86::VPTESTMQZ128rr;
case MVT::v32i8:
return IsTestN ? X86::VPTESTNMBZ256rr : X86::VPTESTMBZ256rr;
case MVT::v16i16:
return IsTestN ? X86::VPTESTNMWZ256rr : X86::VPTESTMWZ256rr;
case MVT::v8i32:
return IsTestN ? X86::VPTESTNMDZ256rr : X86::VPTESTMDZ256rr;
case MVT::v4i64:
return IsTestN ? X86::VPTESTNMQZ256rr : X86::VPTESTMQZ256rr;
case MVT::v64i8:
return IsTestN ? X86::VPTESTNMBZrr : X86::VPTESTMBZrr;
case MVT::v32i16:
return IsTestN ? X86::VPTESTNMWZrr : X86::VPTESTMWZrr;
case MVT::v16i32:
return IsTestN ? X86::VPTESTNMDZrr : X86::VPTESTMDZrr;
case MVT::v8i64:
return IsTestN ? X86::VPTESTNMQZrr : X86::VPTESTMQZrr;
}
}
// Try to create VPTESTM instruction. If InMask is not null, it will be used
// to form a masked operation.
bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
SDValue InMask) {
assert(Subtarget->hasAVX512() && "Expected AVX512!");
assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
"Unexpected VT!");
// Look for equal and not equal compares.
ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
if (CC != ISD::SETEQ && CC != ISD::SETNE)
return false;
SDValue SetccOp0 = Setcc.getOperand(0);
SDValue SetccOp1 = Setcc.getOperand(1);
// Canonicalize the all zero vector to the RHS.
if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
std::swap(SetccOp0, SetccOp1);
// See if we're comparing against zero.
if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
return false;
SDValue N0 = SetccOp0;
MVT CmpVT = N0.getSimpleValueType();
MVT CmpSVT = CmpVT.getVectorElementType();
// Start with both operands the same. We'll try to refine this.
SDValue Src0 = N0;
SDValue Src1 = N0;
{
// Look through single use bitcasts.
SDValue N0Temp = N0;
if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
N0Temp = N0.getOperand(0);
// Look for single use AND.
if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
Src0 = N0Temp.getOperand(0);
Src1 = N0Temp.getOperand(1);
}
}
// Without VLX we need to widen the load.
bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
// We can only fold loads if the sources are unique.
bool CanFoldLoads = Src0 != Src1;
// Try to fold loads unless we need to widen.
bool FoldedLoad = false;
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Load;
if (!Widen && CanFoldLoads) {
Load = Src1;
FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2, Tmp3,
Tmp4);
if (!FoldedLoad) {
// And is computative.
Load = Src0;
FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2,
Tmp3, Tmp4);
if (FoldedLoad)
std::swap(Src0, Src1);
}
}
auto findBroadcastedOp = [](SDValue Src, MVT CmpSVT, SDNode *&Parent) {
// Look through single use bitcasts.
if (Src.getOpcode() == ISD::BITCAST && Src.hasOneUse()) {
Parent = Src.getNode();
Src = Src.getOperand(0);
}
if (Src.getOpcode() == X86ISD::VBROADCAST_LOAD && Src.hasOneUse()) {
auto *MemIntr = cast<MemIntrinsicSDNode>(Src);
if (MemIntr->getMemoryVT().getSizeInBits() == CmpSVT.getSizeInBits())
return Src;
}
return SDValue();
};
// If we didn't fold a load, try to match broadcast. No widening limitation
// for this. But only 32 and 64 bit types are supported.
bool FoldedBCast = false;
if (!FoldedLoad && CanFoldLoads &&
(CmpSVT == MVT::i32 || CmpSVT == MVT::i64)) {
SDNode *ParentNode = N0.getNode();
if ((Load = findBroadcastedOp(Src1, CmpSVT, ParentNode))) {
FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
Tmp1, Tmp2, Tmp3, Tmp4);
}
// Try the other operand.
if (!FoldedBCast) {
SDNode *ParentNode = N0.getNode();
if ((Load = findBroadcastedOp(Src0, CmpSVT, ParentNode))) {
FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
Tmp1, Tmp2, Tmp3, Tmp4);
if (FoldedBCast)
std::swap(Src0, Src1);
}
}
}
auto getMaskRC = [](MVT MaskVT) {
switch (MaskVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::v2i1: return X86::VK2RegClassID;
case MVT::v4i1: return X86::VK4RegClassID;
case MVT::v8i1: return X86::VK8RegClassID;
case MVT::v16i1: return X86::VK16RegClassID;
case MVT::v32i1: return X86::VK32RegClassID;
case MVT::v64i1: return X86::VK64RegClassID;
}
};
bool IsMasked = InMask.getNode() != nullptr;
SDLoc dl(Root);
MVT ResVT = Setcc.getSimpleValueType();
MVT MaskVT = ResVT;
if (Widen) {
// Widen the inputs using insert_subreg or copy_to_regclass.
unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
CmpVT), 0);
Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
assert(!FoldedLoad && "Shouldn't have folded the load");
if (!FoldedBCast)
Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
if (IsMasked) {
// Widen the mask.
unsigned RegClass = getMaskRC(MaskVT);
SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
dl, MaskVT, InMask, RC), 0);
}
}
bool IsTestN = CC == ISD::SETEQ;
unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
IsMasked);
MachineSDNode *CNode;
if (FoldedLoad || FoldedBCast) {
SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
if (IsMasked) {
SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
Load.getOperand(0) };
CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
} else {
SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
Load.getOperand(0) };
CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
}
// Update the chain.
ReplaceUses(Load.getValue(1), SDValue(CNode, 1));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Load)->getMemOperand()});
} else {
if (IsMasked)
CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
else
CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
}
// If we widened, we need to shrink the mask VT.
if (Widen) {
unsigned RegClass = getMaskRC(ResVT);
SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
dl, ResVT, SDValue(CNode, 0), RC);
}
ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
CurDAG->RemoveDeadNode(Root);
return true;
}
// Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
// into vpternlog.
bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
MVT NVT = N->getSimpleValueType(0);
// Make sure we support VPTERNLOG.
if (!NVT.isVector() || !Subtarget->hasAVX512())
return false;
// We need VLX for 128/256-bit.
if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
return false;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Canonicalize AND to LHS.
if (N1.getOpcode() == ISD::AND)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::AND ||
N1.getOpcode() != X86ISD::ANDNP ||
!N0.hasOneUse() || !N1.hasOneUse())
return false;
// ANDN is not commutable, use it to pick down A and C.
SDValue A = N1.getOperand(0);
SDValue C = N1.getOperand(1);
// AND is commutable, if one operand matches A, the other operand is B.
// Otherwise this isn't a match.
SDValue B;
if (N0.getOperand(0) == A)
B = N0.getOperand(1);
else if (N0.getOperand(1) == A)
B = N0.getOperand(0);
else
return false;
SDLoc dl(N);
SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
ReplaceNode(N, Ternlog.getNode());
SelectCode(Ternlog.getNode());
return true;
}
void X86DAGToDAGISel::Select(SDNode *Node) {
MVT NVT = Node->getSimpleValueType(0);
unsigned Opcode = Node->getOpcode();
SDLoc dl(Node);
if (Node->isMachineOpcode()) {
LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
Node->setNodeId(-1);
return; // Already selected.
}
switch (Opcode) {
default: break;
case ISD::INTRINSIC_VOID: {
unsigned IntNo = Node->getConstantOperandVal(1);
switch (IntNo) {
default: break;
case Intrinsic::x86_sse3_monitor:
case Intrinsic::x86_monitorx:
case Intrinsic::x86_clzero: {
bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
unsigned Opc = 0;
switch (IntNo) {
default: llvm_unreachable("Unexpected intrinsic!");
case Intrinsic::x86_sse3_monitor:
if (!Subtarget->hasSSE3())
break;
Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
break;
case Intrinsic::x86_monitorx:
if (!Subtarget->hasMWAITX())
break;
Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
break;
case Intrinsic::x86_clzero:
if (!Subtarget->hasCLZERO())
break;
Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
break;
}
if (Opc) {
unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
Node->getOperand(2), SDValue());
SDValue InFlag = Chain.getValue(1);
if (IntNo == Intrinsic::x86_sse3_monitor ||
IntNo == Intrinsic::x86_monitorx) {
// Copy the other two operands to ECX and EDX.
Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
InFlag);
InFlag = Chain.getValue(1);
Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
InFlag);
InFlag = Chain.getValue(1);
}
MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
{ Chain, InFlag});
ReplaceNode(Node, CNode);
return;
}
break;
}
}
break;
}
case ISD::BRIND: {
if (Subtarget->isTargetNaCl())
// NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
// leave the instruction alone.
break;
if (Subtarget->isTarget64BitILP32()) {
// Converts a 32-bit register to a 64-bit, zero-extended version of
// it. This is needed because x86-64 can do many things, but jmp %r32
// ain't one of them.
const SDValue &Target = Node->getOperand(1);
assert(Target.getSimpleValueType() == llvm::MVT::i32);
SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
Node->getOperand(0), ZextTarget);
ReplaceNode(Node, Brind.getNode());
SelectCode(ZextTarget.getNode());
SelectCode(Brind.getNode());
return;
}
break;
}
case X86ISD::GlobalBaseReg:
ReplaceNode(Node, getGlobalBaseReg());
return;
case ISD::BITCAST:
// Just drop all 128/256/512-bit bitcasts.
if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
NVT == MVT::f128) {
ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
CurDAG->RemoveDeadNode(Node);
return;
}
break;
case ISD::VSELECT: {
// Replace VSELECT with non-mask conditions with with BLENDV.
if (Node->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
break;
assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
SDValue Blendv = CurDAG->getNode(
X86ISD::BLENDV, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2));
ReplaceNode(Node, Blendv.getNode());
SelectCode(Blendv.getNode());
// We already called ReplaceUses.
return;
}
case ISD::SRL:
if (matchBitExtract(Node))
return;
LLVM_FALLTHROUGH;
case ISD::SRA:
case ISD::SHL:
if (tryShiftAmountMod(Node))
return;
break;
case ISD::AND:
if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
// Try to form a masked VPTESTM. Operands can be in either order.
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
tryVPTESTM(Node, N0, N1))
return;
if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
tryVPTESTM(Node, N1, N0))
return;
}
if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
CurDAG->RemoveDeadNode(Node);
return;
}
if (matchBitExtract(Node))
return;
if (AndImmShrink && shrinkAndImmediate(Node))
return;
LLVM_FALLTHROUGH;
case ISD::OR:
case ISD::XOR:
if (tryShrinkShlLogicImm(Node))
return;
if (Opcode == ISD::OR && tryMatchBitSelect(Node))
return;
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::SUB: {
if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && NVT.isVector() &&
combineIncDecVector(Node))
return;
// Try to avoid folding immediates with multiple uses for optsize.
// This code tries to select to register form directly to avoid going
// through the isel table which might fold the immediate. We can't change
// the patterns on the add/sub/and/or/xor with immediate paterns in the
// tablegen files to check immediate use count without making the patterns
// unavailable to the fast-isel table.
if (!OptForSize)
break;
// Only handle i8/i16/i32/i64.
if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
break;
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
if (!Cst)
break;
int64_t Val = Cst->getSExtValue();
// Make sure its an immediate that is considered foldable.
// FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
if (!isInt<8>(Val) && !isInt<32>(Val))
break;
// If this can match to INC/DEC, let it go.
if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
break;
// Check if we should avoid folding this immediate.
if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
break;
// We should not fold the immediate. So we need a register form instead.
unsigned ROpc, MOpc;
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unexpected VT!");
case MVT::i8:
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break;
case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
}
break;
case MVT::i16:
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break;
case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
}
break;
case MVT::i32:
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break;
case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
}
break;
case MVT::i64:
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode!");
case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break;
case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
}
break;
}
// Ok this is a AND/OR/XOR/ADD/SUB with constant.
// If this is a not a subtract, we can still try to fold a load.
if (Opcode != ISD::SUB) {
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
// Update the chain.
ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
CurDAG->RemoveDeadNode(Node);
return;
}
}
CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
return;
}
case X86ISD::SMUL:
// i16/i32/i64 are handled with isel patterns.
if (NVT != MVT::i8)
break;
LLVM_FALLTHROUGH;
case X86ISD::UMUL: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
unsigned LoReg, ROpc, MOpc;
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i8:
LoReg = X86::AL;
ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
break;
case MVT::i16:
LoReg = X86::AX;
ROpc = X86::MUL16r;
MOpc = X86::MUL16m;
break;
case MVT::i32:
LoReg = X86::EAX;
ROpc = X86::MUL32r;
MOpc = X86::MUL32m;
break;
case MVT::i64:
LoReg = X86::RAX;
ROpc = X86::MUL64r;
MOpc = X86::MUL64m;
break;
}
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
// Multiply is commmutative.
if (!FoldedLoad) {
FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
if (FoldedLoad)
std::swap(N0, N1);
}
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
N0, SDValue()).getValue(1);
MachineSDNode *CNode;
if (FoldedLoad) {
// i16/i32/i64 use an instruction that produces a low and high result even
// though only the low result is used.
SDVTList VTs;
if (NVT == MVT::i8)
VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
else
VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
InFlag };
CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
} else {
// i16/i32/i64 use an instruction that produces a low and high result even
// though only the low result is used.
SDVTList VTs;
if (NVT == MVT::i8)
VTs = CurDAG->getVTList(NVT, MVT::i32);
else
VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
}
ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
CurDAG->RemoveDeadNode(Node);
return;
}
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
unsigned Opc, MOpc;
bool isSigned = Opcode == ISD::SMUL_LOHI;
if (!isSigned) {
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
}
} else {
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
}
}
unsigned SrcReg, LoReg, HiReg;
switch (Opc) {
default: llvm_unreachable("Unknown MUL opcode!");
case X86::IMUL32r:
case X86::MUL32r:
SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
break;
case X86::IMUL64r:
case X86::MUL64r:
SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
break;
}
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
// Multiply is commmutative.
if (!foldedLoad) {
foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
if (foldedLoad)
std::swap(N0, N1);
}
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
N0, SDValue()).getValue(1);
if (foldedLoad) {
SDValue Chain;
MachineSDNode *CNode = nullptr;
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
InFlag };
SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
Chain = SDValue(CNode, 0);
InFlag = SDValue(CNode, 1);
// Update the chain.
ReplaceUses(N1.getValue(1), Chain);
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
} else {
SDValue Ops[] = { N1, InFlag };
SDVTList VTs = CurDAG->getVTList(MVT::Glue);
SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
InFlag = SDValue(CNode, 0);
}
// Copy the low half of the result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
assert(LoReg && "Register for low half is not defined!");
SDValue ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
NVT, InFlag);
InFlag = ResLo.getValue(2);
ReplaceUses(SDValue(Node, 0), ResLo);
LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
dbgs() << '\n');
}
// Copy the high half of the result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
assert(HiReg && "Register for high half is not defined!");
SDValue ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
NVT, InFlag);
InFlag = ResHi.getValue(2);
ReplaceUses(SDValue(Node, 1), ResHi);
LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
dbgs() << '\n');
}
CurDAG->RemoveDeadNode(Node);
return;
}
case ISD::SDIVREM:
case ISD::UDIVREM: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
unsigned Opc, MOpc;
bool isSigned = Opcode == ISD::SDIVREM;
if (!isSigned) {
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
}
} else {
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
}
}
unsigned LoReg, HiReg, ClrReg;
unsigned SExtOpcode;
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i8:
LoReg = X86::AL; ClrReg = HiReg = X86::AH;
SExtOpcode = 0; // Not used.
break;
case MVT::i16:
LoReg = X86::AX; HiReg = X86::DX;
ClrReg = X86::DX;
SExtOpcode = X86::CWD;
break;
case MVT::i32:
LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
SExtOpcode = X86::CDQ;
break;
case MVT::i64:
LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
SExtOpcode = X86::CQO;
break;
}
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
bool signBitIsZero = CurDAG->SignBitIsZero(N0);
SDValue InFlag;
if (NVT == MVT::i8) {
// Special case for div8, just use a move with zero extension to AX to
// clear the upper 8 bits (AH).
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
MachineSDNode *Move;
if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
: X86::MOVZX16rm8;
Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
Chain = SDValue(Move, 1);
ReplaceUses(N0.getValue(1), Chain);
// Record the mem-refs
CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
} else {
unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
: X86::MOVZX16rr8;
Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
Chain = CurDAG->getEntryNode();
}
Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
SDValue());
InFlag = Chain.getValue(1);
} else {
InFlag =
CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
LoReg, N0, SDValue()).getValue(1);
if (isSigned && !signBitIsZero) {
// Sign extend the low part into the high part.
InFlag =
SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
} else {
// Zero out the high part, effectively zero extending the input.
SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
switch (NVT.SimpleTy) {
case MVT::i16:
ClrNode =
SDValue(CurDAG->getMachineNode(
TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
CurDAG->getTargetConstant(X86::sub_16bit, dl,
MVT::i32)),
0);
break;
case MVT::i32:
break;
case MVT::i64:
ClrNode =
SDValue(CurDAG->getMachineNode(
TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
CurDAG->getTargetConstant(X86::sub_32bit, dl,
MVT::i32)),
0);
break;
default:
llvm_unreachable("Unexpected division source");
}
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
ClrNode, InFlag).getValue(1);
}
}
if (foldedLoad) {
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
InFlag };
MachineSDNode *CNode =
CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
InFlag = SDValue(CNode, 1);
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
// Record the mem-refs
CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
} else {
InFlag =
SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
}
// Prevent use of AH in a REX instruction by explicitly copying it to
// an ABCD_L register.
//
// The current assumption of the register allocator is that isel
// won't generate explicit references to the GR8_ABCD_H registers. If
// the allocator and/or the backend get enhanced to be more robust in
// that regard, this can be, and should be, removed.
if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
unsigned AHExtOpcode =
isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
MVT::Glue, AHCopy, InFlag);
SDValue Result(RNode, 0);
InFlag = SDValue(RNode, 1);
Result =
CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
ReplaceUses(SDValue(Node, 1), Result);
LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
dbgs() << '\n');
}
// Copy the division (low) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
LoReg, NVT, InFlag);
InFlag = Result.getValue(2);
ReplaceUses(SDValue(Node, 0), Result);
LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
dbgs() << '\n');
}
// Copy the remainder (high) result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
HiReg, NVT, InFlag);
InFlag = Result.getValue(2);
ReplaceUses(SDValue(Node, 1), Result);
LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
dbgs() << '\n');
}
CurDAG->RemoveDeadNode(Node);
return;
}
case X86ISD::CMP: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
// Optimizations for TEST compares.
if (!isNullConstant(N1))
break;
// Save the original VT of the compare.
MVT CmpVT = N0.getSimpleValueType();
// If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
// by a test instruction. The test should be removed later by
// analyzeCompare if we are using only the zero flag.
// TODO: Should we check the users and use the BEXTR flags directly?
if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
: X86::TEST32rr;
SDValue BEXTR = SDValue(NewNode, 0);
NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
CurDAG->RemoveDeadNode(Node);
return;
}
}
// We can peek through truncates, but we need to be careful below.
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
N0 = N0.getOperand(0);
// Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
// use a smaller encoding.
// Look past the truncate if CMP is the only use of it.
if (N0.getOpcode() == ISD::AND &&
N0.getNode()->hasOneUse() &&
N0.getValueType() != MVT::i8) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C) break;
uint64_t Mask = C->getZExtValue();
// Check if we can replace AND+IMM64 with a shift. This is possible for
// masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
// flag.
if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
onlyUsesZeroFlag(SDValue(Node, 0))) {
if (isMask_64(~Mask)) {
unsigned TrailingZeros = countTrailingZeros(Mask);
SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
SDValue Shift =
SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
N0.getOperand(0), Imm), 0);
MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
MVT::i32, Shift, Shift);
ReplaceNode(Node, Test);
return;
}
if (isMask_64(Mask)) {
unsigned LeadingZeros = countLeadingZeros(Mask);
SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
SDValue Shift =
SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
N0.getOperand(0), Imm), 0);
MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
MVT::i32, Shift, Shift);
ReplaceNode(Node, Test);
return;
}
}
MVT VT;
int SubRegOp;
unsigned ROpc, MOpc;
// For each of these checks we need to be careful if the sign flag is
// being used. It is only safe to use the sign flag in two conditions,
// either the sign bit in the shrunken mask is zero or the final test
// size is equal to the original compare size.
if (isUInt<8>(Mask) &&
(!(Mask & 0x80) || CmpVT == MVT::i8 ||
hasNoSignFlagUses(SDValue(Node, 0)))) {
// For example, convert "testl %eax, $8" to "testb %al, $8"
VT = MVT::i8;
SubRegOp = X86::sub_8bit;
ROpc = X86::TEST8ri;
MOpc = X86::TEST8mi;
} else if (OptForMinSize && isUInt<16>(Mask) &&
(!(Mask & 0x8000) || CmpVT == MVT::i16 ||
hasNoSignFlagUses(SDValue(Node, 0)))) {
// For example, "testl %eax, $32776" to "testw %ax, $32776".
// NOTE: We only want to form TESTW instructions if optimizing for
// min size. Otherwise we only save one byte and possibly get a length
// changing prefix penalty in the decoders.
VT = MVT::i16;
SubRegOp = X86::sub_16bit;
ROpc = X86::TEST16ri;
MOpc = X86::TEST16mi;
} else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
((!(Mask & 0x80000000) &&
// Without minsize 16-bit Cmps can get here so we need to
// be sure we calculate the correct sign flag if needed.
(CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
CmpVT == MVT::i32 ||
hasNoSignFlagUses(SDValue(Node, 0)))) {
// For example, "testq %rax, $268468232" to "testl %eax, $268468232".
// NOTE: We only want to run that transform if N0 is 32 or 64 bits.
// Otherwize, we find ourselves in a position where we have to do
// promotion. If previous passes did not promote the and, we assume
// they had a good reason not to and do not promote here.
VT = MVT::i32;
SubRegOp = X86::sub_32bit;
ROpc = X86::TEST32ri;
MOpc = X86::TEST32mi;
} else {
// No eligible transformation was found.
break;
}
SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
SDValue Reg = N0.getOperand(0);
// Emit a testl or testw.
MachineSDNode *NewNode;
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
if (!LoadN->isSimple()) {
unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
if (MOpc == X86::TEST8mi && NumVolBits != 8)
break;
else if (MOpc == X86::TEST16mi && NumVolBits != 16)
break;
else if (MOpc == X86::TEST32mi && NumVolBits != 32)
break;
}
}
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
Reg.getOperand(0) };
NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
// Update the chain.
ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
// Record the mem-refs
CurDAG->setNodeMemRefs(NewNode,
{cast<LoadSDNode>(Reg)->getMemOperand()});
} else {
// Extract the subregister if necessary.
if (N0.getValueType() != VT)
Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
}
// Replace CMP with TEST.
ReplaceNode(Node, NewNode);
return;
}
break;
}
case X86ISD::PCMPISTR: {
if (!Subtarget->hasSSE42())
break;
bool NeedIndex = !SDValue(Node, 0).use_empty();
bool NeedMask = !SDValue(Node, 1).use_empty();
// We can't fold a load if we are going to make two instructions.
bool MayFoldLoad = !NeedIndex || !NeedMask;
MachineSDNode *CNode;
if (NeedMask) {
unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
}
if (NeedIndex || !NeedMask) {
unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
}
// Connect the flag usage to the last instruction created.
ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
CurDAG->RemoveDeadNode(Node);
return;
}
case X86ISD::PCMPESTR: {
if (!Subtarget->hasSSE42())
break;
// Copy the two implicit register inputs.
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
Node->getOperand(1),
SDValue()).getValue(1);
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
Node->getOperand(3), InFlag).getValue(1);
bool NeedIndex = !SDValue(Node, 0).use_empty();
bool NeedMask = !SDValue(Node, 1).use_empty();
// We can't fold a load if we are going to make two instructions.
bool MayFoldLoad = !NeedIndex || !NeedMask;
MachineSDNode *CNode;
if (NeedMask) {
unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
InFlag);
ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
}
if (NeedIndex || !NeedMask) {
unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
}
// Connect the flag usage to the last instruction created.
ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
CurDAG->RemoveDeadNode(Node);
return;
}
case ISD::SETCC: {
if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
return;
break;
}
case ISD::STORE:
if (foldLoadStoreIntoMemOperand(Node))
return;
break;
}
SelectCode(Node);
}
bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SDValue Op0, Op1, Op2, Op3, Op4;
switch (ConstraintID) {
default:
llvm_unreachable("Unexpected asm memory constraint");
case InlineAsm::Constraint_o: // offsetable ??
case InlineAsm::Constraint_v: // not offsetable ??
case InlineAsm::Constraint_m: // memory
case InlineAsm::Constraint_X:
if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
return true;
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
OutOps.push_back(Op2);
OutOps.push_back(Op3);
OutOps.push_back(Op4);
return false;
}
/// This pass converts a legalized DAG into a X86-specific DAG,
/// ready for instruction scheduling.
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new X86DAGToDAGISel(TM, OptLevel);
}