X86ISelDAGToDAG.cpp 195 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <stdint.h>
using namespace llvm;

#define DEBUG_TYPE "x86-isel"

STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");

static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
    cl::desc("Enable setting constant bits to reduce size of mask immediates"),
    cl::Hidden);

//===----------------------------------------------------------------------===//
//                      Pattern Matcher Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// This corresponds to X86AddressMode, but uses SDValue's instead of register
  /// numbers for the leaves of the matched tree.
  struct X86ISelAddressMode {
    enum {
      RegBase,
      FrameIndexBase
    } BaseType;

    // This is really a union, discriminated by BaseType!
    SDValue Base_Reg;
    int Base_FrameIndex;

    unsigned Scale;
    SDValue IndexReg;
    int32_t Disp;
    SDValue Segment;
    const GlobalValue *GV;
    const Constant *CP;
    const BlockAddress *BlockAddr;
    const char *ES;
    MCSymbol *MCSym;
    int JT;
    unsigned Align;    // CP alignment.
    unsigned char SymbolFlags;  // X86II::MO_*
    bool NegateIndex = false;

    X86ISelAddressMode()
        : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
          Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
          MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}

    bool hasSymbolicDisplacement() const {
      return GV != nullptr || CP != nullptr || ES != nullptr ||
             MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
    }

    bool hasBaseOrIndexReg() const {
      return BaseType == FrameIndexBase ||
             IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
    }

    /// Return true if this addressing mode is already RIP-relative.
    bool isRIPRelative() const {
      if (BaseType != RegBase) return false;
      if (RegisterSDNode *RegNode =
            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
        return RegNode->getReg() == X86::RIP;
      return false;
    }

    void setBaseReg(SDValue Reg) {
      BaseType = RegBase;
      Base_Reg = Reg;
    }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    void dump(SelectionDAG *DAG = nullptr) {
      dbgs() << "X86ISelAddressMode " << this << '\n';
      dbgs() << "Base_Reg ";
      if (Base_Reg.getNode())
        Base_Reg.getNode()->dump(DAG);
      else
        dbgs() << "nul\n";
      if (BaseType == FrameIndexBase)
        dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
      dbgs() << " Scale " << Scale << '\n'
             << "IndexReg ";
      if (NegateIndex)
        dbgs() << "negate ";
      if (IndexReg.getNode())
        IndexReg.getNode()->dump(DAG);
      else
        dbgs() << "nul\n";
      dbgs() << " Disp " << Disp << '\n'
             << "GV ";
      if (GV)
        GV->dump();
      else
        dbgs() << "nul";
      dbgs() << " CP ";
      if (CP)
        CP->dump();
      else
        dbgs() << "nul";
      dbgs() << '\n'
             << "ES ";
      if (ES)
        dbgs() << ES;
      else
        dbgs() << "nul";
      dbgs() << " MCSym ";
      if (MCSym)
        dbgs() << MCSym;
      else
        dbgs() << "nul";
      dbgs() << " JT" << JT << " Align" << Align << '\n';
    }
#endif
  };
}

namespace {
  //===--------------------------------------------------------------------===//
  /// ISel - X86-specific code to select X86 machine instructions for
  /// SelectionDAG operations.
  ///
  class X86DAGToDAGISel final : public SelectionDAGISel {
    /// Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;

    /// If true, selector should try to optimize for code size instead of
    /// performance.
    bool OptForSize;

    /// If true, selector should try to optimize for minimum code size.
    bool OptForMinSize;

    /// Disable direct TLS access through segment registers.
    bool IndirectTlsSegRefs;

  public:
    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
        : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForSize(false),
          OptForMinSize(false), IndirectTlsSegRefs(false) {}

    StringRef getPassName() const override {
      return "X86 DAG->DAG Instruction Selection";
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      // Reset the subtarget each time through.
      Subtarget = &MF.getSubtarget<X86Subtarget>();
      IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
                             "indirect-tls-seg-refs");

      // OptFor[Min]Size are used in pattern predicates that isel is matching.
      OptForSize = MF.getFunction().hasOptSize();
      OptForMinSize = MF.getFunction().hasMinSize();
      assert((!OptForMinSize || OptForSize) &&
             "OptForMinSize implies OptForSize");

      SelectionDAGISel::runOnMachineFunction(MF);
      return true;
    }

    void EmitFunctionEntryCode() override;

    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;

    void PreprocessISelDAG() override;
    void PostprocessISelDAG() override;

// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"

  private:
    void Select(SDNode *N) override;

    bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
    bool matchAddress(SDValue N, X86ISelAddressMode &AM);
    bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
    bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
    bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                 unsigned Depth);
    bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
    bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                    SDValue &Scale, SDValue &Index, SDValue &Disp,
                    SDValue &Segment);
    bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
                          SDValue &Scale, SDValue &Index, SDValue &Disp,
                          SDValue &Segment);
    bool selectMOV64Imm32(SDValue N, SDValue &Imm);
    bool selectLEAAddr(SDValue N, SDValue &Base,
                       SDValue &Scale, SDValue &Index, SDValue &Disp,
                       SDValue &Segment);
    bool selectLEA64_32Addr(SDValue N, SDValue &Base,
                            SDValue &Scale, SDValue &Index, SDValue &Disp,
                            SDValue &Segment);
    bool selectTLSADDRAddr(SDValue N, SDValue &Base,
                           SDValue &Scale, SDValue &Index, SDValue &Disp,
                           SDValue &Segment);
    bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N,
                             SDValue &Base, SDValue &Scale,
                             SDValue &Index, SDValue &Disp,
                             SDValue &Segment,
                             SDValue &NodeWithChain);
    bool selectRelocImm(SDValue N, SDValue &Op);

    bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
                     SDValue &Base, SDValue &Scale,
                     SDValue &Index, SDValue &Disp,
                     SDValue &Segment);

    // Convenience method where P is also root.
    bool tryFoldLoad(SDNode *P, SDValue N,
                     SDValue &Base, SDValue &Scale,
                     SDValue &Index, SDValue &Disp,
                     SDValue &Segment) {
      return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
    }

    bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
                          SDValue &Base, SDValue &Scale,
                          SDValue &Index, SDValue &Disp,
                          SDValue &Segment);

    /// Implement addressing mode selection for inline asm expressions.
    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                      unsigned ConstraintID,
                                      std::vector<SDValue> &OutOps) override;

    void emitSpecialCodeForMain();

    inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
                                   MVT VT, SDValue &Base, SDValue &Scale,
                                   SDValue &Index, SDValue &Disp,
                                   SDValue &Segment) {
      if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
        Base = CurDAG->getTargetFrameIndex(
            AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
      else if (AM.Base_Reg.getNode())
        Base = AM.Base_Reg;
      else
        Base = CurDAG->getRegister(0, VT);

      Scale = getI8Imm(AM.Scale, DL);

      // Negate the index if needed.
      if (AM.NegateIndex) {
        unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
        SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
                                                     AM.IndexReg), 0);
        AM.IndexReg = Neg;
      }

      if (AM.IndexReg.getNode())
        Index = AM.IndexReg;
      else
        Index = CurDAG->getRegister(0, VT);

      // These are 32-bit even in 64-bit mode since RIP-relative offset
      // is 32-bit.
      if (AM.GV)
        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
                                              MVT::i32, AM.Disp,
                                              AM.SymbolFlags);
      else if (AM.CP)
        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
                                             AM.Align, AM.Disp, AM.SymbolFlags);
      else if (AM.ES) {
        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
      } else if (AM.MCSym) {
        assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
        assert(AM.SymbolFlags == 0 && "oo");
        Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
      } else if (AM.JT != -1) {
        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
      } else if (AM.BlockAddr)
        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
                                             AM.SymbolFlags);
      else
        Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);

      if (AM.Segment.getNode())
        Segment = AM.Segment;
      else
        Segment = CurDAG->getRegister(0, MVT::i16);
    }

    // Utility function to determine whether we should avoid selecting
    // immediate forms of instructions for better code size or not.
    // At a high level, we'd like to avoid such instructions when
    // we have similar constants used within the same basic block
    // that can be kept in a register.
    //
    bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
      uint32_t UseCount = 0;

      // Do not want to hoist if we're not optimizing for size.
      // TODO: We'd like to remove this restriction.
      // See the comment in X86InstrInfo.td for more info.
      if (!CurDAG->shouldOptForSize())
        return false;

      // Walk all the users of the immediate.
      for (SDNode::use_iterator UI = N->use_begin(),
           UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {

        SDNode *User = *UI;

        // This user is already selected. Count it as a legitimate use and
        // move on.
        if (User->isMachineOpcode()) {
          UseCount++;
          continue;
        }

        // We want to count stores of immediates as real uses.
        if (User->getOpcode() == ISD::STORE &&
            User->getOperand(1).getNode() == N) {
          UseCount++;
          continue;
        }

        // We don't currently match users that have > 2 operands (except
        // for stores, which are handled above)
        // Those instruction won't match in ISEL, for now, and would
        // be counted incorrectly.
        // This may change in the future as we add additional instruction
        // types.
        if (User->getNumOperands() != 2)
          continue;

        // If this can match to INC/DEC, don't count it as a use.
        if (User->getOpcode() == ISD::ADD &&
            (isOneConstant(SDValue(N, 0)) || isAllOnesConstant(SDValue(N, 0))))
          continue;

        // Immediates that are used for offsets as part of stack
        // manipulation should be left alone. These are typically
        // used to indicate SP offsets for argument passing and
        // will get pulled into stores/pushes (implicitly).
        if (User->getOpcode() == X86ISD::ADD ||
            User->getOpcode() == ISD::ADD    ||
            User->getOpcode() == X86ISD::SUB ||
            User->getOpcode() == ISD::SUB) {

          // Find the other operand of the add/sub.
          SDValue OtherOp = User->getOperand(0);
          if (OtherOp.getNode() == N)
            OtherOp = User->getOperand(1);

          // Don't count if the other operand is SP.
          RegisterSDNode *RegNode;
          if (OtherOp->getOpcode() == ISD::CopyFromReg &&
              (RegNode = dyn_cast_or_null<RegisterSDNode>(
                 OtherOp->getOperand(1).getNode())))
            if ((RegNode->getReg() == X86::ESP) ||
                (RegNode->getReg() == X86::RSP))
              continue;
        }

        // ... otherwise, count this and move on.
        UseCount++;
      }

      // If we have more than 1 use, then recommend for hoisting.
      return (UseCount > 1);
    }

    /// Return a target constant with the specified value of type i8.
    inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
      return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
    }

    /// Return a target constant with the specified value, of type i32.
    inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
      return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
    }

    /// Return a target constant with the specified value, of type i64.
    inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
      return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
    }

    SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
                                        const SDLoc &DL) {
      assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
      uint64_t Index = N->getConstantOperandVal(1);
      MVT VecVT = N->getOperand(0).getSimpleValueType();
      return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
    }

    SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
                                      const SDLoc &DL) {
      assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
      uint64_t Index = N->getConstantOperandVal(2);
      MVT VecVT = N->getSimpleValueType(0);
      return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
    }

    // Helper to detect unneeded and instructions on shift amounts. Called
    // from PatFrags in tablegen.
    bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
      assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
      const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();

      if (Val.countTrailingOnes() >= Width)
        return true;

      APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
      return Mask.countTrailingOnes() >= Width;
    }

    /// Return an SDNode that returns the value of the global base register.
    /// Output instructions required to initialize the global base register,
    /// if necessary.
    SDNode *getGlobalBaseReg();

    /// Return a reference to the TargetMachine, casted to the target-specific
    /// type.
    const X86TargetMachine &getTargetMachine() const {
      return static_cast<const X86TargetMachine &>(TM);
    }

    /// Return a reference to the TargetInstrInfo, casted to the target-specific
    /// type.
    const X86InstrInfo *getInstrInfo() const {
      return Subtarget->getInstrInfo();
    }

    /// Address-mode matching performs shift-of-and to and-of-shift
    /// reassociation in order to expose more scaled addressing
    /// opportunities.
    bool ComplexPatternFuncMutatesDAG() const override {
      return true;
    }

    bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;

    /// Returns whether this is a relocatable immediate in the range
    /// [-2^Width .. 2^Width-1].
    template <unsigned Width> bool isSExtRelocImm(SDNode *N) const {
      if (auto *CN = dyn_cast<ConstantSDNode>(N))
        return isInt<Width>(CN->getSExtValue());
      return isSExtAbsoluteSymbolRef(Width, N);
    }

    // Indicates we should prefer to use a non-temporal load for this load.
    bool useNonTemporalLoad(LoadSDNode *N) const {
      if (!N->isNonTemporal())
        return false;

      unsigned StoreSize = N->getMemoryVT().getStoreSize();

      if (N->getAlignment() < StoreSize)
        return false;

      switch (StoreSize) {
      default: llvm_unreachable("Unsupported store size");
      case 4:
      case 8:
        return false;
      case 16:
        return Subtarget->hasSSE41();
      case 32:
        return Subtarget->hasAVX2();
      case 64:
        return Subtarget->hasAVX512();
      }
    }

    bool foldLoadStoreIntoMemOperand(SDNode *Node);
    MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
    bool matchBitExtract(SDNode *Node);
    bool shrinkAndImmediate(SDNode *N);
    bool isMaskZeroExtended(SDNode *N) const;
    bool tryShiftAmountMod(SDNode *N);
    bool combineIncDecVector(SDNode *Node);
    bool tryShrinkShlLogicImm(SDNode *N);
    bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
    bool tryMatchBitSelect(SDNode *N);

    MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
                                const SDLoc &dl, MVT VT, SDNode *Node);
    MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
                                const SDLoc &dl, MVT VT, SDNode *Node,
                                SDValue &InFlag);

    bool tryOptimizeRem8Extend(SDNode *N);

    bool onlyUsesZeroFlag(SDValue Flags) const;
    bool hasNoSignFlagUses(SDValue Flags) const;
    bool hasNoCarryFlagUses(SDValue Flags) const;
  };
}


// Returns true if this masked compare can be implemented legally with this
// type.
static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == X86ISD::CMPM || Opcode == X86ISD::STRICT_CMPM ||
      Opcode == ISD::SETCC || Opcode == X86ISD::CMPM_SAE ||
      Opcode == X86ISD::VFPCLASS) {
    // We can get 256-bit 8 element types here without VLX being enabled. When
    // this happens we will use 512-bit operations and the mask will not be
    // zero extended.
    EVT OpVT = N->getOperand(0).getValueType();
    // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
    // second operand.
    if (Opcode == X86ISD::STRICT_CMPM)
      OpVT = N->getOperand(1).getValueType();
    if (OpVT.is256BitVector() || OpVT.is128BitVector())
      return Subtarget->hasVLX();

    return true;
  }
  // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
  if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
      Opcode == X86ISD::FSETCCM_SAE)
    return true;

  return false;
}

// Returns true if we can assume the writer of the mask has zero extended it
// for us.
bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
  // If this is an AND, check if we have a compare on either side. As long as
  // one side guarantees the mask is zero extended, the AND will preserve those
  // zeros.
  if (N->getOpcode() == ISD::AND)
    return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
           isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);

  return isLegalMaskCompare(N, Subtarget);
}

bool
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
  if (OptLevel == CodeGenOpt::None) return false;

  if (!N.hasOneUse())
    return false;

  // FIXME: Temporary hack to prevent strict floating point nodes from
  // folding into masked operations illegally.
  if (U == Root && Root->getOpcode() == ISD::VSELECT &&
      N.getOpcode() != ISD::LOAD && N.getOpcode() != X86ISD::VBROADCAST_LOAD)
    return false;

  if (N.getOpcode() != ISD::LOAD)
    return true;

  // Don't fold non-temporal loads if we have an instruction for them.
  if (useNonTemporalLoad(cast<LoadSDNode>(N)))
    return false;

  // If N is a load, do additional profitability checks.
  if (U == Root) {
    switch (U->getOpcode()) {
    default: break;
    case X86ISD::ADD:
    case X86ISD::ADC:
    case X86ISD::SUB:
    case X86ISD::SBB:
    case X86ISD::AND:
    case X86ISD::XOR:
    case X86ISD::OR:
    case ISD::ADD:
    case ISD::ADDCARRY:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR: {
      SDValue Op1 = U->getOperand(1);

      // If the other operand is a 8-bit immediate we should fold the immediate
      // instead. This reduces code size.
      // e.g.
      // movl 4(%esp), %eax
      // addl $4, %eax
      // vs.
      // movl $4, %eax
      // addl 4(%esp), %eax
      // The former is 2 bytes shorter. In case where the increment is 1, then
      // the saving can be 4 bytes (by using incl %eax).
      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
        if (Imm->getAPIntValue().isSignedIntN(8))
          return false;

        // If this is a 64-bit AND with an immediate that fits in 32-bits,
        // prefer using the smaller and over folding the load. This is needed to
        // make sure immediates created by shrinkAndImmediate are always folded.
        // Ideally we would narrow the load during DAG combine and get the
        // best of both worlds.
        if (U->getOpcode() == ISD::AND &&
            Imm->getAPIntValue().getBitWidth() == 64 &&
            Imm->getAPIntValue().isIntN(32))
          return false;

        // If this really a zext_inreg that can be represented with a movzx
        // instruction, prefer that.
        // TODO: We could shrink the load and fold if it is non-volatile.
        if (U->getOpcode() == ISD::AND &&
            (Imm->getAPIntValue() == UINT8_MAX ||
             Imm->getAPIntValue() == UINT16_MAX ||
             Imm->getAPIntValue() == UINT32_MAX))
          return false;

        // ADD/SUB with can negate the immediate and use the opposite operation
        // to fit 128 into a sign extended 8 bit immediate.
        if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
            (-Imm->getAPIntValue()).isSignedIntN(8))
          return false;
      }

      // If the other operand is a TLS address, we should fold it instead.
      // This produces
      // movl    %gs:0, %eax
      // leal    i@NTPOFF(%eax), %eax
      // instead of
      // movl    $i@NTPOFF, %eax
      // addl    %gs:0, %eax
      // if the block also has an access to a second TLS address this will save
      // a load.
      // FIXME: This is probably also true for non-TLS addresses.
      if (Op1.getOpcode() == X86ISD::Wrapper) {
        SDValue Val = Op1.getOperand(0);
        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
          return false;
      }

      // Don't fold load if this matches the BTS/BTR/BTC patterns.
      // BTS: (or X, (shl 1, n))
      // BTR: (and X, (rotl -2, n))
      // BTC: (xor X, (shl 1, n))
      if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
        if (U->getOperand(0).getOpcode() == ISD::SHL &&
            isOneConstant(U->getOperand(0).getOperand(0)))
          return false;

        if (U->getOperand(1).getOpcode() == ISD::SHL &&
            isOneConstant(U->getOperand(1).getOperand(0)))
          return false;
      }
      if (U->getOpcode() == ISD::AND) {
        SDValue U0 = U->getOperand(0);
        SDValue U1 = U->getOperand(1);
        if (U0.getOpcode() == ISD::ROTL) {
          auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
          if (C && C->getSExtValue() == -2)
            return false;
        }

        if (U1.getOpcode() == ISD::ROTL) {
          auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
          if (C && C->getSExtValue() == -2)
            return false;
        }
      }

      break;
    }
    case ISD::SHL:
    case ISD::SRA:
    case ISD::SRL:
      // Don't fold a load into a shift by immediate. The BMI2 instructions
      // support folding a load, but not an immediate. The legacy instructions
      // support folding an immediate, but can't fold a load. Folding an
      // immediate is preferable to folding a load.
      if (isa<ConstantSDNode>(U->getOperand(1)))
        return false;

      break;
    }
  }

  // Prevent folding a load if this can implemented with an insert_subreg or
  // a move that implicitly zeroes.
  if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
      isNullConstant(Root->getOperand(2)) &&
      (Root->getOperand(0).isUndef() ||
       ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
    return false;

  return true;
}

/// Replace the original chain operand of the call with
/// load's chain operand and move load below the call's chain operand.
static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
                               SDValue Call, SDValue OrigChain) {
  SmallVector<SDValue, 8> Ops;
  SDValue Chain = OrigChain.getOperand(0);
  if (Chain.getNode() == Load.getNode())
    Ops.push_back(Load.getOperand(0));
  else {
    assert(Chain.getOpcode() == ISD::TokenFactor &&
           "Unexpected chain operand");
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
      if (Chain.getOperand(i).getNode() == Load.getNode())
        Ops.push_back(Load.getOperand(0));
      else
        Ops.push_back(Chain.getOperand(i));
    SDValue NewChain =
      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
    Ops.clear();
    Ops.push_back(NewChain);
  }
  Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
  CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
                             Load.getOperand(1), Load.getOperand(2));

  Ops.clear();
  Ops.push_back(SDValue(Load.getNode(), 1));
  Ops.append(Call->op_begin() + 1, Call->op_end());
  CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
}

/// Return true if call address is a load and it can be
/// moved below CALLSEQ_START and the chains leading up to the call.
/// Return the CALLSEQ_START by reference as a second output.
/// In the case of a tail call, there isn't a callseq node between the call
/// chain and the load.
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
  // The transformation is somewhat dangerous if the call's chain was glued to
  // the call. After MoveBelowOrigChain the load is moved between the call and
  // the chain, this can create a cycle if the load is not folded. So it is
  // *really* important that we are sure the load will be folded.
  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    return false;
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
  if (!LD ||
      !LD->isSimple() ||
      LD->getAddressingMode() != ISD::UNINDEXED ||
      LD->getExtensionType() != ISD::NON_EXTLOAD)
    return false;

  // Now let's find the callseq_start.
  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    if (!Chain.hasOneUse())
      return false;
    Chain = Chain.getOperand(0);
  }

  if (!Chain.getNumOperands())
    return false;
  // Since we are not checking for AA here, conservatively abort if the chain
  // writes to memory. It's not safe to move the callee (a load) across a store.
  if (isa<MemSDNode>(Chain.getNode()) &&
      cast<MemSDNode>(Chain.getNode())->writeMem())
    return false;
  if (Chain.getOperand(0).getNode() == Callee.getNode())
    return true;
  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
      Callee.getValue(1).hasOneUse())
    return true;
  return false;
}

void X86DAGToDAGISel::PreprocessISelDAG() {
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
       E = CurDAG->allnodes_end(); I != E; ) {
    SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.

    // If this is a target specific AND node with no flag usages, turn it back
    // into ISD::AND to enable test instruction matching.
    if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
      SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
                                    N->getOperand(0), N->getOperand(1));
      --I;
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }

    switch (N->getOpcode()) {
    case ISD::FP_ROUND:
    case ISD::STRICT_FP_ROUND:
    case ISD::FP_TO_SINT:
    case ISD::FP_TO_UINT:
    case ISD::STRICT_FP_TO_SINT:
    case ISD::STRICT_FP_TO_UINT: {
      // Replace vector fp_to_s/uint with their X86 specific equivalent so we
      // don't need 2 sets of patterns.
      if (!N->getSimpleValueType(0).isVector())
        break;

      unsigned NewOpc;
      switch (N->getOpcode()) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
      case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
      case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
      case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
      case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
      case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
      }
      SDValue Res;
      if (N->isStrictFPOpcode())
        Res =
            CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
                            {N->getOperand(0), N->getOperand(1)});
      else
        Res =
            CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
                            N->getOperand(0));
      --I;
      CurDAG->ReplaceAllUsesWith(N, Res.getNode());
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }
    case ISD::SHL:
    case ISD::SRA:
    case ISD::SRL: {
      // Replace vector shifts with their X86 specific equivalent so we don't
      // need 2 sets of patterns.
      if (!N->getValueType(0).isVector())
        break;

      unsigned NewOpc;
      switch (N->getOpcode()) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
      case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
      case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
      }
      SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
                                    N->getOperand(0), N->getOperand(1));
      --I;
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }
    case ISD::ANY_EXTEND:
    case ISD::ANY_EXTEND_VECTOR_INREG: {
      // Replace vector any extend with the zero extend equivalents so we don't
      // need 2 sets of patterns. Ignore vXi1 extensions.
      if (!N->getValueType(0).isVector() ||
          N->getOperand(0).getScalarValueSizeInBits() == 1)
        break;

      unsigned NewOpc = N->getOpcode() == ISD::ANY_EXTEND
                            ? ISD::ZERO_EXTEND
                            : ISD::ZERO_EXTEND_VECTOR_INREG;

      SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
                                    N->getOperand(0));
      --I;
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }
    case ISD::FCEIL:
    case ISD::STRICT_FCEIL:
    case ISD::FFLOOR:
    case ISD::STRICT_FFLOOR:
    case ISD::FTRUNC:
    case ISD::STRICT_FTRUNC:
    case ISD::FNEARBYINT:
    case ISD::STRICT_FNEARBYINT:
    case ISD::FRINT:
    case ISD::STRICT_FRINT: {
      // Replace fp rounding with their X86 specific equivalent so we don't
      // need 2 sets of patterns.
      unsigned Imm;
      switch (N->getOpcode()) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::STRICT_FCEIL:
      case ISD::FCEIL:      Imm = 0xA; break;
      case ISD::STRICT_FFLOOR:
      case ISD::FFLOOR:     Imm = 0x9; break;
      case ISD::STRICT_FTRUNC:
      case ISD::FTRUNC:     Imm = 0xB; break;
      case ISD::STRICT_FNEARBYINT:
      case ISD::FNEARBYINT: Imm = 0xC; break;
      case ISD::STRICT_FRINT:
      case ISD::FRINT:      Imm = 0x4; break;
      }
      SDLoc dl(N);
      bool IsStrict = N->isStrictFPOpcode();
      SDValue Res;
      if (IsStrict)
        Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
                              {N->getValueType(0), MVT::Other},
                              {N->getOperand(0), N->getOperand(1),
                               CurDAG->getTargetConstant(Imm, dl, MVT::i8)});
      else
        Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
                              N->getOperand(0),
                              CurDAG->getTargetConstant(Imm, dl, MVT::i8));
      --I;
      CurDAG->ReplaceAllUsesWith(N, Res.getNode());
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }
    case X86ISD::FANDN:
    case X86ISD::FAND:
    case X86ISD::FOR:
    case X86ISD::FXOR: {
      // Widen scalar fp logic ops to vector to reduce isel patterns.
      // FIXME: Can we do this during lowering/combine.
      MVT VT = N->getSimpleValueType(0);
      if (VT.isVector() || VT == MVT::f128)
        break;

      MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
      SDLoc dl(N);
      SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
                                    N->getOperand(0));
      SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
                                    N->getOperand(1));

      SDValue Res;
      if (Subtarget->hasSSE2()) {
        EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
        Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
        Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
        unsigned Opc;
        switch (N->getOpcode()) {
        default: llvm_unreachable("Unexpected opcode!");
        case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
        case X86ISD::FAND:  Opc = ISD::AND;      break;
        case X86ISD::FOR:   Opc = ISD::OR;       break;
        case X86ISD::FXOR:  Opc = ISD::XOR;      break;
        }
        Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
        Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
      } else {
        Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
      }
      Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
                            CurDAG->getIntPtrConstant(0, dl));
      --I;
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      ++I;
      CurDAG->DeleteNode(N);
      continue;
    }
    }

    if (OptLevel != CodeGenOpt::None &&
        // Only do this when the target can fold the load into the call or
        // jmp.
        !Subtarget->useRetpolineIndirectCalls() &&
        ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
         (N->getOpcode() == X86ISD::TC_RETURN &&
          (Subtarget->is64Bit() ||
           !getTargetMachine().isPositionIndependent())))) {
      /// Also try moving call address load from outside callseq_start to just
      /// before the call to allow it to be folded.
      ///
      ///     [Load chain]
      ///         ^
      ///         |
      ///       [Load]
      ///       ^    ^
      ///       |    |
      ///      /      \--
      ///     /          |
      ///[CALLSEQ_START] |
      ///     ^          |
      ///     |          |
      /// [LOAD/C2Reg]   |
      ///     |          |
      ///      \        /
      ///       \      /
      ///       [CALL]
      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
      SDValue Chain = N->getOperand(0);
      SDValue Load  = N->getOperand(1);
      if (!isCalleeLoad(Load, Chain, HasCallSeq))
        continue;
      moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
      ++NumLoadMoved;
      continue;
    }

    // Lower fpround and fpextend nodes that target the FP stack to be store and
    // load to the stack.  This is a gross hack.  We would like to simply mark
    // these as being illegal, but when we do that, legalize produces these when
    // it expands calls, then expands these in the same legalize pass.  We would
    // like dag combine to be able to hack on these between the call expansion
    // and the node legalization.  As such this pass basically does "really
    // late" legalization of these inline with the X86 isel pass.
    // FIXME: This should only happen when not compiled with -O0.
    switch (N->getOpcode()) {
    default: continue;
    case ISD::FP_ROUND:
    case ISD::FP_EXTEND:
    {
      MVT SrcVT = N->getOperand(0).getSimpleValueType();
      MVT DstVT = N->getSimpleValueType(0);

      // If any of the sources are vectors, no fp stack involved.
      if (SrcVT.isVector() || DstVT.isVector())
        continue;

      // If the source and destination are SSE registers, then this is a legal
      // conversion that should not be lowered.
      const X86TargetLowering *X86Lowering =
          static_cast<const X86TargetLowering *>(TLI);
      bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
      bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
      if (SrcIsSSE && DstIsSSE)
        continue;

      if (!SrcIsSSE && !DstIsSSE) {
        // If this is an FPStack extension, it is a noop.
        if (N->getOpcode() == ISD::FP_EXTEND)
          continue;
        // If this is a value-preserving FPStack truncation, it is a noop.
        if (N->getConstantOperandVal(1))
          continue;
      }

      // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
      // FPStack has extload and truncstore.  SSE can fold direct loads into other
      // operations.  Based on this, decide what we want to do.
      MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
      SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
      SDLoc dl(N);

      // FIXME: optimize the case where the src/dest is a load or store?

      SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0),
                                          MemTmp, MachinePointerInfo(), MemVT);
      SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
                                          MachinePointerInfo(), MemVT);

      // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
      // extload we created.  This will cause general havok on the dag because
      // anything below the conversion could be folded into other existing nodes.
      // To avoid invalidating 'I', back it up to the convert node.
      --I;
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
      break;
    }

    //The sequence of events for lowering STRICT_FP versions of these nodes requires
    //dealing with the chain differently, as there is already a preexisting chain.
    case ISD::STRICT_FP_ROUND:
    case ISD::STRICT_FP_EXTEND:
    {
      MVT SrcVT = N->getOperand(1).getSimpleValueType();
      MVT DstVT = N->getSimpleValueType(0);

      // If any of the sources are vectors, no fp stack involved.
      if (SrcVT.isVector() || DstVT.isVector())
        continue;

      // If the source and destination are SSE registers, then this is a legal
      // conversion that should not be lowered.
      const X86TargetLowering *X86Lowering =
          static_cast<const X86TargetLowering *>(TLI);
      bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
      bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
      if (SrcIsSSE && DstIsSSE)
        continue;

      if (!SrcIsSSE && !DstIsSSE) {
        // If this is an FPStack extension, it is a noop.
        if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
          continue;
        // If this is a value-preserving FPStack truncation, it is a noop.
        if (N->getConstantOperandVal(2))
          continue;
      }

      // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
      // FPStack has extload and truncstore.  SSE can fold direct loads into other
      // operations.  Based on this, decide what we want to do.
      MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
      SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
      SDLoc dl(N);

      // FIXME: optimize the case where the src/dest is a load or store?

      //Since the operation is StrictFP, use the preexisting chain.
      SDValue Store, Result;
      if (!SrcIsSSE) {
        SDVTList VTs = CurDAG->getVTList(MVT::Other);
        SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
        Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
                                            MachinePointerInfo(), 0,
                                            MachineMemOperand::MOStore);
        if (N->getFlags().hasNoFPExcept()) {
          SDNodeFlags Flags = Store->getFlags();
          Flags.setNoFPExcept(true);
          Store->setFlags(Flags);
        }
      } else {
        assert(SrcVT == MemVT && "Unexpected VT!");
        Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
                                 MachinePointerInfo());
      }

      if (!DstIsSSE) {
        SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
        SDValue Ops[] = {Store, MemTmp};
        Result = CurDAG->getMemIntrinsicNode(X86ISD::FLD, dl, VTs, Ops, MemVT,
                                             MachinePointerInfo(), 0,
                                             MachineMemOperand::MOLoad);
        if (N->getFlags().hasNoFPExcept()) {
          SDNodeFlags Flags = Result->getFlags();
          Flags.setNoFPExcept(true);
          Result->setFlags(Flags);
        }
      } else {
        assert(DstVT == MemVT && "Unexpected VT!");
        Result =
            CurDAG->getLoad(DstVT, dl, Store, MemTmp, MachinePointerInfo());
      }

      // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
      // extload we created.  This will cause general havok on the dag because
      // anything below the conversion could be folded into other existing nodes.
      // To avoid invalidating 'I', back it up to the convert node.
      --I;
      CurDAG->ReplaceAllUsesWith(N, Result.getNode());
      break;
    }
    }


    // Now that we did that, the node is dead.  Increment the iterator to the
    // next node to process, then delete N.
    ++I;
    CurDAG->DeleteNode(N);
  }

  // The load+call transform above can leave some dead nodes in the graph. Make
  // sure we remove them. Its possible some of the other transforms do to so
  // just remove dead nodes unconditionally.
  CurDAG->RemoveDeadNodes();
}

// Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
  unsigned Opc = N->getMachineOpcode();
  if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
      Opc != X86::MOVSX64rr8)
    return false;

  SDValue N0 = N->getOperand(0);

  // We need to be extracting the lower bit of an extend.
  if (!N0.isMachineOpcode() ||
      N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
      N0.getConstantOperandVal(1) != X86::sub_8bit)
    return false;

  // We're looking for either a movsx or movzx to match the original opcode.
  unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
                                                : X86::MOVSX32rr8_NOREX;
  SDValue N00 = N0.getOperand(0);
  if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
    return false;

  if (Opc == X86::MOVSX64rr8) {
    // If we had a sign extend from 8 to 64 bits. We still need to go from 32
    // to 64.
    MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
                                                   MVT::i64, N00);
    ReplaceUses(N, Extend);
  } else {
    // Ok we can drop this extend and just use the original extend.
    ReplaceUses(N, N00.getNode());
  }

  return true;
}

void X86DAGToDAGISel::PostprocessISelDAG() {
  // Skip peepholes at -O0.
  if (TM.getOptLevel() == CodeGenOpt::None)
    return;

  SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();

  bool MadeChange = false;
  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = &*--Position;
    // Skip dead nodes and any non-machine opcodes.
    if (N->use_empty() || !N->isMachineOpcode())
      continue;

    if (tryOptimizeRem8Extend(N)) {
      MadeChange = true;
      continue;
    }

    // Look for a TESTrr+ANDrr pattern where both operands of the test are
    // the same. Rewrite to remove the AND.
    unsigned Opc = N->getMachineOpcode();
    if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
         Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
        N->getOperand(0) == N->getOperand(1) &&
        N->isOnlyUserOf(N->getOperand(0).getNode()) &&
        N->getOperand(0).isMachineOpcode()) {
      SDValue And = N->getOperand(0);
      unsigned N0Opc = And.getMachineOpcode();
      if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
          N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
        MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
                                                     MVT::i32,
                                                     And.getOperand(0),
                                                     And.getOperand(1));
        ReplaceUses(N, Test);
        MadeChange = true;
        continue;
      }
      if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
          N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
        unsigned NewOpc;
        switch (N0Opc) {
        case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
        case X86::AND16rm: NewOpc = X86::TEST16mr; break;
        case X86::AND32rm: NewOpc = X86::TEST32mr; break;
        case X86::AND64rm: NewOpc = X86::TEST64mr; break;
        }

        // Need to swap the memory and register operand.
        SDValue Ops[] = { And.getOperand(1),
                          And.getOperand(2),
                          And.getOperand(3),
                          And.getOperand(4),
                          And.getOperand(5),
                          And.getOperand(0),
                          And.getOperand(6)  /* Chain */ };
        MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
                                                     MVT::i32, MVT::Other, Ops);
        ReplaceUses(N, Test);
        MadeChange = true;
        continue;
      }
    }

    // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
    // used. We're doing this late so we can prefer to fold the AND into masked
    // comparisons. Doing that can be better for the live range of the mask
    // register.
    if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
         Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
        N->getOperand(0) == N->getOperand(1) &&
        N->isOnlyUserOf(N->getOperand(0).getNode()) &&
        N->getOperand(0).isMachineOpcode() &&
        onlyUsesZeroFlag(SDValue(N, 0))) {
      SDValue And = N->getOperand(0);
      unsigned N0Opc = And.getMachineOpcode();
      // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
      // KAND instructions and KTEST use the same ISA feature.
      if (N0Opc == X86::KANDBrr ||
          (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
          N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
        unsigned NewOpc;
        switch (Opc) {
        default: llvm_unreachable("Unexpected opcode!");
        case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
        case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
        case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
        case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
        }
        MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
                                                      MVT::i32,
                                                      And.getOperand(0),
                                                      And.getOperand(1));
        ReplaceUses(N, KTest);
        MadeChange = true;
        continue;
      }
    }

    // Attempt to remove vectors moves that were inserted to zero upper bits.
    if (Opc != TargetOpcode::SUBREG_TO_REG)
      continue;

    unsigned SubRegIdx = N->getConstantOperandVal(2);
    if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
      continue;

    SDValue Move = N->getOperand(1);
    if (!Move.isMachineOpcode())
      continue;

    // Make sure its one of the move opcodes we recognize.
    switch (Move.getMachineOpcode()) {
    default:
      continue;
    case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
    case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
    case X86::VMOVDQArr:       case X86::VMOVDQUrr:
    case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
    case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
    case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
    case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
    case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
    case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
    case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
    case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
    case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
    case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
    case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
      break;
    }

    SDValue In = Move.getOperand(0);
    if (!In.isMachineOpcode() ||
        In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
      continue;

    // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
    // the SHA instructions which use a legacy encoding.
    uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
    if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
        (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
        (TSFlags & X86II::EncodingMask) != X86II::XOP)
      continue;

    // Producing instruction is another vector instruction. We can drop the
    // move.
    CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
    MadeChange = true;
  }

  if (MadeChange)
    CurDAG->RemoveDeadNodes();
}


/// Emit any code that needs to be executed only in the main function.
void X86DAGToDAGISel::emitSpecialCodeForMain() {
  if (Subtarget->isTargetCygMing()) {
    TargetLowering::ArgListTy Args;
    auto &DL = CurDAG->getDataLayout();

    TargetLowering::CallLoweringInfo CLI(*CurDAG);
    CLI.setChain(CurDAG->getRoot())
        .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
                   CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
                   std::move(Args));
    const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
    CurDAG->setRoot(Result.second);
  }
}

void X86DAGToDAGISel::EmitFunctionEntryCode() {
  // If this is main, emit special code for main.
  const Function &F = MF->getFunction();
  if (F.hasExternalLinkage() && F.getName() == "main")
    emitSpecialCodeForMain();
}

static bool isDispSafeForFrameIndex(int64_t Val) {
  // On 64-bit platforms, we can run into an issue where a frame index
  // includes a displacement that, when added to the explicit displacement,
  // will overflow the displacement field. Assuming that the frame index
  // displacement fits into a 31-bit integer  (which is only slightly more
  // aggressive than the current fundamental assumption that it fits into
  // a 32-bit integer), a 31-bit disp should always be safe.
  return isInt<31>(Val);
}

bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
                                            X86ISelAddressMode &AM) {
  // If there's no offset to fold, we don't need to do any work.
  if (Offset == 0)
    return false;

  // Cannot combine ExternalSymbol displacements with integer offsets.
  if (AM.ES || AM.MCSym)
    return true;

  int64_t Val = AM.Disp + Offset;
  CodeModel::Model M = TM.getCodeModel();
  if (Subtarget->is64Bit()) {
    if (!X86::isOffsetSuitableForCodeModel(Val, M,
                                           AM.hasSymbolicDisplacement()))
      return true;
    // In addition to the checks required for a register base, check that
    // we do not try to use an unsafe Disp with a frame index.
    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
        !isDispSafeForFrameIndex(Val))
      return true;
  }
  AM.Disp = Val;
  return false;

}

bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
  SDValue Address = N->getOperand(1);

  // load gs:0 -> GS segment register.
  // load fs:0 -> FS segment register.
  //
  // This optimization is valid because the GNU TLS model defines that
  // gs:0 (or fs:0 on X86-64) contains its own address.
  // For more information see http://people.redhat.com/drepper/tls.pdf
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
        !IndirectTlsSegRefs &&
        (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
         Subtarget->isTargetFuchsia()))
      switch (N->getPointerInfo().getAddrSpace()) {
      case 256:
        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
        return false;
      case 257:
        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
        return false;
      // Address space 258 is not handled here, because it is not used to
      // address TLS areas.
      }

  return true;
}

/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
/// mode. These wrap things that will resolve down into a symbol reference.
/// If no match is possible, this returns true, otherwise it returns false.
bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
  // If the addressing mode already has a symbol as the displacement, we can
  // never match another symbol.
  if (AM.hasSymbolicDisplacement())
    return true;

  bool IsRIPRelTLS = false;
  bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
  if (IsRIPRel) {
    SDValue Val = N.getOperand(0);
    if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
      IsRIPRelTLS = true;
  }

  // We can't use an addressing mode in the 64-bit large code model.
  // Global TLS addressing is an exception. In the medium code model,
  // we use can use a mode when RIP wrappers are present.
  // That signifies access to globals that are known to be "near",
  // such as the GOT itself.
  CodeModel::Model M = TM.getCodeModel();
  if (Subtarget->is64Bit() &&
      ((M == CodeModel::Large && !IsRIPRelTLS) ||
       (M == CodeModel::Medium && !IsRIPRel)))
    return true;

  // Base and index reg must be 0 in order to use %rip as base.
  if (IsRIPRel && AM.hasBaseOrIndexReg())
    return true;

  // Make a local copy in case we can't do this fold.
  X86ISelAddressMode Backup = AM;

  int64_t Offset = 0;
  SDValue N0 = N.getOperand(0);
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    AM.GV = G->getGlobal();
    AM.SymbolFlags = G->getTargetFlags();
    Offset = G->getOffset();
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    AM.CP = CP->getConstVal();
    AM.Align = CP->getAlignment();
    AM.SymbolFlags = CP->getTargetFlags();
    Offset = CP->getOffset();
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    AM.ES = S->getSymbol();
    AM.SymbolFlags = S->getTargetFlags();
  } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
    AM.MCSym = S->getMCSymbol();
  } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    AM.JT = J->getIndex();
    AM.SymbolFlags = J->getTargetFlags();
  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
    AM.BlockAddr = BA->getBlockAddress();
    AM.SymbolFlags = BA->getTargetFlags();
    Offset = BA->getOffset();
  } else
    llvm_unreachable("Unhandled symbol reference node.");

  if (foldOffsetIntoAddress(Offset, AM)) {
    AM = Backup;
    return true;
  }

  if (IsRIPRel)
    AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));

  // Commit the changes now that we know this fold is safe.
  return false;
}

/// Add the specified node to the specified addressing mode, returning true if
/// it cannot be done. This just pattern matches for the addressing mode.
bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
  if (matchAddressRecursively(N, AM, 0))
    return true;

  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
  // a smaller encoding and avoids a scaled-index.
  if (AM.Scale == 2 &&
      AM.BaseType == X86ISelAddressMode::RegBase &&
      AM.Base_Reg.getNode() == nullptr) {
    AM.Base_Reg = AM.IndexReg;
    AM.Scale = 1;
  }

  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
  // because it has a smaller encoding.
  // TODO: Which other code models can use this?
  switch (TM.getCodeModel()) {
    default: break;
    case CodeModel::Small:
    case CodeModel::Kernel:
      if (Subtarget->is64Bit() &&
          AM.Scale == 1 &&
          AM.BaseType == X86ISelAddressMode::RegBase &&
          AM.Base_Reg.getNode() == nullptr &&
          AM.IndexReg.getNode() == nullptr &&
          AM.SymbolFlags == X86II::MO_NO_FLAG &&
          AM.hasSymbolicDisplacement())
        AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
      break;
  }

  return false;
}

bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
                               unsigned Depth) {
  // Add an artificial use to this node so that we can keep track of
  // it if it gets CSE'd with a different node.
  HandleSDNode Handle(N);

  X86ISelAddressMode Backup = AM;
  if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
      !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
    return false;
  AM = Backup;

  // Try again after commuting the operands.
  if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
      !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
    return false;
  AM = Backup;

  // If we couldn't fold both operands into the address at the same time,
  // see if we can just put each operand into a register and fold at least
  // the add.
  if (AM.BaseType == X86ISelAddressMode::RegBase &&
      !AM.Base_Reg.getNode() &&
      !AM.IndexReg.getNode()) {
    N = Handle.getValue();
    AM.Base_Reg = N.getOperand(0);
    AM.IndexReg = N.getOperand(1);
    AM.Scale = 1;
    return false;
  }
  N = Handle.getValue();
  return true;
}

// Insert a node into the DAG at least before the Pos node's position. This
// will reposition the node as needed, and will assign it a node ID that is <=
// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
// IDs! The selection DAG must no longer depend on their uniqueness when this
// is used.
static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
  if (N->getNodeId() == -1 ||
      (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
       SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
    DAG.RepositionNode(Pos->getIterator(), N.getNode());
    // Mark Node as invalid for pruning as after this it may be a successor to a
    // selected node but otherwise be in the same position of Pos.
    // Conservatively mark it with the same -abs(Id) to assure node id
    // invariant is preserved.
    N->setNodeId(Pos->getNodeId());
    SelectionDAGISel::InvalidateNodeId(N.getNode());
  }
}

// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
// safe. This allows us to convert the shift and and into an h-register
// extract and a scaled index. Returns false if the simplification is
// performed.
static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
                                      uint64_t Mask,
                                      SDValue Shift, SDValue X,
                                      X86ISelAddressMode &AM) {
  if (Shift.getOpcode() != ISD::SRL ||
      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
      !Shift.hasOneUse())
    return true;

  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
  if (ScaleLog <= 0 || ScaleLog >= 4 ||
      Mask != (0xffu << ScaleLog))
    return true;

  MVT VT = N.getSimpleValueType();
  SDLoc DL(N);
  SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
  SDValue NewMask = DAG.getConstant(0xff, DL, VT);
  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
  SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  insertDAGNode(DAG, N, Eight);
  insertDAGNode(DAG, N, Srl);
  insertDAGNode(DAG, N, NewMask);
  insertDAGNode(DAG, N, And);
  insertDAGNode(DAG, N, ShlCount);
  insertDAGNode(DAG, N, Shl);
  DAG.ReplaceAllUsesWith(N, Shl);
  DAG.RemoveDeadNode(N.getNode());
  AM.IndexReg = And;
  AM.Scale = (1 << ScaleLog);
  return false;
}

// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
// allows us to fold the shift into this addressing mode. Returns false if the
// transform succeeded.
static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
                                        X86ISelAddressMode &AM) {
  SDValue Shift = N.getOperand(0);

  // Use a signed mask so that shifting right will insert sign bits. These
  // bits will be removed when we shift the result left so it doesn't matter
  // what we use. This might allow a smaller immediate encoding.
  int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();

  // If we have an any_extend feeding the AND, look through it to see if there
  // is a shift behind it. But only if the AND doesn't use the extended bits.
  // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
  bool FoundAnyExtend = false;
  if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
      Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
      isUInt<32>(Mask)) {
    FoundAnyExtend = true;
    Shift = Shift.getOperand(0);
  }

  if (Shift.getOpcode() != ISD::SHL ||
      !isa<ConstantSDNode>(Shift.getOperand(1)))
    return true;

  SDValue X = Shift.getOperand(0);

  // Not likely to be profitable if either the AND or SHIFT node has more
  // than one use (unless all uses are for address computation). Besides,
  // isel mechanism requires their node ids to be reused.
  if (!N.hasOneUse() || !Shift.hasOneUse())
    return true;

  // Verify that the shift amount is something we can fold.
  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
    return true;

  MVT VT = N.getSimpleValueType();
  SDLoc DL(N);
  if (FoundAnyExtend) {
    SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
    insertDAGNode(DAG, N, NewX);
    X = NewX;
  }

  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  insertDAGNode(DAG, N, NewMask);
  insertDAGNode(DAG, N, NewAnd);
  insertDAGNode(DAG, N, NewShift);
  DAG.ReplaceAllUsesWith(N, NewShift);
  DAG.RemoveDeadNode(N.getNode());

  AM.Scale = 1 << ShiftAmt;
  AM.IndexReg = NewAnd;
  return false;
}

// Implement some heroics to detect shifts of masked values where the mask can
// be replaced by extending the shift and undoing that in the addressing mode
// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
// the addressing mode. This results in code such as:
//
//   int f(short *y, int *lookup_table) {
//     ...
//     return *y + lookup_table[*y >> 11];
//   }
//
// Turning into:
//   movzwl (%rdi), %eax
//   movl %eax, %ecx
//   shrl $11, %ecx
//   addl (%rsi,%rcx,4), %eax
//
// Instead of:
//   movzwl (%rdi), %eax
//   movl %eax, %ecx
//   shrl $9, %ecx
//   andl $124, %rcx
//   addl (%rsi,%rcx), %eax
//
// Note that this function assumes the mask is provided as a mask *after* the
// value is shifted. The input chain may or may not match that, but computing
// such a mask is trivial.
static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
                                    uint64_t Mask,
                                    SDValue Shift, SDValue X,
                                    X86ISelAddressMode &AM) {
  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
      !isa<ConstantSDNode>(Shift.getOperand(1)))
    return true;

  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
  unsigned MaskLZ = countLeadingZeros(Mask);
  unsigned MaskTZ = countTrailingZeros(Mask);

  // The amount of shift we're trying to fit into the addressing mode is taken
  // from the trailing zeros of the mask.
  unsigned AMShiftAmt = MaskTZ;

  // There is nothing we can do here unless the mask is removing some bits.
  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;

  // We also need to ensure that mask is a continuous run of bits.
  if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;

  // Scale the leading zero count down based on the actual size of the value.
  // Also scale it down based on the size of the shift.
  unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
  if (MaskLZ < ScaleDown)
    return true;
  MaskLZ -= ScaleDown;

  // The final check is to ensure that any masked out high bits of X are
  // already known to be zero. Otherwise, the mask has a semantic impact
  // other than masking out a couple of low bits. Unfortunately, because of
  // the mask, zero extensions will be removed from operands in some cases.
  // This code works extra hard to look through extensions because we can
  // replace them with zero extensions cheaply if necessary.
  bool ReplacingAnyExtend = false;
  if (X.getOpcode() == ISD::ANY_EXTEND) {
    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
                          X.getOperand(0).getSimpleValueType().getSizeInBits();
    // Assume that we'll replace the any-extend with a zero-extend, and
    // narrow the search to the extended value.
    X = X.getOperand(0);
    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
    ReplacingAnyExtend = true;
  }
  APInt MaskedHighBits =
    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
  KnownBits Known = DAG.computeKnownBits(X);
  if (MaskedHighBits != Known.Zero) return true;

  // We've identified a pattern that can be transformed into a single shift
  // and an addressing mode. Make it so.
  MVT VT = N.getSimpleValueType();
  if (ReplacingAnyExtend) {
    assert(X.getValueType() != VT);
    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
    insertDAGNode(DAG, N, NewX);
    X = NewX;
  }
  SDLoc DL(N);
  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  insertDAGNode(DAG, N, NewSRLAmt);
  insertDAGNode(DAG, N, NewSRL);
  insertDAGNode(DAG, N, NewSHLAmt);
  insertDAGNode(DAG, N, NewSHL);
  DAG.ReplaceAllUsesWith(N, NewSHL);
  DAG.RemoveDeadNode(N.getNode());

  AM.Scale = 1 << AMShiftAmt;
  AM.IndexReg = NewSRL;
  return false;
}

// Transform "(X >> SHIFT) & (MASK << C1)" to
// "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
// matched to a BEXTR later. Returns false if the simplification is performed.
static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
                                   uint64_t Mask,
                                   SDValue Shift, SDValue X,
                                   X86ISelAddressMode &AM,
                                   const X86Subtarget &Subtarget) {
  if (Shift.getOpcode() != ISD::SRL ||
      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
      !Shift.hasOneUse() || !N.hasOneUse())
    return true;

  // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
  if (!Subtarget.hasTBM() &&
      !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
    return true;

  // We need to ensure that mask is a continuous run of bits.
  if (!isShiftedMask_64(Mask)) return true;

  unsigned ShiftAmt = Shift.getConstantOperandVal(1);

  // The amount of shift we're trying to fit into the addressing mode is taken
  // from the trailing zeros of the mask.
  unsigned AMShiftAmt = countTrailingZeros(Mask);

  // There is nothing we can do here unless the mask is removing some bits.
  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;

  MVT VT = N.getSimpleValueType();
  SDLoc DL(N);
  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
  SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  insertDAGNode(DAG, N, NewSRLAmt);
  insertDAGNode(DAG, N, NewSRL);
  insertDAGNode(DAG, N, NewMask);
  insertDAGNode(DAG, N, NewAnd);
  insertDAGNode(DAG, N, NewSHLAmt);
  insertDAGNode(DAG, N, NewSHL);
  DAG.ReplaceAllUsesWith(N, NewSHL);
  DAG.RemoveDeadNode(N.getNode());

  AM.Scale = 1 << AMShiftAmt;
  AM.IndexReg = NewAnd;
  return false;
}

bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                              unsigned Depth) {
  SDLoc dl(N);
  LLVM_DEBUG({
    dbgs() << "MatchAddress: ";
    AM.dump(CurDAG);
  });
  // Limit recursion.
  if (Depth > 5)
    return matchAddressBase(N, AM);

  // If this is already a %rip relative address, we can only merge immediates
  // into it.  Instead of handling this in every case, we handle it here.
  // RIP relative addressing: %rip + 32-bit displacement!
  if (AM.isRIPRelative()) {
    // FIXME: JumpTable and ExternalSymbol address currently don't like
    // displacements.  It isn't very important, but this should be fixed for
    // consistency.
    if (!(AM.ES || AM.MCSym) && AM.JT != -1)
      return true;

    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
      if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
        return false;
    return true;
  }

  switch (N.getOpcode()) {
  default: break;
  case ISD::LOCAL_RECOVER: {
    if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
      if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
        // Use the symbol and don't prefix it.
        AM.MCSym = ESNode->getMCSymbol();
        return false;
      }
    break;
  }
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    if (!foldOffsetIntoAddress(Val, AM))
      return false;
    break;
  }

  case X86ISD::Wrapper:
  case X86ISD::WrapperRIP:
    if (!matchWrapper(N, AM))
      return false;
    break;

  case ISD::LOAD:
    if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
      return false;
    break;

  case ISD::FrameIndex:
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base_Reg.getNode() == nullptr &&
        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
      return false;
    }
    break;

  case ISD::SHL:
    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
      break;

    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
      unsigned Val = CN->getZExtValue();
      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
      // that the base operand remains free for further matching. If
      // the base doesn't end up getting used, a post-processing step
      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
      if (Val == 1 || Val == 2 || Val == 3) {
        AM.Scale = 1 << Val;
        SDValue ShVal = N.getOperand(0);

        // Okay, we know that we have a scale by now.  However, if the scaled
        // value is an add of something and a constant, we can fold the
        // constant into the disp field here.
        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
          AM.IndexReg = ShVal.getOperand(0);
          ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
          if (!foldOffsetIntoAddress(Disp, AM))
            return false;
        }

        AM.IndexReg = ShVal;
        return false;
      }
    }
    break;

  case ISD::SRL: {
    // Scale must not be used already.
    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;

    // We only handle up to 64-bit values here as those are what matter for
    // addressing mode optimizations.
    assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
           "Unexpected value size!");

    SDValue And = N.getOperand(0);
    if (And.getOpcode() != ISD::AND) break;
    SDValue X = And.getOperand(0);

    // The mask used for the transform is expected to be post-shift, but we
    // found the shift first so just apply the shift to the mask before passing
    // it down.
    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
        !isa<ConstantSDNode>(And.getOperand(1)))
      break;
    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);

    // Try to fold the mask and shift into the scale, and return false if we
    // succeed.
    if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
      return false;
    break;
  }

  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI:
    // A mul_lohi where we need the low part can be folded as a plain multiply.
    if (N.getResNo() != 0) break;
    LLVM_FALLTHROUGH;
  case ISD::MUL:
  case X86ISD::MUL_IMM:
    // X*[3,5,9] -> X+X*[2,4,8]
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base_Reg.getNode() == nullptr &&
        AM.IndexReg.getNode() == nullptr) {
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
            CN->getZExtValue() == 9) {
          AM.Scale = unsigned(CN->getZExtValue())-1;

          SDValue MulVal = N.getOperand(0);
          SDValue Reg;

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
              isa<ConstantSDNode>(MulVal.getOperand(1))) {
            Reg = MulVal.getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(MulVal.getOperand(1));
            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
            if (foldOffsetIntoAddress(Disp, AM))
              Reg = N.getOperand(0);
          } else {
            Reg = N.getOperand(0);
          }

          AM.IndexReg = AM.Base_Reg = Reg;
          return false;
        }
    }
    break;

  case ISD::SUB: {
    // Given A-B, if A can be completely folded into the address and
    // the index field with the index field unused, use -B as the index.
    // This is a win if a has multiple parts that can be folded into
    // the address. Also, this saves a mov if the base register has
    // other uses, since it avoids a two-address sub instruction, however
    // it costs an additional mov if the index register has other uses.

    // Add an artificial use to this node so that we can keep track of
    // it if it gets CSE'd with a different node.
    HandleSDNode Handle(N);

    // Test if the LHS of the sub can be folded.
    X86ISelAddressMode Backup = AM;
    if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
      N = Handle.getValue();
      AM = Backup;
      break;
    }
    N = Handle.getValue();
    // Test if the index field is free for use.
    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
      AM = Backup;
      break;
    }

    int Cost = 0;
    SDValue RHS = N.getOperand(1);
    // If the RHS involves a register with multiple uses, this
    // transformation incurs an extra mov, due to the neg instruction
    // clobbering its operand.
    if (!RHS.getNode()->hasOneUse() ||
        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
         RHS.getOperand(0).getValueType() == MVT::i32))
      ++Cost;
    // If the base is a register with multiple uses, this
    // transformation may save a mov.
    if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
         !AM.Base_Reg.getNode()->hasOneUse()) ||
        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
      --Cost;
    // If the folded LHS was interesting, this transformation saves
    // address arithmetic.
    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
        ((AM.Disp != 0) && (Backup.Disp == 0)) +
        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
      --Cost;
    // If it doesn't look like it may be an overall win, don't do it.
    if (Cost >= 0) {
      AM = Backup;
      break;
    }

    // Ok, the transformation is legal and appears profitable. Go for it.
    // Negation will be emitted later to avoid creating dangling nodes if this
    // was an unprofitable LEA.
    AM.IndexReg = RHS;
    AM.NegateIndex = true;
    AM.Scale = 1;
    return false;
  }

  case ISD::ADD:
    if (!matchAdd(N, AM, Depth))
      return false;
    break;

  case ISD::OR:
    // We want to look through a transform in InstCombine and DAGCombiner that
    // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
    // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
    // An 'lea' can then be used to match the shift (multiply) and add:
    // and $1, %esi
    // lea (%rsi, %rdi, 8), %rax
    if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
        !matchAdd(N, AM, Depth))
      return false;
    break;

  case ISD::AND: {
    // Perform some heroic transforms on an and of a constant-count shift
    // with a constant to enable use of the scaled offset field.

    // Scale must not be used already.
    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;

    // We only handle up to 64-bit values here as those are what matter for
    // addressing mode optimizations.
    assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
           "Unexpected value size!");

    if (!isa<ConstantSDNode>(N.getOperand(1)))
      break;

    if (N.getOperand(0).getOpcode() == ISD::SRL) {
      SDValue Shift = N.getOperand(0);
      SDValue X = Shift.getOperand(0);

      uint64_t Mask = N.getConstantOperandVal(1);

      // Try to fold the mask and shift into an extract and scale.
      if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
        return false;

      // Try to fold the mask and shift directly into the scale.
      if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
        return false;

      // Try to fold the mask and shift into BEXTR and scale.
      if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
        return false;
    }

    // Try to swap the mask and shift to place shifts which can be done as
    // a scale on the outside of the mask.
    if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
      return false;

    break;
  }
  case ISD::ZERO_EXTEND: {
    // Try to widen a zexted shift left to the same size as its use, so we can
    // match the shift as a scale factor.
    if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
      break;
    if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
      break;

    // Give up if the shift is not a valid scale factor [1,2,3].
    SDValue Shl = N.getOperand(0);
    auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
    if (!ShAmtC || ShAmtC->getZExtValue() > 3)
      break;

    // The narrow shift must only shift out zero bits (it must be 'nuw').
    // That makes it safe to widen to the destination type.
    APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
                                            ShAmtC->getZExtValue());
    if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
      break;

    // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
    MVT VT = N.getSimpleValueType();
    SDLoc DL(N);
    SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
    SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));

    // Convert the shift to scale factor.
    AM.Scale = 1 << ShAmtC->getZExtValue();
    AM.IndexReg = Zext;

    insertDAGNode(*CurDAG, N, Zext);
    insertDAGNode(*CurDAG, N, NewShl);
    CurDAG->ReplaceAllUsesWith(N, NewShl);
    CurDAG->RemoveDeadNode(N.getNode());
    return false;
  }
  }

  return matchAddressBase(N, AM);
}

/// Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
  // Is the base register already occupied?
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
    // If so, check to see if the scale index register is set.
    if (!AM.IndexReg.getNode()) {
      AM.IndexReg = N;
      AM.Scale = 1;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = X86ISelAddressMode::RegBase;
  AM.Base_Reg = N;
  return false;
}

/// Helper for selectVectorAddr. Handles things that can be folded into a
/// gather scatter address. The index register and scale should have already
/// been handled.
bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
  // TODO: Support other operations.
  switch (N.getOpcode()) {
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    if (!foldOffsetIntoAddress(Val, AM))
      return false;
    break;
  }
  case X86ISD::Wrapper:
    if (!matchWrapper(N, AM))
      return false;
    break;
  }

  return matchAddressBase(N, AM);
}

bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
                                       SDValue &Scale, SDValue &Index,
                                       SDValue &Disp, SDValue &Segment) {
  X86ISelAddressMode AM;
  auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent);
  AM.IndexReg = Mgs->getIndex();
  AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue();

  unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
  if (AddrSpace == X86AS::GS)
    AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
  if (AddrSpace == X86AS::FS)
    AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
  if (AddrSpace == X86AS::SS)
    AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);

  SDLoc DL(N);
  MVT VT = N.getSimpleValueType();

  // Try to match into the base and displacement fields.
  if (matchVectorAddress(N, AM))
    return false;

  getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
  return true;
}

/// Returns true if it is able to pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
///
/// Parent is the parent node of the addr operand that is being matched.  It
/// is always a load, store, atomic node, or null.  It is only null when
/// checking memory operands for inline asm nodes.
bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                                 SDValue &Scale, SDValue &Index,
                                 SDValue &Disp, SDValue &Segment) {
  X86ISelAddressMode AM;

  if (Parent &&
      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
      // that are not a MemSDNode, and thus don't have proper addrspace info.
      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
      Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
      Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
    unsigned AddrSpace =
      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
    // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
    if (AddrSpace == 256)
      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    if (AddrSpace == 257)
      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
    if (AddrSpace == 258)
      AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
  }

  // Save the DL and VT before calling matchAddress, it can invalidate N.
  SDLoc DL(N);
  MVT VT = N.getSimpleValueType();

  if (matchAddress(N, AM))
    return false;

  getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
  return true;
}

// We can only fold a load if all nodes between it and the root node have a
// single use. If there are additional uses, we could end up duplicating the
// load.
static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) {
  while (User != Root) {
    if (!User->hasOneUse())
      return false;
    User = *User->use_begin();
  }

  return true;
}

/// Match a scalar SSE load. In particular, we want to match a load whose top
/// elements are either undef or zeros. The load flavor is derived from the
/// type of N, which is either v4f32 or v2f64.
///
/// We also return:
///   PatternChainNode: this is the matched node that has a chain input and
///   output.
bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent,
                                          SDValue N, SDValue &Base,
                                          SDValue &Scale, SDValue &Index,
                                          SDValue &Disp, SDValue &Segment,
                                          SDValue &PatternNodeWithChain) {
  if (!hasSingleUsesFromRoot(Root, Parent))
    return false;

  // We can allow a full vector load here since narrowing a load is ok unless
  // it's volatile or atomic.
  if (ISD::isNON_EXTLoad(N.getNode())) {
    LoadSDNode *LD = cast<LoadSDNode>(N);
    if (LD->isSimple() &&
        IsProfitableToFold(N, LD, Root) &&
        IsLegalToFold(N, Parent, Root, OptLevel)) {
      PatternNodeWithChain = N;
      return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
                        Segment);
    }
  }

  // We can also match the special zero extended load opcode.
  if (N.getOpcode() == X86ISD::VZEXT_LOAD) {
    PatternNodeWithChain = N;
    if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
        IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
      auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain);
      return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp,
                        Segment);
    }
  }

  // Need to make sure that the SCALAR_TO_VECTOR and load are both only used
  // once. Otherwise the load might get duplicated and the chain output of the
  // duplicate load will not be observed by all dependencies.
  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) {
    PatternNodeWithChain = N.getOperand(0);
    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
        IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
        IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
      return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
                        Segment);
    }
  }

  return false;
}


bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
    uint64_t ImmVal = CN->getZExtValue();
    if (!isUInt<32>(ImmVal))
      return false;

    Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
    return true;
  }

  // In static codegen with small code model, we can get the address of a label
  // into a register with 'movl'
  if (N->getOpcode() != X86ISD::Wrapper)
    return false;

  N = N.getOperand(0);

  // At least GNU as does not accept 'movl' for TPOFF relocations.
  // FIXME: We could use 'movl' when we know we are targeting MC.
  if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
    return false;

  Imm = N;
  if (N->getOpcode() != ISD::TargetGlobalAddress)
    return TM.getCodeModel() == CodeModel::Small;

  Optional<ConstantRange> CR =
      cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
  if (!CR)
    return TM.getCodeModel() == CodeModel::Small;

  return CR->getUnsignedMax().ult(1ull << 32);
}

bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
                                         SDValue &Scale, SDValue &Index,
                                         SDValue &Disp, SDValue &Segment) {
  // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
  SDLoc DL(N);

  if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
    return false;

  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
  if (RN && RN->getReg() == 0)
    Base = CurDAG->getRegister(0, MVT::i64);
  else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
    // Base could already be %rip, particularly in the x32 ABI.
    SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
                                                     MVT::i64), 0);
    Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
                                         Base);
  }

  RN = dyn_cast<RegisterSDNode>(Index);
  if (RN && RN->getReg() == 0)
    Index = CurDAG->getRegister(0, MVT::i64);
  else {
    assert(Index.getValueType() == MVT::i32 &&
           "Expect to be extending 32-bit registers for use in LEA");
    SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
                                                     MVT::i64), 0);
    Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
                                          Index);
  }

  return true;
}

/// Calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
                                    SDValue &Base, SDValue &Scale,
                                    SDValue &Index, SDValue &Disp,
                                    SDValue &Segment) {
  X86ISelAddressMode AM;

  // Save the DL and VT before calling matchAddress, it can invalidate N.
  SDLoc DL(N);
  MVT VT = N.getSimpleValueType();

  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
  // segments.
  SDValue Copy = AM.Segment;
  SDValue T = CurDAG->getRegister(0, MVT::i32);
  AM.Segment = T;
  if (matchAddress(N, AM))
    return false;
  assert (T == AM.Segment);
  AM.Segment = Copy;

  unsigned Complexity = 0;
  if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
    Complexity = 1;
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.getNode())
    Complexity++;

  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
  // a simple shift.
  if (AM.Scale > 1)
    Complexity++;

  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
  // to a LEA. This is determined with some experimentation but is by no means
  // optimal (especially for code size consideration). LEA is nice because of
  // its three-address nature. Tweak the cost function again when we can run
  // convertToThreeAddress() at register allocation time.
  if (AM.hasSymbolicDisplacement()) {
    // For X86-64, always use LEA to materialize RIP-relative addresses.
    if (Subtarget->is64Bit())
      Complexity = 4;
    else
      Complexity += 2;
  }

  // Heuristic: try harder to form an LEA from ADD if the operands set flags.
  // Unlike ADD, LEA does not affect flags, so we will be less likely to require
  // duplicating flag-producing instructions later in the pipeline.
  if (N.getOpcode() == ISD::ADD) {
    auto isMathWithFlags = [](SDValue V) {
      switch (V.getOpcode()) {
      case X86ISD::ADD:
      case X86ISD::SUB:
      case X86ISD::ADC:
      case X86ISD::SBB:
      /* TODO: These opcodes can be added safely, but we may want to justify
               their inclusion for different reasons (better for reg-alloc).
      case X86ISD::SMUL:
      case X86ISD::UMUL:
      case X86ISD::OR:
      case X86ISD::XOR:
      case X86ISD::AND:
      */
        // Value 1 is the flag output of the node - verify it's not dead.
        return !SDValue(V.getNode(), 1).use_empty();
      default:
        return false;
      }
    };
    // TODO: This could be an 'or' rather than 'and' to make the transform more
    //       likely to happen. We might want to factor in whether there's a
    //       load folding opportunity for the math op that disappears with LEA.
    if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
      Complexity++;
  }

  if (AM.Disp)
    Complexity++;

  // If it isn't worth using an LEA, reject it.
  if (Complexity <= 2)
    return false;

  getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
  return true;
}

/// This is only run on TargetGlobalTLSAddress nodes.
bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
                                        SDValue &Scale, SDValue &Index,
                                        SDValue &Disp, SDValue &Segment) {
  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);

  X86ISelAddressMode AM;
  AM.GV = GA->getGlobal();
  AM.Disp += GA->getOffset();
  AM.SymbolFlags = GA->getTargetFlags();

  MVT VT = N.getSimpleValueType();
  if (VT == MVT::i32) {
    AM.Scale = 1;
    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
  }

  getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
  return true;
}

bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
  if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
    Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN),
                                   N.getValueType());
    return true;
  }

  // Keep track of the original value type and whether this value was
  // truncated. If we see a truncation from pointer type to VT that truncates
  // bits that are known to be zero, we can use a narrow reference.
  EVT VT = N.getValueType();
  bool WasTruncated = false;
  if (N.getOpcode() == ISD::TRUNCATE) {
    WasTruncated = true;
    N = N.getOperand(0);
  }

  if (N.getOpcode() != X86ISD::Wrapper)
    return false;

  // We can only use non-GlobalValues as immediates if they were not truncated,
  // as we do not have any range information. If we have a GlobalValue and the
  // address was not truncated, we can select it as an operand directly.
  unsigned Opc = N.getOperand(0)->getOpcode();
  if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
    Op = N.getOperand(0);
    // We can only select the operand directly if we didn't have to look past a
    // truncate.
    return !WasTruncated;
  }

  // Check that the global's range fits into VT.
  auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
  Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
  if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
    return false;

  // Okay, we can use a narrow reference.
  Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
                                      GA->getOffset(), GA->getTargetFlags());
  return true;
}

bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
                                  SDValue &Base, SDValue &Scale,
                                  SDValue &Index, SDValue &Disp,
                                  SDValue &Segment) {
  assert(Root && P && "Unknown root/parent nodes");
  if (!ISD::isNON_EXTLoad(N.getNode()) ||
      !IsProfitableToFold(N, P, Root) ||
      !IsLegalToFold(N, P, Root, OptLevel))
    return false;

  return selectAddr(N.getNode(),
                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
}

bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
                                       SDValue &Base, SDValue &Scale,
                                       SDValue &Index, SDValue &Disp,
                                       SDValue &Segment) {
  assert(Root && P && "Unknown root/parent nodes");
  if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
      !IsProfitableToFold(N, P, Root) ||
      !IsLegalToFold(N, P, Root, OptLevel))
    return false;

  return selectAddr(N.getNode(),
                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
}

/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
  auto &DL = MF->getDataLayout();
  return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
}

bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
  if (N->getOpcode() == ISD::TRUNCATE)
    N = N->getOperand(0).getNode();
  if (N->getOpcode() != X86ISD::Wrapper)
    return false;

  auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
  if (!GA)
    return false;

  Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
  return CR && CR->getSignedMin().sge(-1ull << Width) &&
         CR->getSignedMax().slt(1ull << Width);
}

static X86::CondCode getCondFromNode(SDNode *N) {
  assert(N->isMachineOpcode() && "Unexpected node");
  X86::CondCode CC = X86::COND_INVALID;
  unsigned Opc = N->getMachineOpcode();
  if (Opc == X86::JCC_1)
    CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
  else if (Opc == X86::SETCCr)
    CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
  else if (Opc == X86::SETCCm)
    CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
  else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
           Opc == X86::CMOV64rr)
    CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
  else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
           Opc == X86::CMOV64rm)
    CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));

  return CC;
}

/// Test whether the given X86ISD::CMP node has any users that use a flag
/// other than ZF.
bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
  // Examine each user of the node.
  for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
         UI != UE; ++UI) {
    // Only check things that use the flags.
    if (UI.getUse().getResNo() != Flags.getResNo())
      continue;
    // Only examine CopyToReg uses that copy to EFLAGS.
    if (UI->getOpcode() != ISD::CopyToReg ||
        cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
      return false;
    // Examine each user of the CopyToReg use.
    for (SDNode::use_iterator FlagUI = UI->use_begin(),
           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
      // Only examine the Flag result.
      if (FlagUI.getUse().getResNo() != 1) continue;
      // Anything unusual: assume conservatively.
      if (!FlagUI->isMachineOpcode()) return false;
      // Examine the condition code of the user.
      X86::CondCode CC = getCondFromNode(*FlagUI);

      switch (CC) {
      // Comparisons which only use the zero flag.
      case X86::COND_E: case X86::COND_NE:
        continue;
      // Anything else: assume conservatively.
      default:
        return false;
      }
    }
  }
  return true;
}

/// Test whether the given X86ISD::CMP node has any uses which require the SF
/// flag to be accurate.
bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
  // Examine each user of the node.
  for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
         UI != UE; ++UI) {
    // Only check things that use the flags.
    if (UI.getUse().getResNo() != Flags.getResNo())
      continue;
    // Only examine CopyToReg uses that copy to EFLAGS.
    if (UI->getOpcode() != ISD::CopyToReg ||
        cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
      return false;
    // Examine each user of the CopyToReg use.
    for (SDNode::use_iterator FlagUI = UI->use_begin(),
           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
      // Only examine the Flag result.
      if (FlagUI.getUse().getResNo() != 1) continue;
      // Anything unusual: assume conservatively.
      if (!FlagUI->isMachineOpcode()) return false;
      // Examine the condition code of the user.
      X86::CondCode CC = getCondFromNode(*FlagUI);

      switch (CC) {
      // Comparisons which don't examine the SF flag.
      case X86::COND_A: case X86::COND_AE:
      case X86::COND_B: case X86::COND_BE:
      case X86::COND_E: case X86::COND_NE:
      case X86::COND_O: case X86::COND_NO:
      case X86::COND_P: case X86::COND_NP:
        continue;
      // Anything else: assume conservatively.
      default:
        return false;
      }
    }
  }
  return true;
}

static bool mayUseCarryFlag(X86::CondCode CC) {
  switch (CC) {
  // Comparisons which don't examine the CF flag.
  case X86::COND_O: case X86::COND_NO:
  case X86::COND_E: case X86::COND_NE:
  case X86::COND_S: case X86::COND_NS:
  case X86::COND_P: case X86::COND_NP:
  case X86::COND_L: case X86::COND_GE:
  case X86::COND_G: case X86::COND_LE:
    return false;
  // Anything else: assume conservatively.
  default:
    return true;
  }
}

/// Test whether the given node which sets flags has any uses which require the
/// CF flag to be accurate.
 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
  // Examine each user of the node.
  for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
         UI != UE; ++UI) {
    // Only check things that use the flags.
    if (UI.getUse().getResNo() != Flags.getResNo())
      continue;

    unsigned UIOpc = UI->getOpcode();

    if (UIOpc == ISD::CopyToReg) {
      // Only examine CopyToReg uses that copy to EFLAGS.
      if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
        return false;
      // Examine each user of the CopyToReg use.
      for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
           FlagUI != FlagUE; ++FlagUI) {
        // Only examine the Flag result.
        if (FlagUI.getUse().getResNo() != 1)
          continue;
        // Anything unusual: assume conservatively.
        if (!FlagUI->isMachineOpcode())
          return false;
        // Examine the condition code of the user.
        X86::CondCode CC = getCondFromNode(*FlagUI);

        if (mayUseCarryFlag(CC))
          return false;
      }

      // This CopyToReg is ok. Move on to the next user.
      continue;
    }

    // This might be an unselected node. So look for the pre-isel opcodes that
    // use flags.
    unsigned CCOpNo;
    switch (UIOpc) {
    default:
      // Something unusual. Be conservative.
      return false;
    case X86ISD::SETCC:       CCOpNo = 0; break;
    case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
    case X86ISD::CMOV:        CCOpNo = 2; break;
    case X86ISD::BRCOND:      CCOpNo = 2; break;
    }

    X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
    if (mayUseCarryFlag(CC))
      return false;
  }
  return true;
}

/// Check whether or not the chain ending in StoreNode is suitable for doing
/// the {load; op; store} to modify transformation.
static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
                                        SDValue StoredVal, SelectionDAG *CurDAG,
                                        unsigned LoadOpNo,
                                        LoadSDNode *&LoadNode,
                                        SDValue &InputChain) {
  // Is the stored value result 0 of the operation?
  if (StoredVal.getResNo() != 0) return false;

  // Are there other uses of the operation other than the store?
  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;

  // Is the store non-extending and non-indexed?
  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
    return false;

  SDValue Load = StoredVal->getOperand(LoadOpNo);
  // Is the stored value a non-extending and non-indexed load?
  if (!ISD::isNormalLoad(Load.getNode())) return false;

  // Return LoadNode by reference.
  LoadNode = cast<LoadSDNode>(Load);

  // Is store the only read of the loaded value?
  if (!Load.hasOneUse())
    return false;

  // Is the address of the store the same as the load?
  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
      LoadNode->getOffset() != StoreNode->getOffset())
    return false;

  bool FoundLoad = false;
  SmallVector<SDValue, 4> ChainOps;
  SmallVector<const SDNode *, 4> LoopWorklist;
  SmallPtrSet<const SDNode *, 16> Visited;
  const unsigned int Max = 1024;

  //  Visualization of Load-Op-Store fusion:
  // -------------------------
  // Legend:
  //    *-lines = Chain operand dependencies.
  //    |-lines = Normal operand dependencies.
  //    Dependencies flow down and right. n-suffix references multiple nodes.
  //
  //        C                        Xn  C
  //        *                         *  *
  //        *                          * *
  //  Xn  A-LD    Yn                    TF         Yn
  //   *    * \   |                       *        |
  //    *   *  \  |                        *       |
  //     *  *   \ |             =>       A--LD_OP_ST
  //      * *    \|                                 \
  //       TF    OP                                  \
  //         *   | \                                  Zn
  //          *  |  \
  //         A-ST    Zn
  //

  // This merge induced dependences from: #1: Xn -> LD, OP, Zn
  //                                      #2: Yn -> LD
  //                                      #3: ST -> Zn

  // Ensure the transform is safe by checking for the dual
  // dependencies to make sure we do not induce a loop.

  // As LD is a predecessor to both OP and ST we can do this by checking:
  //  a). if LD is a predecessor to a member of Xn or Yn.
  //  b). if a Zn is a predecessor to ST.

  // However, (b) can only occur through being a chain predecessor to
  // ST, which is the same as Zn being a member or predecessor of Xn,
  // which is a subset of LD being a predecessor of Xn. So it's
  // subsumed by check (a).

  SDValue Chain = StoreNode->getChain();

  // Gather X elements in ChainOps.
  if (Chain == Load.getValue(1)) {
    FoundLoad = true;
    ChainOps.push_back(Load.getOperand(0));
  } else if (Chain.getOpcode() == ISD::TokenFactor) {
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
      SDValue Op = Chain.getOperand(i);
      if (Op == Load.getValue(1)) {
        FoundLoad = true;
        // Drop Load, but keep its chain. No cycle check necessary.
        ChainOps.push_back(Load.getOperand(0));
        continue;
      }
      LoopWorklist.push_back(Op.getNode());
      ChainOps.push_back(Op);
    }
  }

  if (!FoundLoad)
    return false;

  // Worklist is currently Xn. Add Yn to worklist.
  for (SDValue Op : StoredVal->ops())
    if (Op.getNode() != LoadNode)
      LoopWorklist.push_back(Op.getNode());

  // Check (a) if Load is a predecessor to Xn + Yn
  if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
                                   true))
    return false;

  InputChain =
      CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
  return true;
}

// Change a chain of {load; op; store} of the same value into a simple op
// through memory of that value, if the uses of the modified value and its
// address are suitable.
//
// The tablegen pattern memory operand pattern is currently not able to match
// the case where the EFLAGS on the original operation are used.
//
// To move this to tablegen, we'll need to improve tablegen to allow flags to
// be transferred from a node in the pattern to the result node, probably with
// a new keyword. For example, we have this
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
//  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
//   (implicit EFLAGS)]>;
// but maybe need something like this
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
//  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
//   (transferrable EFLAGS)]>;
//
// Until then, we manually fold these and instruction select the operation
// here.
bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
  StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
  SDValue StoredVal = StoreNode->getOperand(1);
  unsigned Opc = StoredVal->getOpcode();

  // Before we try to select anything, make sure this is memory operand size
  // and opcode we can handle. Note that this must match the code below that
  // actually lowers the opcodes.
  EVT MemVT = StoreNode->getMemoryVT();
  if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
      MemVT != MVT::i8)
    return false;

  bool IsCommutable = false;
  bool IsNegate = false;
  switch (Opc) {
  default:
    return false;
  case X86ISD::SUB:
    IsNegate = isNullConstant(StoredVal.getOperand(0));
    break;
  case X86ISD::SBB:
    break;
  case X86ISD::ADD:
  case X86ISD::ADC:
  case X86ISD::AND:
  case X86ISD::OR:
  case X86ISD::XOR:
    IsCommutable = true;
    break;
  }

  unsigned LoadOpNo = IsNegate ? 1 : 0;
  LoadSDNode *LoadNode = nullptr;
  SDValue InputChain;
  if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
                                   LoadNode, InputChain)) {
    if (!IsCommutable)
      return false;

    // This operation is commutable, try the other operand.
    LoadOpNo = 1;
    if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
                                     LoadNode, InputChain))
      return false;
  }

  SDValue Base, Scale, Index, Disp, Segment;
  if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
                  Segment))
    return false;

  auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
                          unsigned Opc8) {
    switch (MemVT.getSimpleVT().SimpleTy) {
    case MVT::i64:
      return Opc64;
    case MVT::i32:
      return Opc32;
    case MVT::i16:
      return Opc16;
    case MVT::i8:
      return Opc8;
    default:
      llvm_unreachable("Invalid size!");
    }
  };

  MachineSDNode *Result;
  switch (Opc) {
  case X86ISD::SUB:
    // Handle negate.
    if (IsNegate) {
      unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
                                     X86::NEG8m);
      const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
      Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
                                      MVT::Other, Ops);
      break;
    }
   LLVM_FALLTHROUGH;
  case X86ISD::ADD:
    // Try to match inc/dec.
    if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
      bool IsOne = isOneConstant(StoredVal.getOperand(1));
      bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
      // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
      if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
        unsigned NewOpc = 
          ((Opc == X86ISD::ADD) == IsOne)
              ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
              : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
        const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
        Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
                                        MVT::Other, Ops);
        break;
      }
    }
    LLVM_FALLTHROUGH;
  case X86ISD::ADC:
  case X86ISD::SBB:
  case X86ISD::AND:
  case X86ISD::OR:
  case X86ISD::XOR: {
    auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
      switch (Opc) {
      case X86ISD::ADD:
        return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
                            X86::ADD8mr);
      case X86ISD::ADC:
        return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
                            X86::ADC8mr);
      case X86ISD::SUB:
        return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
                            X86::SUB8mr);
      case X86ISD::SBB:
        return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
                            X86::SBB8mr);
      case X86ISD::AND:
        return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
                            X86::AND8mr);
      case X86ISD::OR:
        return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
      case X86ISD::XOR:
        return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
                            X86::XOR8mr);
      default:
        llvm_unreachable("Invalid opcode!");
      }
    };
    auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
      switch (Opc) {
      case X86ISD::ADD:
        return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
      case X86ISD::ADC:
        return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
      case X86ISD::SUB:
        return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
      case X86ISD::SBB:
        return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
      case X86ISD::AND:
        return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
      case X86ISD::OR:
        return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
      case X86ISD::XOR:
        return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
      default:
        llvm_unreachable("Invalid opcode!");
      }
    };
    auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
      switch (Opc) {
      case X86ISD::ADD:
        return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
                            X86::ADD8mi);
      case X86ISD::ADC:
        return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
                            X86::ADC8mi);
      case X86ISD::SUB:
        return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
                            X86::SUB8mi);
      case X86ISD::SBB:
        return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
                            X86::SBB8mi);
      case X86ISD::AND:
        return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
                            X86::AND8mi);
      case X86ISD::OR:
        return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
                            X86::OR8mi);
      case X86ISD::XOR:
        return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
                            X86::XOR8mi);
      default:
        llvm_unreachable("Invalid opcode!");
      }
    };

    unsigned NewOpc = SelectRegOpcode(Opc);
    SDValue Operand = StoredVal->getOperand(1-LoadOpNo);

    // See if the operand is a constant that we can fold into an immediate
    // operand.
    if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
      int64_t OperandV = OperandC->getSExtValue();

      // Check if we can shrink the operand enough to fit in an immediate (or
      // fit into a smaller immediate) by negating it and switching the
      // operation.
      if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
          ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
           (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
            isInt<32>(-OperandV))) &&
          hasNoCarryFlagUses(StoredVal.getValue(1))) {
        OperandV = -OperandV;
        Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
      }

      // First try to fit this into an Imm8 operand. If it doesn't fit, then try
      // the larger immediate operand.
      if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
        Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
        NewOpc = SelectImm8Opcode(Opc);
      } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
        Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
        NewOpc = SelectImmOpcode(Opc);
      }
    }

    if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
      SDValue CopyTo =
          CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
                               StoredVal.getOperand(2), SDValue());

      const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
                             Segment, Operand, CopyTo, CopyTo.getValue(1)};
      Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
                                      Ops);
    } else {
      const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
                             Segment, Operand, InputChain};
      Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
                                      Ops);
    }
    break;
  }
  default:
    llvm_unreachable("Invalid opcode!");
  }

  MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
                                 LoadNode->getMemOperand()};
  CurDAG->setNodeMemRefs(Result, MemOps);

  // Update Load Chain uses as well.
  ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
  ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
  ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
  CurDAG->RemoveDeadNode(Node);
  return true;
}

// See if this is an  X & Mask  that we can match to BEXTR/BZHI.
// Where Mask is one of the following patterns:
//   a) x &  (1 << nbits) - 1
//   b) x & ~(-1 << nbits)
//   c) x &  (-1 >> (32 - y))
//   d) x << (32 - y) >> (32 - y)
bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
  assert(
      (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
      "Should be either an and-mask, or right-shift after clearing high bits.");

  // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
  if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
    return false;

  MVT NVT = Node->getSimpleValueType(0);

  // Only supported for 32 and 64 bits.
  if (NVT != MVT::i32 && NVT != MVT::i64)
    return false;

  SDValue NBits;

  // If we have BMI2's BZHI, we are ok with muti-use patterns.
  // Else, if we only have BMI1's BEXTR, we require one-use.
  const bool CanHaveExtraUses = Subtarget->hasBMI2();
  auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
    return CanHaveExtraUses ||
           Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
  };
  auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
  auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };

  auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
    if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
      assert(V.getSimpleValueType() == MVT::i32 &&
             V.getOperand(0).getSimpleValueType() == MVT::i64 &&
             "Expected i64 -> i32 truncation");
      V = V.getOperand(0);
    }
    return V;
  };

  // a) x & ((1 << nbits) + (-1))
  auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
                        &NBits](SDValue Mask) -> bool {
    // Match `add`. Must only have one use!
    if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
      return false;
    // We should be adding all-ones constant (i.e. subtracting one.)
    if (!isAllOnesConstant(Mask->getOperand(1)))
      return false;
    // Match `1 << nbits`. Might be truncated. Must only have one use!
    SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
    if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
      return false;
    if (!isOneConstant(M0->getOperand(0)))
      return false;
    NBits = M0->getOperand(1);
    return true;
  };

  auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
    V = peekThroughOneUseTruncation(V);
    return CurDAG->MaskedValueIsAllOnes(
        V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
                                NVT.getSizeInBits()));
  };

  // b) x & ~(-1 << nbits)
  auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
                        &NBits](SDValue Mask) -> bool {
    // Match `~()`. Must only have one use!
    if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
      return false;
    // The -1 only has to be all-ones for the final Node's NVT.
    if (!isAllOnes(Mask->getOperand(1)))
      return false;
    // Match `-1 << nbits`. Might be truncated. Must only have one use!
    SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
    if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
      return false;
    // The -1 only has to be all-ones for the final Node's NVT.
    if (!isAllOnes(M0->getOperand(0)))
      return false;
    NBits = M0->getOperand(1);
    return true;
  };

  // Match potentially-truncated (bitwidth - y)
  auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
                                             unsigned Bitwidth) {
    // Skip over a truncate of the shift amount.
    if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
      ShiftAmt = ShiftAmt.getOperand(0);
      // The trunc should have been the only user of the real shift amount.
      if (!checkOneUse(ShiftAmt))
        return false;
    }
    // Match the shift amount as: (bitwidth - y). It should go away, too.
    if (ShiftAmt.getOpcode() != ISD::SUB)
      return false;
    auto V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
    if (!V0 || V0->getZExtValue() != Bitwidth)
      return false;
    NBits = ShiftAmt.getOperand(1);
    return true;
  };

  // c) x &  (-1 >> (32 - y))
  auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
                        matchShiftAmt](SDValue Mask) -> bool {
    // The mask itself may be truncated.
    Mask = peekThroughOneUseTruncation(Mask);
    unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
    // Match `l>>`. Must only have one use!
    if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
      return false;
    // We should be shifting truly all-ones constant.
    if (!isAllOnesConstant(Mask.getOperand(0)))
      return false;
    SDValue M1 = Mask.getOperand(1);
    // The shift amount should not be used externally.
    if (!checkOneUse(M1))
      return false;
    return matchShiftAmt(M1, Bitwidth);
  };

  SDValue X;

  // d) x << (32 - y) >> (32 - y)
  auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
                        &X](SDNode *Node) -> bool {
    if (Node->getOpcode() != ISD::SRL)
      return false;
    SDValue N0 = Node->getOperand(0);
    if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
      return false;
    unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
    SDValue N1 = Node->getOperand(1);
    SDValue N01 = N0->getOperand(1);
    // Both of the shifts must be by the exact same value.
    // There should not be any uses of the shift amount outside of the pattern.
    if (N1 != N01 || !checkTwoUse(N1))
      return false;
    if (!matchShiftAmt(N1, Bitwidth))
      return false;
    X = N0->getOperand(0);
    return true;
  };

  auto matchLowBitMask = [matchPatternA, matchPatternB,
                          matchPatternC](SDValue Mask) -> bool {
    return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
  };

  if (Node->getOpcode() == ISD::AND) {
    X = Node->getOperand(0);
    SDValue Mask = Node->getOperand(1);

    if (matchLowBitMask(Mask)) {
      // Great.
    } else {
      std::swap(X, Mask);
      if (!matchLowBitMask(Mask))
        return false;
    }
  } else if (!matchPatternD(Node))
    return false;

  SDLoc DL(Node);

  // Truncate the shift amount.
  NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
  insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);

  // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
  // All the other bits are undefined, we do not care about them.
  SDValue ImplDef = SDValue(
      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
  insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);

  SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
  insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
  NBits = SDValue(
      CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
                             NBits, SRIdxVal), 0);
  insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);

  if (Subtarget->hasBMI2()) {
    // Great, just emit the the BZHI..
    if (NVT != MVT::i32) {
      // But have to place the bit count into the wide-enough register first.
      NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
      insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
    }

    SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
    ReplaceNode(Node, Extract.getNode());
    SelectCode(Extract.getNode());
    return true;
  }

  // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
  // *logically* shifted (potentially with one-use trunc inbetween),
  // and the truncation was the only use of the shift,
  // and if so look past one-use truncation.
  {
    SDValue RealX = peekThroughOneUseTruncation(X);
    // FIXME: only if the shift is one-use?
    if (RealX != X && RealX.getOpcode() == ISD::SRL)
      X = RealX;
  }

  MVT XVT = X.getSimpleValueType();

  // Else, emitting BEXTR requires one more step.
  // The 'control' of BEXTR has the pattern of:
  // [15...8 bit][ 7...0 bit] location
  // [ bit count][     shift] name
  // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11

  // Shift NBits left by 8 bits, thus producing 'control'.
  // This makes the low 8 bits to be zero.
  SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
  SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
  insertDAGNode(*CurDAG, SDValue(Node, 0), Control);

  // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
  // FIXME: only if the shift is one-use?
  if (X.getOpcode() == ISD::SRL) {
    SDValue ShiftAmt = X.getOperand(1);
    X = X.getOperand(0);

    assert(ShiftAmt.getValueType() == MVT::i8 &&
           "Expected shift amount to be i8");

    // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
    // We could zext to i16 in some form, but we intentionally don't do that.
    SDValue OrigShiftAmt = ShiftAmt;
    ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
    insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);

    // And now 'or' these low 8 bits of shift amount into the 'control'.
    Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
    insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
  }

  // But have to place the 'control' into the wide-enough register first.
  if (XVT != MVT::i32) {
    Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
    insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
  }

  // And finally, form the BEXTR itself.
  SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);

  // The 'X' was originally truncated. Do that now.
  if (XVT != NVT) {
    insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
    Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
  }

  ReplaceNode(Node, Extract.getNode());
  SelectCode(Extract.getNode());

  return true;
}

// See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
  MVT NVT = Node->getSimpleValueType(0);
  SDLoc dl(Node);

  SDValue N0 = Node->getOperand(0);
  SDValue N1 = Node->getOperand(1);

  // If we have TBM we can use an immediate for the control. If we have BMI
  // we should only do this if the BEXTR instruction is implemented well.
  // Otherwise moving the control into a register makes this more costly.
  // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
  // hoisting the move immediate would make it worthwhile with a less optimal
  // BEXTR?
  bool PreferBEXTR =
      Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
  if (!PreferBEXTR && !Subtarget->hasBMI2())
    return nullptr;

  // Must have a shift right.
  if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
    return nullptr;

  // Shift can't have additional users.
  if (!N0->hasOneUse())
    return nullptr;

  // Only supported for 32 and 64 bits.
  if (NVT != MVT::i32 && NVT != MVT::i64)
    return nullptr;

  // Shift amount and RHS of and must be constant.
  ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
  ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
  if (!MaskCst || !ShiftCst)
    return nullptr;

  // And RHS must be a mask.
  uint64_t Mask = MaskCst->getZExtValue();
  if (!isMask_64(Mask))
    return nullptr;

  uint64_t Shift = ShiftCst->getZExtValue();
  uint64_t MaskSize = countPopulation(Mask);

  // Don't interfere with something that can be handled by extracting AH.
  // TODO: If we are able to fold a load, BEXTR might still be better than AH.
  if (Shift == 8 && MaskSize == 8)
    return nullptr;

  // Make sure we are only using bits that were in the original value, not
  // shifted in.
  if (Shift + MaskSize > NVT.getSizeInBits())
    return nullptr;

  // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
  // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
  // does not fit into 32 bits. Load folding is not a sufficient reason.
  if (!PreferBEXTR && MaskSize <= 32)
    return nullptr;

  SDValue Control;
  unsigned ROpc, MOpc;

  if (!PreferBEXTR) {
    assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
    // If we can't make use of BEXTR then we can't fuse shift+mask stages.
    // Let's perform the mask first, and apply shift later. Note that we need to
    // widen the mask to account for the fact that we'll apply shift afterwards!
    Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
    ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
    MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
    unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
    Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
  } else {
    // The 'control' of BEXTR has the pattern of:
    // [15...8 bit][ 7...0 bit] location
    // [ bit count][     shift] name
    // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
    Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
    if (Subtarget->hasTBM()) {
      ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
      MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
    } else {
      assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
      // BMI requires the immediate to placed in a register.
      ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
      MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
      unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
      Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
    }
  }

  MachineSDNode *NewNode;
  SDValue Input = N0->getOperand(0);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
    SDValue Ops[] = {
        Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
    SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
    NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
    // Update the chain.
    ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
    // Record the mem-refs
    CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
  } else {
    NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
  }

  if (!PreferBEXTR) {
    // We still need to apply the shift.
    SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
    unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
    NewNode =
        CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
  }

  return NewNode;
}

// Emit a PCMISTR(I/M) instruction.
MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
                                             bool MayFoldLoad, const SDLoc &dl,
                                             MVT VT, SDNode *Node) {
  SDValue N0 = Node->getOperand(0);
  SDValue N1 = Node->getOperand(1);
  SDValue Imm = Node->getOperand(2);
  const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
  Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());

  // Try to fold a load. No need to check alignment.
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
    SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
                      N1.getOperand(0) };
    SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
    MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
    // Update the chain.
    ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
    // Record the mem-refs
    CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
    return CNode;
  }

  SDValue Ops[] = { N0, N1, Imm };
  SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
  MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
  return CNode;
}

// Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
// to emit a second instruction after this one. This is needed since we have two
// copyToReg nodes glued before this and we need to continue that glue through.
MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
                                             bool MayFoldLoad, const SDLoc &dl,
                                             MVT VT, SDNode *Node,
                                             SDValue &InFlag) {
  SDValue N0 = Node->getOperand(0);
  SDValue N2 = Node->getOperand(2);
  SDValue Imm = Node->getOperand(4);
  const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
  Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());

  // Try to fold a load. No need to check alignment.
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
    SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
                      N2.getOperand(0), InFlag };
    SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
    MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
    InFlag = SDValue(CNode, 3);
    // Update the chain.
    ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
    // Record the mem-refs
    CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
    return CNode;
  }

  SDValue Ops[] = { N0, N2, Imm, InFlag };
  SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
  MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
  InFlag = SDValue(CNode, 2);
  return CNode;
}

bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
  EVT VT = N->getValueType(0);

  // Only handle scalar shifts.
  if (VT.isVector())
    return false;

  // Narrower shifts only mask to 5 bits in hardware.
  unsigned Size = VT == MVT::i64 ? 64 : 32;

  SDValue OrigShiftAmt = N->getOperand(1);
  SDValue ShiftAmt = OrigShiftAmt;
  SDLoc DL(N);

  // Skip over a truncate of the shift amount.
  if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
    ShiftAmt = ShiftAmt->getOperand(0);

  // This function is called after X86DAGToDAGISel::matchBitExtract(),
  // so we are not afraid that we might mess up BZHI/BEXTR pattern.

  SDValue NewShiftAmt;
  if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
    SDValue Add0 = ShiftAmt->getOperand(0);
    SDValue Add1 = ShiftAmt->getOperand(1);
    // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
    // to avoid the ADD/SUB.
    if (isa<ConstantSDNode>(Add1) &&
        cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
      NewShiftAmt = Add0;
    // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
    // generate a NEG instead of a SUB of a constant.
    } else if (ShiftAmt->getOpcode() == ISD::SUB &&
               isa<ConstantSDNode>(Add0) &&
               cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
               cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
      // Insert a negate op.
      // TODO: This isn't guaranteed to replace the sub if there is a logic cone
      // that uses it that's not a shift.
      EVT SubVT = ShiftAmt.getValueType();
      SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
      SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
      NewShiftAmt = Neg;

      // Insert these operands into a valid topological order so they can
      // get selected independently.
      insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
      insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
    } else
      return false;
  } else
    return false;

  if (NewShiftAmt.getValueType() != MVT::i8) {
    // Need to truncate the shift amount.
    NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
    // Add to a correct topological ordering.
    insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
  }

  // Insert a new mask to keep the shift amount legal. This should be removed
  // by isel patterns.
  NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
                                CurDAG->getConstant(Size - 1, DL, MVT::i8));
  // Place in a correct topological ordering.
  insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);

  SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
                                                   NewShiftAmt);
  if (UpdatedNode != N) {
    // If we found an existing node, we should replace ourselves with that node
    // and wait for it to be selected after its other users.
    ReplaceNode(N, UpdatedNode);
    return true;
  }

  // If the original shift amount is now dead, delete it so that we don't run
  // it through isel.
  if (OrigShiftAmt.getNode()->use_empty())
    CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());

  // Now that we've optimized the shift amount, defer to normal isel to get
  // load folding and legacy vs BMI2 selection without repeating it here.
  SelectCode(N);
  return true;
}

bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
  MVT NVT = N->getSimpleValueType(0);
  unsigned Opcode = N->getOpcode();
  SDLoc dl(N);

  // For operations of the form (x << C1) op C2, check if we can use a smaller
  // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
  SDValue Shift = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
  if (!Cst)
    return false;

  int64_t Val = Cst->getSExtValue();

  // If we have an any_extend feeding the AND, look through it to see if there
  // is a shift behind it. But only if the AND doesn't use the extended bits.
  // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
  bool FoundAnyExtend = false;
  if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
      Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
      isUInt<32>(Val)) {
    FoundAnyExtend = true;
    Shift = Shift.getOperand(0);
  }

  if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
    return false;

  // i8 is unshrinkable, i16 should be promoted to i32.
  if (NVT != MVT::i32 && NVT != MVT::i64)
    return false;

  ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
  if (!ShlCst)
    return false;

  uint64_t ShAmt = ShlCst->getZExtValue();

  // Make sure that we don't change the operation by removing bits.
  // This only matters for OR and XOR, AND is unaffected.
  uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
  if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
    return false;

  // Check the minimum bitwidth for the new constant.
  // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
  auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
    if (Opcode == ISD::AND) {
      // AND32ri is the same as AND64ri32 with zext imm.
      // Try this before sign extended immediates below.
      ShiftedVal = (uint64_t)Val >> ShAmt;
      if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
        return true;
      // Also swap order when the AND can become MOVZX.
      if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
        return true;
    }
    ShiftedVal = Val >> ShAmt;
    if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
        (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
      return true;
    if (Opcode != ISD::AND) {
      // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
      ShiftedVal = (uint64_t)Val >> ShAmt;
      if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
        return true;
    }
    return false;
  };

  int64_t ShiftedVal;
  if (!CanShrinkImmediate(ShiftedVal))
    return false;

  // Ok, we can reorder to get a smaller immediate.

  // But, its possible the original immediate allowed an AND to become MOVZX.
  // Doing this late due to avoid the MakedValueIsZero call as late as
  // possible.
  if (Opcode == ISD::AND) {
    // Find the smallest zext this could possibly be.
    unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
    ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));

    // Figure out which bits need to be zero to achieve that mask.
    APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
                                            ZExtWidth);
    NeededMask &= ~Cst->getAPIntValue();

    if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
      return false;
  }

  SDValue X = Shift.getOperand(0);
  if (FoundAnyExtend) {
    SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
    insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
    X = NewX;
  }

  SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
  insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
  SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
  insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
  SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
                                   Shift.getOperand(1));
  ReplaceNode(N, NewSHL.getNode());
  SelectCode(NewSHL.getNode());
  return true;
}

/// Convert vector increment or decrement to sub/add with an all-ones constant:
/// add X, <1, 1...> --> sub X, <-1, -1...>
/// sub X, <1, 1...> --> add X, <-1, -1...>
/// The all-ones vector constant can be materialized using a pcmpeq instruction
/// that is commonly recognized as an idiom (has no register dependency), so
/// that's better/smaller than loading a splat 1 constant.
bool X86DAGToDAGISel::combineIncDecVector(SDNode *Node) {
  assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB) &&
         "Unexpected opcode for increment/decrement transform");

  EVT VT = Node->getValueType(0);
  assert(VT.isVector() && "Should only be called for vectors.");

  SDValue X = Node->getOperand(0);
  SDValue OneVec = Node->getOperand(1);

  APInt SplatVal;
  if (!X86::isConstantSplat(OneVec, SplatVal) || !SplatVal.isOneValue())
    return false;

  SDLoc DL(Node);
  SDValue OneConstant, AllOnesVec;

  APInt Ones = APInt::getAllOnesValue(32);
  assert(VT.getSizeInBits() % 32 == 0 &&
         "Expected bit count to be a multiple of 32");
  OneConstant = CurDAG->getConstant(Ones, DL, MVT::i32);
  insertDAGNode(*CurDAG, X, OneConstant);

  unsigned NumElts = VT.getSizeInBits() / 32;
  assert(NumElts > 0 && "Expected to get non-empty vector.");
  AllOnesVec = CurDAG->getSplatBuildVector(MVT::getVectorVT(MVT::i32, NumElts),
                                           DL, OneConstant);
  insertDAGNode(*CurDAG, X, AllOnesVec);

  AllOnesVec = CurDAG->getBitcast(VT, AllOnesVec);
  insertDAGNode(*CurDAG, X, AllOnesVec);

  unsigned NewOpcode = Node->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
  SDValue NewNode = CurDAG->getNode(NewOpcode, DL, VT, X, AllOnesVec);

  ReplaceNode(Node, NewNode.getNode());
  SelectCode(NewNode.getNode());
  return true;
}

/// If the high bits of an 'and' operand are known zero, try setting the
/// high bits of an 'and' constant operand to produce a smaller encoding by
/// creating a small, sign-extended negative immediate rather than a large
/// positive one. This reverses a transform in SimplifyDemandedBits that
/// shrinks mask constants by clearing bits. There is also a possibility that
/// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
/// case, just replace the 'and'. Return 'true' if the node is replaced.
bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
  // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
  // have immediate operands.
  MVT VT = And->getSimpleValueType(0);
  if (VT != MVT::i32 && VT != MVT::i64)
    return false;

  auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
  if (!And1C)
    return false;

  // Bail out if the mask constant is already negative. It's can't shrink more.
  // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
  // patterns to use a 32-bit and instead of a 64-bit and by relying on the
  // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
  // are negative too.
  APInt MaskVal = And1C->getAPIntValue();
  unsigned MaskLZ = MaskVal.countLeadingZeros();
  if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
    return false;

  // Don't extend into the upper 32 bits of a 64 bit mask.
  if (VT == MVT::i64 && MaskLZ >= 32) {
    MaskLZ -= 32;
    MaskVal = MaskVal.trunc(32);
  }

  SDValue And0 = And->getOperand(0);
  APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
  APInt NegMaskVal = MaskVal | HighZeros;

  // If a negative constant would not allow a smaller encoding, there's no need
  // to continue. Only change the constant when we know it's a win.
  unsigned MinWidth = NegMaskVal.getMinSignedBits();
  if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
    return false;

  // Extend masks if we truncated above.
  if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
    NegMaskVal = NegMaskVal.zext(64);
    HighZeros = HighZeros.zext(64);
  }

  // The variable operand must be all zeros in the top bits to allow using the
  // new, negative constant as the mask.
  if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
    return false;

  // Check if the mask is -1. In that case, this is an unnecessary instruction
  // that escaped earlier analysis.
  if (NegMaskVal.isAllOnesValue()) {
    ReplaceNode(And, And0.getNode());
    return true;
  }

  // A negative mask allows a smaller encoding. Create a new 'and' node.
  SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
  SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
  ReplaceNode(And, NewAnd.getNode());
  SelectCode(NewAnd.getNode());
  return true;
}

static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
                              bool FoldedBCast, bool Masked) {
  if (Masked) {
    if (FoldedLoad) {
      switch (TestVT.SimpleTy) {
      default: llvm_unreachable("Unexpected VT!");
      case MVT::v16i8:
        return IsTestN ? X86::VPTESTNMBZ128rmk : X86::VPTESTMBZ128rmk;
      case MVT::v8i16:
        return IsTestN ? X86::VPTESTNMWZ128rmk : X86::VPTESTMWZ128rmk;
      case MVT::v4i32:
        return IsTestN ? X86::VPTESTNMDZ128rmk : X86::VPTESTMDZ128rmk;
      case MVT::v2i64:
        return IsTestN ? X86::VPTESTNMQZ128rmk : X86::VPTESTMQZ128rmk;
      case MVT::v32i8:
        return IsTestN ? X86::VPTESTNMBZ256rmk : X86::VPTESTMBZ256rmk;
      case MVT::v16i16:
        return IsTestN ? X86::VPTESTNMWZ256rmk : X86::VPTESTMWZ256rmk;
      case MVT::v8i32:
        return IsTestN ? X86::VPTESTNMDZ256rmk : X86::VPTESTMDZ256rmk;
      case MVT::v4i64:
        return IsTestN ? X86::VPTESTNMQZ256rmk : X86::VPTESTMQZ256rmk;
      case MVT::v64i8:
        return IsTestN ? X86::VPTESTNMBZrmk : X86::VPTESTMBZrmk;
      case MVT::v32i16:
        return IsTestN ? X86::VPTESTNMWZrmk : X86::VPTESTMWZrmk;
      case MVT::v16i32:
        return IsTestN ? X86::VPTESTNMDZrmk : X86::VPTESTMDZrmk;
      case MVT::v8i64:
        return IsTestN ? X86::VPTESTNMQZrmk : X86::VPTESTMQZrmk;
      }
    }

    if (FoldedBCast) {
      switch (TestVT.SimpleTy) {
      default: llvm_unreachable("Unexpected VT!");
      case MVT::v4i32:
        return IsTestN ? X86::VPTESTNMDZ128rmbk : X86::VPTESTMDZ128rmbk;
      case MVT::v2i64:
        return IsTestN ? X86::VPTESTNMQZ128rmbk : X86::VPTESTMQZ128rmbk;
      case MVT::v8i32:
        return IsTestN ? X86::VPTESTNMDZ256rmbk : X86::VPTESTMDZ256rmbk;
      case MVT::v4i64:
        return IsTestN ? X86::VPTESTNMQZ256rmbk : X86::VPTESTMQZ256rmbk;
      case MVT::v16i32:
        return IsTestN ? X86::VPTESTNMDZrmbk : X86::VPTESTMDZrmbk;
      case MVT::v8i64:
        return IsTestN ? X86::VPTESTNMQZrmbk : X86::VPTESTMQZrmbk;
      }
    }

    switch (TestVT.SimpleTy) {
    default: llvm_unreachable("Unexpected VT!");
    case MVT::v16i8:
      return IsTestN ? X86::VPTESTNMBZ128rrk : X86::VPTESTMBZ128rrk;
    case MVT::v8i16:
      return IsTestN ? X86::VPTESTNMWZ128rrk : X86::VPTESTMWZ128rrk;
    case MVT::v4i32:
      return IsTestN ? X86::VPTESTNMDZ128rrk : X86::VPTESTMDZ128rrk;
    case MVT::v2i64:
      return IsTestN ? X86::VPTESTNMQZ128rrk : X86::VPTESTMQZ128rrk;
    case MVT::v32i8:
      return IsTestN ? X86::VPTESTNMBZ256rrk : X86::VPTESTMBZ256rrk;
    case MVT::v16i16:
      return IsTestN ? X86::VPTESTNMWZ256rrk : X86::VPTESTMWZ256rrk;
    case MVT::v8i32:
      return IsTestN ? X86::VPTESTNMDZ256rrk : X86::VPTESTMDZ256rrk;
    case MVT::v4i64:
      return IsTestN ? X86::VPTESTNMQZ256rrk : X86::VPTESTMQZ256rrk;
    case MVT::v64i8:
      return IsTestN ? X86::VPTESTNMBZrrk : X86::VPTESTMBZrrk;
    case MVT::v32i16:
      return IsTestN ? X86::VPTESTNMWZrrk : X86::VPTESTMWZrrk;
    case MVT::v16i32:
      return IsTestN ? X86::VPTESTNMDZrrk : X86::VPTESTMDZrrk;
    case MVT::v8i64:
      return IsTestN ? X86::VPTESTNMQZrrk : X86::VPTESTMQZrrk;
    }
  }

  if (FoldedLoad) {
    switch (TestVT.SimpleTy) {
    default: llvm_unreachable("Unexpected VT!");
    case MVT::v16i8:
      return IsTestN ? X86::VPTESTNMBZ128rm : X86::VPTESTMBZ128rm;
    case MVT::v8i16:
      return IsTestN ? X86::VPTESTNMWZ128rm : X86::VPTESTMWZ128rm;
    case MVT::v4i32:
      return IsTestN ? X86::VPTESTNMDZ128rm : X86::VPTESTMDZ128rm;
    case MVT::v2i64:
      return IsTestN ? X86::VPTESTNMQZ128rm : X86::VPTESTMQZ128rm;
    case MVT::v32i8:
      return IsTestN ? X86::VPTESTNMBZ256rm : X86::VPTESTMBZ256rm;
    case MVT::v16i16:
      return IsTestN ? X86::VPTESTNMWZ256rm : X86::VPTESTMWZ256rm;
    case MVT::v8i32:
      return IsTestN ? X86::VPTESTNMDZ256rm : X86::VPTESTMDZ256rm;
    case MVT::v4i64:
      return IsTestN ? X86::VPTESTNMQZ256rm : X86::VPTESTMQZ256rm;
    case MVT::v64i8:
      return IsTestN ? X86::VPTESTNMBZrm : X86::VPTESTMBZrm;
    case MVT::v32i16:
      return IsTestN ? X86::VPTESTNMWZrm : X86::VPTESTMWZrm;
    case MVT::v16i32:
      return IsTestN ? X86::VPTESTNMDZrm : X86::VPTESTMDZrm;
    case MVT::v8i64:
      return IsTestN ? X86::VPTESTNMQZrm : X86::VPTESTMQZrm;
    }
  }

  if (FoldedBCast) {
    switch (TestVT.SimpleTy) {
    default: llvm_unreachable("Unexpected VT!");
    case MVT::v4i32:
      return IsTestN ? X86::VPTESTNMDZ128rmb : X86::VPTESTMDZ128rmb;
    case MVT::v2i64:
      return IsTestN ? X86::VPTESTNMQZ128rmb : X86::VPTESTMQZ128rmb;
    case MVT::v8i32:
      return IsTestN ? X86::VPTESTNMDZ256rmb : X86::VPTESTMDZ256rmb;
    case MVT::v4i64:
      return IsTestN ? X86::VPTESTNMQZ256rmb : X86::VPTESTMQZ256rmb;
    case MVT::v16i32:
      return IsTestN ? X86::VPTESTNMDZrmb : X86::VPTESTMDZrmb;
    case MVT::v8i64:
      return IsTestN ? X86::VPTESTNMQZrmb : X86::VPTESTMQZrmb;
    }
  }

  switch (TestVT.SimpleTy) {
  default: llvm_unreachable("Unexpected VT!");
  case MVT::v16i8:
    return IsTestN ? X86::VPTESTNMBZ128rr : X86::VPTESTMBZ128rr;
  case MVT::v8i16:
    return IsTestN ? X86::VPTESTNMWZ128rr : X86::VPTESTMWZ128rr;
  case MVT::v4i32:
    return IsTestN ? X86::VPTESTNMDZ128rr : X86::VPTESTMDZ128rr;
  case MVT::v2i64:
    return IsTestN ? X86::VPTESTNMQZ128rr : X86::VPTESTMQZ128rr;
  case MVT::v32i8:
    return IsTestN ? X86::VPTESTNMBZ256rr : X86::VPTESTMBZ256rr;
  case MVT::v16i16:
    return IsTestN ? X86::VPTESTNMWZ256rr : X86::VPTESTMWZ256rr;
  case MVT::v8i32:
    return IsTestN ? X86::VPTESTNMDZ256rr : X86::VPTESTMDZ256rr;
  case MVT::v4i64:
    return IsTestN ? X86::VPTESTNMQZ256rr : X86::VPTESTMQZ256rr;
  case MVT::v64i8:
    return IsTestN ? X86::VPTESTNMBZrr : X86::VPTESTMBZrr;
  case MVT::v32i16:
    return IsTestN ? X86::VPTESTNMWZrr : X86::VPTESTMWZrr;
  case MVT::v16i32:
    return IsTestN ? X86::VPTESTNMDZrr : X86::VPTESTMDZrr;
  case MVT::v8i64:
    return IsTestN ? X86::VPTESTNMQZrr : X86::VPTESTMQZrr;
  }
}

// Try to create VPTESTM instruction. If InMask is not null, it will be used
// to form a masked operation.
bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
                                 SDValue InMask) {
  assert(Subtarget->hasAVX512() && "Expected AVX512!");
  assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
         "Unexpected VT!");

  // Look for equal and not equal compares.
  ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
  if (CC != ISD::SETEQ && CC != ISD::SETNE)
    return false;

  SDValue SetccOp0 = Setcc.getOperand(0);
  SDValue SetccOp1 = Setcc.getOperand(1);

  // Canonicalize the all zero vector to the RHS.
  if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
    std::swap(SetccOp0, SetccOp1);

  // See if we're comparing against zero.
  if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
    return false;

  SDValue N0 = SetccOp0;

  MVT CmpVT = N0.getSimpleValueType();
  MVT CmpSVT = CmpVT.getVectorElementType();

  // Start with both operands the same. We'll try to refine this.
  SDValue Src0 = N0;
  SDValue Src1 = N0;

  {
    // Look through single use bitcasts.
    SDValue N0Temp = N0;
    if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
      N0Temp = N0.getOperand(0);

     // Look for single use AND.
    if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
      Src0 = N0Temp.getOperand(0);
      Src1 = N0Temp.getOperand(1);
    }
  }

  // Without VLX we need to widen the load.
  bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();

  // We can only fold loads if the sources are unique.
  bool CanFoldLoads = Src0 != Src1;

  // Try to fold loads unless we need to widen.
  bool FoldedLoad = false;
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Load;
  if (!Widen && CanFoldLoads) {
    Load = Src1;
    FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2, Tmp3,
                             Tmp4);
    if (!FoldedLoad) {
      // And is computative.
      Load = Src0;
      FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2,
                               Tmp3, Tmp4);
      if (FoldedLoad)
        std::swap(Src0, Src1);
    }
  }

  auto findBroadcastedOp = [](SDValue Src, MVT CmpSVT, SDNode *&Parent) {
    // Look through single use bitcasts.
    if (Src.getOpcode() == ISD::BITCAST && Src.hasOneUse()) {
      Parent = Src.getNode();
      Src = Src.getOperand(0);
    }

    if (Src.getOpcode() == X86ISD::VBROADCAST_LOAD && Src.hasOneUse()) {
      auto *MemIntr = cast<MemIntrinsicSDNode>(Src);
      if (MemIntr->getMemoryVT().getSizeInBits() == CmpSVT.getSizeInBits())
        return Src;
    }

    return SDValue();
  };

  // If we didn't fold a load, try to match broadcast. No widening limitation
  // for this. But only 32 and 64 bit types are supported.
  bool FoldedBCast = false;
  if (!FoldedLoad && CanFoldLoads &&
      (CmpSVT == MVT::i32 || CmpSVT == MVT::i64)) {
    SDNode *ParentNode = N0.getNode();
    if ((Load = findBroadcastedOp(Src1, CmpSVT, ParentNode))) {
      FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
                                     Tmp1, Tmp2, Tmp3, Tmp4);
    }

    // Try the other operand.
    if (!FoldedBCast) {
      SDNode *ParentNode = N0.getNode();
      if ((Load = findBroadcastedOp(Src0, CmpSVT, ParentNode))) {
        FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
                                       Tmp1, Tmp2, Tmp3, Tmp4);
        if (FoldedBCast)
          std::swap(Src0, Src1);
      }
    }
  }

  auto getMaskRC = [](MVT MaskVT) {
    switch (MaskVT.SimpleTy) {
    default: llvm_unreachable("Unexpected VT!");
    case MVT::v2i1:  return X86::VK2RegClassID;
    case MVT::v4i1:  return X86::VK4RegClassID;
    case MVT::v8i1:  return X86::VK8RegClassID;
    case MVT::v16i1: return X86::VK16RegClassID;
    case MVT::v32i1: return X86::VK32RegClassID;
    case MVT::v64i1: return X86::VK64RegClassID;
    }
  };

  bool IsMasked = InMask.getNode() != nullptr;

  SDLoc dl(Root);

  MVT ResVT = Setcc.getSimpleValueType();
  MVT MaskVT = ResVT;
  if (Widen) {
    // Widen the inputs using insert_subreg or copy_to_regclass.
    unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
    unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
    unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
    CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
    MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
    SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
                                                     CmpVT), 0);
    Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);

    assert(!FoldedLoad && "Shouldn't have folded the load");
    if (!FoldedBCast)
      Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);

    if (IsMasked) {
      // Widen the mask.
      unsigned RegClass = getMaskRC(MaskVT);
      SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
      InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                              dl, MaskVT, InMask, RC), 0);
    }
  }

  bool IsTestN = CC == ISD::SETEQ;
  unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
                               IsMasked);

  MachineSDNode *CNode;
  if (FoldedLoad || FoldedBCast) {
    SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);

    if (IsMasked) {
      SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
                        Load.getOperand(0) };
      CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
    } else {
      SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
                        Load.getOperand(0) };
      CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
    }

    // Update the chain.
    ReplaceUses(Load.getValue(1), SDValue(CNode, 1));
    // Record the mem-refs
    CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Load)->getMemOperand()});
  } else {
    if (IsMasked)
      CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
    else
      CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
  }

  // If we widened, we need to shrink the mask VT.
  if (Widen) {
    unsigned RegClass = getMaskRC(ResVT);
    SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
    CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                   dl, ResVT, SDValue(CNode, 0), RC);
  }

  ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
  CurDAG->RemoveDeadNode(Root);
  return true;
}

// Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
// into vpternlog.
bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
  assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");

  MVT NVT = N->getSimpleValueType(0);

  // Make sure we support VPTERNLOG.
  if (!NVT.isVector() || !Subtarget->hasAVX512())
    return false;

  // We need VLX for 128/256-bit.
  if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
    return false;

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // Canonicalize AND to LHS.
  if (N1.getOpcode() == ISD::AND)
    std::swap(N0, N1);

  if (N0.getOpcode() != ISD::AND ||
      N1.getOpcode() != X86ISD::ANDNP ||
      !N0.hasOneUse() || !N1.hasOneUse())
    return false;

  // ANDN is not commutable, use it to pick down A and C.
  SDValue A = N1.getOperand(0);
  SDValue C = N1.getOperand(1);

  // AND is commutable, if one operand matches A, the other operand is B.
  // Otherwise this isn't a match.
  SDValue B;
  if (N0.getOperand(0) == A)
    B = N0.getOperand(1);
  else if (N0.getOperand(1) == A)
    B = N0.getOperand(0);
  else
    return false;

  SDLoc dl(N);
  SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
  SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
  ReplaceNode(N, Ternlog.getNode());
  SelectCode(Ternlog.getNode());
  return true;
}

void X86DAGToDAGISel::Select(SDNode *Node) {
  MVT NVT = Node->getSimpleValueType(0);
  unsigned Opcode = Node->getOpcode();
  SDLoc dl(Node);

  if (Node->isMachineOpcode()) {
    LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
    Node->setNodeId(-1);
    return;   // Already selected.
  }

  switch (Opcode) {
  default: break;
  case ISD::INTRINSIC_VOID: {
    unsigned IntNo = Node->getConstantOperandVal(1);
    switch (IntNo) {
    default: break;
    case Intrinsic::x86_sse3_monitor:
    case Intrinsic::x86_monitorx:
    case Intrinsic::x86_clzero: {
      bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;

      unsigned Opc = 0;
      switch (IntNo) {
      default: llvm_unreachable("Unexpected intrinsic!");
      case Intrinsic::x86_sse3_monitor:
        if (!Subtarget->hasSSE3())
          break;
        Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
        break;
      case Intrinsic::x86_monitorx:
        if (!Subtarget->hasMWAITX())
          break;
        Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
        break;
      case Intrinsic::x86_clzero:
        if (!Subtarget->hasCLZERO())
          break;
        Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
        break;
      }

      if (Opc) {
        unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
        SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
                                             Node->getOperand(2), SDValue());
        SDValue InFlag = Chain.getValue(1);

        if (IntNo == Intrinsic::x86_sse3_monitor ||
            IntNo == Intrinsic::x86_monitorx) {
          // Copy the other two operands to ECX and EDX.
          Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
                                       InFlag);
          InFlag = Chain.getValue(1);
          Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
                                       InFlag);
          InFlag = Chain.getValue(1);
        }

        MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
                                                      { Chain, InFlag});
        ReplaceNode(Node, CNode);
        return;
      }

      break;
    }
    }

    break;
  }
  case ISD::BRIND: {
    if (Subtarget->isTargetNaCl())
      // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
      // leave the instruction alone.
      break;
    if (Subtarget->isTarget64BitILP32()) {
      // Converts a 32-bit register to a 64-bit, zero-extended version of
      // it. This is needed because x86-64 can do many things, but jmp %r32
      // ain't one of them.
      const SDValue &Target = Node->getOperand(1);
      assert(Target.getSimpleValueType() == llvm::MVT::i32);
      SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
      SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
                                      Node->getOperand(0), ZextTarget);
      ReplaceNode(Node, Brind.getNode());
      SelectCode(ZextTarget.getNode());
      SelectCode(Brind.getNode());
      return;
    }
    break;
  }
  case X86ISD::GlobalBaseReg:
    ReplaceNode(Node, getGlobalBaseReg());
    return;

  case ISD::BITCAST:
    // Just drop all 128/256/512-bit bitcasts.
    if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
        NVT == MVT::f128) {
      ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
      CurDAG->RemoveDeadNode(Node);
      return;
    }
    break;

  case ISD::VSELECT: {
    // Replace VSELECT with non-mask conditions with with BLENDV.
    if (Node->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
      break;

    assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
    SDValue Blendv = CurDAG->getNode(
        X86ISD::BLENDV, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
        Node->getOperand(1), Node->getOperand(2));
    ReplaceNode(Node, Blendv.getNode());
    SelectCode(Blendv.getNode());
    // We already called ReplaceUses.
    return;
  }

  case ISD::SRL:
    if (matchBitExtract(Node))
      return;
    LLVM_FALLTHROUGH;
  case ISD::SRA:
  case ISD::SHL:
    if (tryShiftAmountMod(Node))
      return;
    break;

  case ISD::AND:
    if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
      // Try to form a masked VPTESTM. Operands can be in either order.
      SDValue N0 = Node->getOperand(0);
      SDValue N1 = Node->getOperand(1);
      if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
          tryVPTESTM(Node, N0, N1))
        return;
      if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
          tryVPTESTM(Node, N1, N0))
        return;
    }

    if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
      ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
      CurDAG->RemoveDeadNode(Node);
      return;
    }
    if (matchBitExtract(Node))
      return;
    if (AndImmShrink && shrinkAndImmediate(Node))
      return;

    LLVM_FALLTHROUGH;
  case ISD::OR:
  case ISD::XOR:
    if (tryShrinkShlLogicImm(Node))
      return;

    if (Opcode == ISD::OR && tryMatchBitSelect(Node))
      return;

    LLVM_FALLTHROUGH;
  case ISD::ADD:
  case ISD::SUB: {
    if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && NVT.isVector() &&
        combineIncDecVector(Node))
      return;

    // Try to avoid folding immediates with multiple uses for optsize.
    // This code tries to select to register form directly to avoid going
    // through the isel table which might fold the immediate. We can't change
    // the patterns on the add/sub/and/or/xor with immediate paterns in the
    // tablegen files to check immediate use count without making the patterns
    // unavailable to the fast-isel table.
    if (!OptForSize)
      break;

    // Only handle i8/i16/i32/i64.
    if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
      break;

    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
    if (!Cst)
      break;

    int64_t Val = Cst->getSExtValue();

    // Make sure its an immediate that is considered foldable.
    // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
    if (!isInt<8>(Val) && !isInt<32>(Val))
      break;

    // If this can match to INC/DEC, let it go.
    if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
      break;

    // Check if we should avoid folding this immediate.
    if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
      break;

    // We should not fold the immediate. So we need a register form instead.
    unsigned ROpc, MOpc;
    switch (NVT.SimpleTy) {
    default: llvm_unreachable("Unexpected VT!");
    case MVT::i8:
      switch (Opcode) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
      case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
      case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
      case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
      case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
      }
      break;
    case MVT::i16:
      switch (Opcode) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
      case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
      case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
      case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
      case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
      }
      break;
    case MVT::i32:
      switch (Opcode) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
      case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
      case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
      case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
      case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
      }
      break;
    case MVT::i64:
      switch (Opcode) {
      default: llvm_unreachable("Unexpected opcode!");
      case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
      case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
      case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
      case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
      case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
      }
      break;
    }

    // Ok this is a AND/OR/XOR/ADD/SUB with constant.

    // If this is a not a subtract, we can still try to fold a load.
    if (Opcode != ISD::SUB) {
      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
      if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
        SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
        SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
        MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
        // Update the chain.
        ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
        // Record the mem-refs
        CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
        ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
        CurDAG->RemoveDeadNode(Node);
        return;
      }
    }

    CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
    return;
  }

  case X86ISD::SMUL:
    // i16/i32/i64 are handled with isel patterns.
    if (NVT != MVT::i8)
      break;
    LLVM_FALLTHROUGH;
  case X86ISD::UMUL: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    unsigned LoReg, ROpc, MOpc;
    switch (NVT.SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:
      LoReg = X86::AL;
      ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
      MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
      break;
    case MVT::i16:
      LoReg = X86::AX;
      ROpc = X86::MUL16r;
      MOpc = X86::MUL16m;
      break;
    case MVT::i32:
      LoReg = X86::EAX;
      ROpc = X86::MUL32r;
      MOpc = X86::MUL32m;
      break;
    case MVT::i64:
      LoReg = X86::RAX;
      ROpc = X86::MUL64r;
      MOpc = X86::MUL64m;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    // Multiply is commmutative.
    if (!FoldedLoad) {
      FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
      if (FoldedLoad)
        std::swap(N0, N1);
    }

    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
                                          N0, SDValue()).getValue(1);

    MachineSDNode *CNode;
    if (FoldedLoad) {
      // i16/i32/i64 use an instruction that produces a low and high result even
      // though only the low result is used.
      SDVTList VTs;
      if (NVT == MVT::i8)
        VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
      else
        VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);

      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);

      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
      // Record the mem-refs
      CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
    } else {
      // i16/i32/i64 use an instruction that produces a low and high result even
      // though only the low result is used.
      SDVTList VTs;
      if (NVT == MVT::i8)
        VTs = CurDAG->getVTList(NVT, MVT::i32);
      else
        VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);

      CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
    }

    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
    ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
    CurDAG->RemoveDeadNode(Node);
    return;
  }

  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    unsigned Opc, MOpc;
    bool isSigned = Opcode == ISD::SMUL_LOHI;
    if (!isSigned) {
      switch (NVT.SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
      }
    } else {
      switch (NVT.SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
      }
    }

    unsigned SrcReg, LoReg, HiReg;
    switch (Opc) {
    default: llvm_unreachable("Unknown MUL opcode!");
    case X86::IMUL32r:
    case X86::MUL32r:
      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
      break;
    case X86::IMUL64r:
    case X86::MUL64r:
      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    // Multiply is commmutative.
    if (!foldedLoad) {
      foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
      if (foldedLoad)
        std::swap(N0, N1);
    }

    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
                                          N0, SDValue()).getValue(1);
    if (foldedLoad) {
      SDValue Chain;
      MachineSDNode *CNode = nullptr;
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
      CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
      Chain = SDValue(CNode, 0);
      InFlag = SDValue(CNode, 1);

      // Update the chain.
      ReplaceUses(N1.getValue(1), Chain);
      // Record the mem-refs
      CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
    } else {
      SDValue Ops[] = { N1, InFlag };
      SDVTList VTs = CurDAG->getVTList(MVT::Glue);
      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
      InFlag = SDValue(CNode, 0);
    }

    // Copy the low half of the result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      assert(LoReg && "Register for low half is not defined!");
      SDValue ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
                                             NVT, InFlag);
      InFlag = ResLo.getValue(2);
      ReplaceUses(SDValue(Node, 0), ResLo);
      LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
                 dbgs() << '\n');
    }
    // Copy the high half of the result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      assert(HiReg && "Register for high half is not defined!");
      SDValue ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
                                             NVT, InFlag);
      InFlag = ResHi.getValue(2);
      ReplaceUses(SDValue(Node, 1), ResHi);
      LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
                 dbgs() << '\n');
    }

    CurDAG->RemoveDeadNode(Node);
    return;
  }

  case ISD::SDIVREM:
  case ISD::UDIVREM: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    unsigned Opc, MOpc;
    bool isSigned = Opcode == ISD::SDIVREM;
    if (!isSigned) {
      switch (NVT.SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
      }
    } else {
      switch (NVT.SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
      }
    }

    unsigned LoReg, HiReg, ClrReg;
    unsigned SExtOpcode;
    switch (NVT.SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:
      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
      SExtOpcode = 0; // Not used.
      break;
    case MVT::i16:
      LoReg = X86::AX;  HiReg = X86::DX;
      ClrReg = X86::DX;
      SExtOpcode = X86::CWD;
      break;
    case MVT::i32:
      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
      SExtOpcode = X86::CDQ;
      break;
    case MVT::i64:
      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
      SExtOpcode = X86::CQO;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    bool signBitIsZero = CurDAG->SignBitIsZero(N0);

    SDValue InFlag;
    if (NVT == MVT::i8) {
      // Special case for div8, just use a move with zero extension to AX to
      // clear the upper 8 bits (AH).
      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
      MachineSDNode *Move;
      if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
        unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
                                                    : X86::MOVZX16rm8;
        Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
        Chain = SDValue(Move, 1);
        ReplaceUses(N0.getValue(1), Chain);
        // Record the mem-refs
        CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
      } else {
        unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
                                                    : X86::MOVZX16rr8;
        Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
        Chain = CurDAG->getEntryNode();
      }
      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
                                    SDValue());
      InFlag = Chain.getValue(1);
    } else {
      InFlag =
        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
                             LoReg, N0, SDValue()).getValue(1);
      if (isSigned && !signBitIsZero) {
        // Sign extend the low part into the high part.
        InFlag =
          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
      } else {
        // Zero out the high part, effectively zero extending the input.
        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
        switch (NVT.SimpleTy) {
        case MVT::i16:
          ClrNode =
              SDValue(CurDAG->getMachineNode(
                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
                          CurDAG->getTargetConstant(X86::sub_16bit, dl,
                                                    MVT::i32)),
                      0);
          break;
        case MVT::i32:
          break;
        case MVT::i64:
          ClrNode =
              SDValue(CurDAG->getMachineNode(
                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
                          CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
                          CurDAG->getTargetConstant(X86::sub_32bit, dl,
                                                    MVT::i32)),
                      0);
          break;
        default:
          llvm_unreachable("Unexpected division source");
        }

        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
                                      ClrNode, InFlag).getValue(1);
      }
    }

    if (foldedLoad) {
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      MachineSDNode *CNode =
        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
      InFlag = SDValue(CNode, 1);
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
      // Record the mem-refs
      CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
    } else {
      InFlag =
        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
    }

    // Prevent use of AH in a REX instruction by explicitly copying it to
    // an ABCD_L register.
    //
    // The current assumption of the register allocator is that isel
    // won't generate explicit references to the GR8_ABCD_H registers. If
    // the allocator and/or the backend get enhanced to be more robust in
    // that regard, this can be, and should be, removed.
    if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
      SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
      unsigned AHExtOpcode =
          isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;

      SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
                                             MVT::Glue, AHCopy, InFlag);
      SDValue Result(RNode, 0);
      InFlag = SDValue(RNode, 1);

      Result =
          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);

      ReplaceUses(SDValue(Node, 1), Result);
      LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
                 dbgs() << '\n');
    }
    // Copy the division (low) result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                                LoReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 0), Result);
      LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
                 dbgs() << '\n');
    }
    // Copy the remainder (high) result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              HiReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 1), Result);
      LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
                 dbgs() << '\n');
    }
    CurDAG->RemoveDeadNode(Node);
    return;
  }

  case X86ISD::CMP: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    // Optimizations for TEST compares.
    if (!isNullConstant(N1))
      break;

    // Save the original VT of the compare.
    MVT CmpVT = N0.getSimpleValueType();

    // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
    // by a test instruction. The test should be removed later by
    // analyzeCompare if we are using only the zero flag.
    // TODO: Should we check the users and use the BEXTR flags directly?
    if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
      if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
        unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
                                             : X86::TEST32rr;
        SDValue BEXTR = SDValue(NewNode, 0);
        NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
        ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
        CurDAG->RemoveDeadNode(Node);
        return;
      }
    }

    // We can peek through truncates, but we need to be careful below.
    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
      N0 = N0.getOperand(0);

    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
    // use a smaller encoding.
    // Look past the truncate if CMP is the only use of it.
    if (N0.getOpcode() == ISD::AND &&
        N0.getNode()->hasOneUse() &&
        N0.getValueType() != MVT::i8) {
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
      if (!C) break;
      uint64_t Mask = C->getZExtValue();

      // Check if we can replace AND+IMM64 with a shift. This is possible for
      // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
      // flag.
      if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
          onlyUsesZeroFlag(SDValue(Node, 0))) {
        if (isMask_64(~Mask)) {
          unsigned TrailingZeros = countTrailingZeros(Mask);
          SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
          SDValue Shift =
            SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
                                           N0.getOperand(0), Imm), 0);
          MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
                                                       MVT::i32, Shift, Shift);
          ReplaceNode(Node, Test);
          return;
        }
        if (isMask_64(Mask)) {
          unsigned LeadingZeros = countLeadingZeros(Mask);
          SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
          SDValue Shift =
            SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
                                           N0.getOperand(0), Imm), 0);
          MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
                                                       MVT::i32, Shift, Shift);
          ReplaceNode(Node, Test);
          return;
        }
      }

      MVT VT;
      int SubRegOp;
      unsigned ROpc, MOpc;

      // For each of these checks we need to be careful if the sign flag is
      // being used. It is only safe to use the sign flag in two conditions,
      // either the sign bit in the shrunken mask is zero or the final test
      // size is equal to the original compare size.

      if (isUInt<8>(Mask) &&
          (!(Mask & 0x80) || CmpVT == MVT::i8 ||
           hasNoSignFlagUses(SDValue(Node, 0)))) {
        // For example, convert "testl %eax, $8" to "testb %al, $8"
        VT = MVT::i8;
        SubRegOp = X86::sub_8bit;
        ROpc = X86::TEST8ri;
        MOpc = X86::TEST8mi;
      } else if (OptForMinSize && isUInt<16>(Mask) &&
                 (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
                  hasNoSignFlagUses(SDValue(Node, 0)))) {
        // For example, "testl %eax, $32776" to "testw %ax, $32776".
        // NOTE: We only want to form TESTW instructions if optimizing for
        // min size. Otherwise we only save one byte and possibly get a length
        // changing prefix penalty in the decoders.
        VT = MVT::i16;
        SubRegOp = X86::sub_16bit;
        ROpc = X86::TEST16ri;
        MOpc = X86::TEST16mi;
      } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
                 ((!(Mask & 0x80000000) &&
                   // Without minsize 16-bit Cmps can get here so we need to
                   // be sure we calculate the correct sign flag if needed.
                   (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
                  CmpVT == MVT::i32 ||
                  hasNoSignFlagUses(SDValue(Node, 0)))) {
        // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
        // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
        // Otherwize, we find ourselves in a position where we have to do
        // promotion. If previous passes did not promote the and, we assume
        // they had a good reason not to and do not promote here.
        VT = MVT::i32;
        SubRegOp = X86::sub_32bit;
        ROpc = X86::TEST32ri;
        MOpc = X86::TEST32mi;
      } else {
        // No eligible transformation was found.
        break;
      }

      SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
      SDValue Reg = N0.getOperand(0);

      // Emit a testl or testw.
      MachineSDNode *NewNode;
      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
      if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
        if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
          if (!LoadN->isSimple()) {
            unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
            if (MOpc == X86::TEST8mi && NumVolBits != 8)
              break;
            else if (MOpc == X86::TEST16mi && NumVolBits != 16)
              break;
            else if (MOpc == X86::TEST32mi && NumVolBits != 32)
              break;
          }
        }
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
                          Reg.getOperand(0) };
        NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
        // Update the chain.
        ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
        // Record the mem-refs
        CurDAG->setNodeMemRefs(NewNode,
                               {cast<LoadSDNode>(Reg)->getMemOperand()});
      } else {
        // Extract the subregister if necessary.
        if (N0.getValueType() != VT)
          Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);

        NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
      }
      // Replace CMP with TEST.
      ReplaceNode(Node, NewNode);
      return;
    }
    break;
  }
  case X86ISD::PCMPISTR: {
    if (!Subtarget->hasSSE42())
      break;

    bool NeedIndex = !SDValue(Node, 0).use_empty();
    bool NeedMask = !SDValue(Node, 1).use_empty();
    // We can't fold a load if we are going to make two instructions.
    bool MayFoldLoad = !NeedIndex || !NeedMask;

    MachineSDNode *CNode;
    if (NeedMask) {
      unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
      unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
      CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
      ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
    }
    if (NeedIndex || !NeedMask) {
      unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
      unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
      CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
      ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
    }

    // Connect the flag usage to the last instruction created.
    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
    CurDAG->RemoveDeadNode(Node);
    return;
  }
  case X86ISD::PCMPESTR: {
    if (!Subtarget->hasSSE42())
      break;

    // Copy the two implicit register inputs.
    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
                                          Node->getOperand(1),
                                          SDValue()).getValue(1);
    InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
                                  Node->getOperand(3), InFlag).getValue(1);

    bool NeedIndex = !SDValue(Node, 0).use_empty();
    bool NeedMask = !SDValue(Node, 1).use_empty();
    // We can't fold a load if we are going to make two instructions.
    bool MayFoldLoad = !NeedIndex || !NeedMask;

    MachineSDNode *CNode;
    if (NeedMask) {
      unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
      unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
      CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
                           InFlag);
      ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
    }
    if (NeedIndex || !NeedMask) {
      unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
      unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
      CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
      ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
    }
    // Connect the flag usage to the last instruction created.
    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
    CurDAG->RemoveDeadNode(Node);
    return;
  }

  case ISD::SETCC: {
    if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
      return;

    break;
  }

  case ISD::STORE:
    if (foldLoadStoreIntoMemOperand(Node))
      return;
    break;
  }

  SelectCode(Node);
}

bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
                             std::vector<SDValue> &OutOps) {
  SDValue Op0, Op1, Op2, Op3, Op4;
  switch (ConstraintID) {
  default:
    llvm_unreachable("Unexpected asm memory constraint");
  case InlineAsm::Constraint_o: // offsetable        ??
  case InlineAsm::Constraint_v: // not offsetable    ??
  case InlineAsm::Constraint_m: // memory
  case InlineAsm::Constraint_X:
    if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
      return true;
    break;
  }

  OutOps.push_back(Op0);
  OutOps.push_back(Op1);
  OutOps.push_back(Op2);
  OutOps.push_back(Op3);
  OutOps.push_back(Op4);
  return false;
}

/// This pass converts a legalized DAG into a X86-specific DAG,
/// ready for instruction scheduling.
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
                                     CodeGenOpt::Level OptLevel) {
  return new X86DAGToDAGISel(TM, OptLevel);
}