X86CallLowering.cpp 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
//===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
//
//===----------------------------------------------------------------------===//

#include "X86CallLowering.h"
#include "X86CallingConv.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MachineValueType.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

X86CallLowering::X86CallLowering(const X86TargetLowering &TLI)
    : CallLowering(&TLI) {}

bool X86CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
                                        SmallVectorImpl<ArgInfo> &SplitArgs,
                                        const DataLayout &DL,
                                        MachineRegisterInfo &MRI,
                                        SplitArgTy PerformArgSplit) const {
  const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();
  LLVMContext &Context = OrigArg.Ty->getContext();

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
  assert(OrigArg.Regs.size() == 1 && "Can't handle multple regs yet");

  if (OrigArg.Ty->isVoidTy())
    return true;

  EVT VT = SplitVTs[0];
  unsigned NumParts = TLI.getNumRegisters(Context, VT);

  if (NumParts == 1) {
    // replace the original type ( pointer -> GPR ).
    SplitArgs.emplace_back(OrigArg.Regs[0], VT.getTypeForEVT(Context),
                           OrigArg.Flags, OrigArg.IsFixed);
    return true;
  }

  SmallVector<Register, 8> SplitRegs;

  EVT PartVT = TLI.getRegisterType(Context, VT);
  Type *PartTy = PartVT.getTypeForEVT(Context);

  for (unsigned i = 0; i < NumParts; ++i) {
    ArgInfo Info =
        ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*PartTy, DL)),
                PartTy, OrigArg.Flags};
    SplitArgs.push_back(Info);
    SplitRegs.push_back(Info.Regs[0]);
  }

  PerformArgSplit(SplitRegs);
  return true;
}

namespace {

struct OutgoingValueHandler : public CallLowering::ValueHandler {
  OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                       MachineInstrBuilder &MIB, CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
        DL(MIRBuilder.getMF().getDataLayout()),
        STI(MIRBuilder.getMF().getSubtarget<X86Subtarget>()) {}

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0));
    LLT SType = LLT::scalar(DL.getPointerSizeInBits(0));
    Register SPReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildCopy(SPReg, STI.getRegisterInfo()->getStackRegister());

    Register OffsetReg = MRI.createGenericVirtualRegister(SType);
    MIRBuilder.buildConstant(OffsetReg, Offset);

    Register AddrReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildPtrAdd(AddrReg, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);

    Register ExtReg;
    // If we are copying the value to a physical register with the
    // size larger than the size of the value itself - build AnyExt
    // to the size of the register first and only then do the copy.
    // The example of that would be copying from s32 to xmm0, for which
    // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
    // we expect normal extendRegister mechanism to work.
    unsigned PhysRegSize =
        MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
    unsigned ValSize = VA.getValVT().getSizeInBits();
    unsigned LocSize = VA.getLocVT().getSizeInBits();
    if (PhysRegSize > ValSize && LocSize == ValSize) {
      assert((PhysRegSize == 128 || PhysRegSize == 80)  && "We expect that to be 128 bit");
      auto MIB = MIRBuilder.buildAnyExt(LLT::scalar(PhysRegSize), ValVReg);
      ExtReg = MIB->getOperand(0).getReg();
    } else
      ExtReg = extendRegister(ValVReg, VA);

    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    Register ExtReg = extendRegister(ValVReg, VA);
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(),
        /* Alignment */ 1);
    MIRBuilder.buildStore(ExtReg, Addr, *MMO);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
    StackSize = State.getNextStackOffset();

    static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2,
                                           X86::XMM3, X86::XMM4, X86::XMM5,
                                           X86::XMM6, X86::XMM7};
    if (!Info.IsFixed)
      NumXMMRegs = State.getFirstUnallocated(XMMArgRegs);

    return Res;
  }

  uint64_t getStackSize() { return StackSize; }
  uint64_t getNumXmmRegs() { return NumXMMRegs; }

protected:
  MachineInstrBuilder &MIB;
  uint64_t StackSize = 0;
  const DataLayout &DL;
  const X86Subtarget &STI;
  unsigned NumXMMRegs = 0;
};

} // end anonymous namespace

bool X86CallLowering::lowerReturn(
    MachineIRBuilder &MIRBuilder, const Value *Val,
    ArrayRef<Register> VRegs) const {
  assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
         "Return value without a vreg");
  auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0);

  if (!VRegs.empty()) {
    MachineFunction &MF = MIRBuilder.getMF();
    const Function &F = MF.getFunction();
    MachineRegisterInfo &MRI = MF.getRegInfo();
    auto &DL = MF.getDataLayout();
    LLVMContext &Ctx = Val->getType()->getContext();
    const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();

    SmallVector<EVT, 4> SplitEVTs;
    ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
    assert(VRegs.size() == SplitEVTs.size() &&
           "For each split Type there should be exactly one VReg.");

    SmallVector<ArgInfo, 8> SplitArgs;
    for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
      ArgInfo CurArgInfo = ArgInfo{VRegs[i], SplitEVTs[i].getTypeForEVT(Ctx)};
      setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
      if (!splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI,
                             [&](ArrayRef<Register> Regs) {
                               MIRBuilder.buildUnmerge(Regs, VRegs[i]);
                             }))
        return false;
    }

    OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, RetCC_X86);
    if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
      return false;
  }

  MIRBuilder.insertInstr(MIB);
  return true;
}

namespace {

struct IncomingValueHandler : public CallLowering::ValueHandler {
  IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                       CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn),
        DL(MIRBuilder.getMF().getDataLayout()) {}

  bool isIncomingArgumentHandler() const override { return true; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);

    Register AddrReg = MRI.createGenericVirtualRegister(
        LLT::pointer(0, DL.getPointerSizeInBits(0)));
    MIRBuilder.buildFrameIndex(AddrReg, FI);
    return AddrReg;
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
        1);
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);

    switch (VA.getLocInfo()) {
    default: {
      // If we are copying the value from a physical register with the
      // size larger than the size of the value itself - build the copy
      // of the phys reg first and then build the truncation of that copy.
      // The example of that would be copying from xmm0 to s32, for which
      // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
      // we expect this to be handled in SExt/ZExt/AExt case.
      unsigned PhysRegSize =
          MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
      unsigned ValSize = VA.getValVT().getSizeInBits();
      unsigned LocSize = VA.getLocVT().getSizeInBits();
      if (PhysRegSize > ValSize && LocSize == ValSize) {
        auto Copy = MIRBuilder.buildCopy(LLT::scalar(PhysRegSize), PhysReg);
        MIRBuilder.buildTrunc(ValVReg, Copy);
        return;
      }

      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    }
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    }
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

protected:
  const DataLayout &DL;
};

struct FormalArgHandler : public IncomingValueHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
      : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMRI()->addLiveIn(PhysReg);
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public IncomingValueHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    CCAssignFn *AssignFn, MachineInstrBuilder &MIB)
      : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

protected:
  MachineInstrBuilder &MIB;
};

} // end anonymous namespace

bool X86CallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  if (F.arg_empty())
    return true;

  // TODO: handle variadic function
  if (F.isVarArg())
    return false;

  MachineFunction &MF = MIRBuilder.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto DL = MF.getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  unsigned Idx = 0;
  for (auto &Arg : F.args()) {

    // TODO: handle not simple cases.
    if (Arg.hasAttribute(Attribute::ByVal) ||
        Arg.hasAttribute(Attribute::InReg) ||
        Arg.hasAttribute(Attribute::StructRet) ||
        Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1)
      return false;

    ArgInfo OrigArg(VRegs[Idx], Arg.getType());
    setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
    if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
                           [&](ArrayRef<Register> Regs) {
                             MIRBuilder.buildMerge(VRegs[Idx][0], Regs);
                           }))
      return false;
    Idx++;
  }

  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  FormalArgHandler Handler(MIRBuilder, MRI, CC_X86);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);

  return true;
}

bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  const TargetInstrInfo &TII = *STI.getInstrInfo();
  auto TRI = STI.getRegisterInfo();

  // Handle only Linux C, X86_64_SysV calling conventions for now.
  if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C ||
                                Info.CallConv == CallingConv::X86_64_SysV))
    return false;

  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
  auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  bool Is64Bit = STI.is64Bit();
  unsigned CallOpc = Info.Callee.isReg()
                         ? (Is64Bit ? X86::CALL64r : X86::CALL32r)
                         : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);

  auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc)
                 .add(Info.Callee)
                 .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));

  SmallVector<ArgInfo, 8> SplitArgs;
  for (const auto &OrigArg : Info.OrigArgs) {

    // TODO: handle not simple cases.
    if (OrigArg.Flags[0].isByVal())
      return false;

    if (OrigArg.Regs.size() > 1)
      return false;

    if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
                           [&](ArrayRef<Register> Regs) {
                             MIRBuilder.buildUnmerge(Regs, OrigArg.Regs[0]);
                           }))
      return false;
  }
  // Do the actual argument marshalling.
  OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, CC_X86);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed;
  if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) {
    // From AMD64 ABI document:
    // For calls that may call functions that use varargs or stdargs
    // (prototype-less calls or calls to functions containing ellipsis (...) in
    // the declaration) %al is used as hidden argument to specify the number
    // of SSE registers used. The contents of %al do not need to match exactly
    // the number of registers, but must be an ubound on the number of SSE
    // registers used and is in the range 0 - 8 inclusive.

    MIRBuilder.buildInstr(X86::MOV8ri)
        .addDef(X86::AL)
        .addImm(Handler.getNumXmmRegs());
    MIB.addUse(X86::AL, RegState::Implicit);
  }

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.
  if (Info.Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
        0));

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arguments, the physical register must be an
  // implicit-define of the call instruction.

  if (!Info.OrigRet.Ty->isVoidTy()) {
    if (Info.OrigRet.Regs.size() > 1)
      return false;

    SplitArgs.clear();
    SmallVector<Register, 8> NewRegs;

    if (!splitToValueTypes(Info.OrigRet, SplitArgs, DL, MRI,
                           [&](ArrayRef<Register> Regs) {
                             NewRegs.assign(Regs.begin(), Regs.end());
                           }))
      return false;

    CallReturnHandler Handler(MIRBuilder, MRI, RetCC_X86, MIB);
    if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
      return false;

    if (!NewRegs.empty())
      MIRBuilder.buildMerge(Info.OrigRet.Regs[0], NewRegs);
  }

  CallSeqStart.addImm(Handler.getStackSize())
      .addImm(0 /* see getFrameTotalSize */)
      .addImm(0 /* see getFrameAdjustment */);

  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
  MIRBuilder.buildInstr(AdjStackUp)
      .addImm(Handler.getStackSize())
      .addImm(0 /* NumBytesForCalleeToPop */);

  return true;
}