X86AvoidStoreForwardingBlocks.cpp 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
//===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// If a load follows a store and reloads data that the store has written to
// memory, Intel microarchitectures can in many cases forward the data directly
// from the store to the load, This "store forwarding" saves cycles by enabling
// the load to directly obtain the data instead of accessing the data from
// cache or memory.
// A "store forward block" occurs in cases that a store cannot be forwarded to
// the load. The most typical case of store forward block on Intel Core
// microarchitecture that a small store cannot be forwarded to a large load.
// The estimated penalty for a store forward block is ~13 cycles.
//
// This pass tries to recognize and handle cases where "store forward block"
// is created by the compiler when lowering memcpy calls to a sequence
// of a load and a store.
//
// The pass currently only handles cases where memcpy is lowered to
// XMM/YMM registers, it tries to break the memcpy into smaller copies.
// breaking the memcpy should be possible since there is no atomicity
// guarantee for loads and stores to XMM/YMM.
//
// It could be better for performance to solve the problem by loading
// to XMM/YMM then inserting the partial store before storing back from XMM/YMM
// to memory, but this will result in a more conservative optimization since it
// requires we prove that all memory accesses between the blocking store and the
// load must alias/don't alias before we can move the store, whereas the
// transformation done here is correct regardless to other memory accesses.
//===----------------------------------------------------------------------===//

#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"

using namespace llvm;

#define DEBUG_TYPE "x86-avoid-SFB"

static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
    "x86-disable-avoid-SFB", cl::Hidden,
    cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));

static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
    "x86-sfb-inspection-limit",
    cl::desc("X86: Number of instructions backward to "
             "inspect for store forwarding blocks."),
    cl::init(20), cl::Hidden);

namespace {

using DisplacementSizeMap = std::map<int64_t, unsigned>;

class X86AvoidSFBPass : public MachineFunctionPass {
public:
  static char ID;
  X86AvoidSFBPass() : MachineFunctionPass(ID) { }

  StringRef getPassName() const override {
    return "X86 Avoid Store Forwarding Blocks";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    MachineFunctionPass::getAnalysisUsage(AU);
    AU.addRequired<AAResultsWrapperPass>();
  }

private:
  MachineRegisterInfo *MRI = nullptr;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
  SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
      BlockedLoadsStoresPairs;
  SmallVector<MachineInstr *, 2> ForRemoval;
  AliasAnalysis *AA = nullptr;

  /// Returns couples of Load then Store to memory which look
  ///  like a memcpy.
  void findPotentiallylBlockedCopies(MachineFunction &MF);
  /// Break the memcpy's load and store into smaller copies
  /// such that each memory load that was blocked by a smaller store
  /// would now be copied separately.
  void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
                          const DisplacementSizeMap &BlockingStoresDispSizeMap);
  /// Break a copy of size Size to smaller copies.
  void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
                   MachineInstr *StoreInst, int64_t StDispImm,
                   int64_t LMMOffset, int64_t SMMOffset);

  void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
                 MachineInstr *StoreInst, unsigned NStoreOpcode,
                 int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
                 int64_t SMMOffset);

  bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;

  unsigned getRegSizeInBytes(MachineInstr *Inst);
};

} // end anonymous namespace

char X86AvoidSFBPass::ID = 0;

INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
                    false)

FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
  return new X86AvoidSFBPass();
}

static bool isXMMLoadOpcode(unsigned Opcode) {
  return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
         Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
         Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
         Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
         Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
         Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
         Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
         Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
}
static bool isYMMLoadOpcode(unsigned Opcode) {
  return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
         Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
         Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
         Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
         Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
         Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
         Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
}

static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
  return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
}

static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
  switch (LdOpcode) {
  case X86::MOVUPSrm:
  case X86::MOVAPSrm:
    return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
  case X86::VMOVUPSrm:
  case X86::VMOVAPSrm:
    return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
  case X86::VMOVUPDrm:
  case X86::VMOVAPDrm:
    return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
  case X86::VMOVDQUrm:
  case X86::VMOVDQArm:
    return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
  case X86::VMOVUPSZ128rm:
  case X86::VMOVAPSZ128rm:
    return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
  case X86::VMOVUPDZ128rm:
  case X86::VMOVAPDZ128rm:
    return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
  case X86::VMOVUPSYrm:
  case X86::VMOVAPSYrm:
    return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
  case X86::VMOVUPDYrm:
  case X86::VMOVAPDYrm:
    return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
  case X86::VMOVDQUYrm:
  case X86::VMOVDQAYrm:
    return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
  case X86::VMOVUPSZ256rm:
  case X86::VMOVAPSZ256rm:
    return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
  case X86::VMOVUPDZ256rm:
  case X86::VMOVAPDZ256rm:
    return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
  case X86::VMOVDQU64Z128rm:
  case X86::VMOVDQA64Z128rm:
    return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
  case X86::VMOVDQU32Z128rm:
  case X86::VMOVDQA32Z128rm:
    return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
  case X86::VMOVDQU64Z256rm:
  case X86::VMOVDQA64Z256rm:
    return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
  case X86::VMOVDQU32Z256rm:
  case X86::VMOVDQA32Z256rm:
    return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
  default:
    return false;
  }
}

static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
  bool PBlock = false;
  PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
            Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
            Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
            Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
  if (isYMMLoadOpcode(LoadOpcode))
    PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
              Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
              Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
              Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
              Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
              Opcode == X86::VMOVDQU64Z128mr ||
              Opcode == X86::VMOVDQA64Z128mr ||
              Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
  return PBlock;
}

static const int MOV128SZ = 16;
static const int MOV64SZ = 8;
static const int MOV32SZ = 4;
static const int MOV16SZ = 2;
static const int MOV8SZ = 1;

static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
  switch (LoadOpcode) {
  case X86::VMOVUPSYrm:
  case X86::VMOVAPSYrm:
    return X86::VMOVUPSrm;
  case X86::VMOVUPDYrm:
  case X86::VMOVAPDYrm:
    return X86::VMOVUPDrm;
  case X86::VMOVDQUYrm:
  case X86::VMOVDQAYrm:
    return X86::VMOVDQUrm;
  case X86::VMOVUPSZ256rm:
  case X86::VMOVAPSZ256rm:
    return X86::VMOVUPSZ128rm;
  case X86::VMOVUPDZ256rm:
  case X86::VMOVAPDZ256rm:
    return X86::VMOVUPDZ128rm;
  case X86::VMOVDQU64Z256rm:
  case X86::VMOVDQA64Z256rm:
    return X86::VMOVDQU64Z128rm;
  case X86::VMOVDQU32Z256rm:
  case X86::VMOVDQA32Z256rm:
    return X86::VMOVDQU32Z128rm;
  default:
    llvm_unreachable("Unexpected Load Instruction Opcode");
  }
  return 0;
}

static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
  switch (StoreOpcode) {
  case X86::VMOVUPSYmr:
  case X86::VMOVAPSYmr:
    return X86::VMOVUPSmr;
  case X86::VMOVUPDYmr:
  case X86::VMOVAPDYmr:
    return X86::VMOVUPDmr;
  case X86::VMOVDQUYmr:
  case X86::VMOVDQAYmr:
    return X86::VMOVDQUmr;
  case X86::VMOVUPSZ256mr:
  case X86::VMOVAPSZ256mr:
    return X86::VMOVUPSZ128mr;
  case X86::VMOVUPDZ256mr:
  case X86::VMOVAPDZ256mr:
    return X86::VMOVUPDZ128mr;
  case X86::VMOVDQU64Z256mr:
  case X86::VMOVDQA64Z256mr:
    return X86::VMOVDQU64Z128mr;
  case X86::VMOVDQU32Z256mr:
  case X86::VMOVDQA32Z256mr:
    return X86::VMOVDQU32Z128mr;
  default:
    llvm_unreachable("Unexpected Load Instruction Opcode");
  }
  return 0;
}

static int getAddrOffset(MachineInstr *MI) {
  const MCInstrDesc &Descl = MI->getDesc();
  int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
  assert(AddrOffset != -1 && "Expected Memory Operand");
  AddrOffset += X86II::getOperandBias(Descl);
  return AddrOffset;
}

static MachineOperand &getBaseOperand(MachineInstr *MI) {
  int AddrOffset = getAddrOffset(MI);
  return MI->getOperand(AddrOffset + X86::AddrBaseReg);
}

static MachineOperand &getDispOperand(MachineInstr *MI) {
  int AddrOffset = getAddrOffset(MI);
  return MI->getOperand(AddrOffset + X86::AddrDisp);
}

// Relevant addressing modes contain only base register and immediate
// displacement or frameindex and immediate displacement.
// TODO: Consider expanding to other addressing modes in the future
static bool isRelevantAddressingMode(MachineInstr *MI) {
  int AddrOffset = getAddrOffset(MI);
  MachineOperand &Base = getBaseOperand(MI);
  MachineOperand &Disp = getDispOperand(MI);
  MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
  MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
  MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);

  if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
    return false;
  if (!Disp.isImm())
    return false;
  if (Scale.getImm() != 1)
    return false;
  if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
    return false;
  if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
    return false;
  return true;
}

// Collect potentially blocking stores.
// Limit the number of instructions backwards we want to inspect
// since the effect of store block won't be visible if the store
// and load instructions have enough instructions in between to
// keep the core busy.
static SmallVector<MachineInstr *, 2>
findPotentialBlockers(MachineInstr *LoadInst) {
  SmallVector<MachineInstr *, 2> PotentialBlockers;
  unsigned BlockCount = 0;
  const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
  for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
            E = LoadInst->getParent()->rend();
       PBInst != E; ++PBInst) {
    if (PBInst->isMetaInstruction())
      continue;
    BlockCount++;
    if (BlockCount >= InspectionLimit)
      break;
    MachineInstr &MI = *PBInst;
    if (MI.getDesc().isCall())
      return PotentialBlockers;
    PotentialBlockers.push_back(&MI);
  }
  // If we didn't get to the instructions limit try predecessing blocks.
  // Ideally we should traverse the predecessor blocks in depth with some
  // coloring algorithm, but for now let's just look at the first order
  // predecessors.
  if (BlockCount < InspectionLimit) {
    MachineBasicBlock *MBB = LoadInst->getParent();
    int LimitLeft = InspectionLimit - BlockCount;
    for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
                                          PE = MBB->pred_end();
         PB != PE; ++PB) {
      MachineBasicBlock *PMBB = *PB;
      int PredCount = 0;
      for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
                                               PME = PMBB->rend();
           PBInst != PME; ++PBInst) {
        if (PBInst->isMetaInstruction())
          continue;
        PredCount++;
        if (PredCount >= LimitLeft)
          break;
        if (PBInst->getDesc().isCall())
          break;
        PotentialBlockers.push_back(&*PBInst);
      }
    }
  }
  return PotentialBlockers;
}

void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
                                int64_t LoadDisp, MachineInstr *StoreInst,
                                unsigned NStoreOpcode, int64_t StoreDisp,
                                unsigned Size, int64_t LMMOffset,
                                int64_t SMMOffset) {
  MachineOperand &LoadBase = getBaseOperand(LoadInst);
  MachineOperand &StoreBase = getBaseOperand(StoreInst);
  MachineBasicBlock *MBB = LoadInst->getParent();
  MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
  MachineMemOperand *SMMO = *StoreInst->memoperands_begin();

  Register Reg1 = MRI->createVirtualRegister(
      TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
  MachineInstr *NewLoad =
      BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
              Reg1)
          .add(LoadBase)
          .addImm(1)
          .addReg(X86::NoRegister)
          .addImm(LoadDisp)
          .addReg(X86::NoRegister)
          .addMemOperand(
              MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
  if (LoadBase.isReg())
    getBaseOperand(NewLoad).setIsKill(false);
  LLVM_DEBUG(NewLoad->dump());
  // If the load and store are consecutive, use the loadInst location to
  // reduce register pressure.
  MachineInstr *StInst = StoreInst;
  auto PrevInstrIt = skipDebugInstructionsBackward(
      std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
      MBB->instr_begin());
  if (PrevInstrIt.getNodePtr() == LoadInst)
    StInst = LoadInst;
  MachineInstr *NewStore =
      BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
          .add(StoreBase)
          .addImm(1)
          .addReg(X86::NoRegister)
          .addImm(StoreDisp)
          .addReg(X86::NoRegister)
          .addReg(Reg1)
          .addMemOperand(
              MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
  if (StoreBase.isReg())
    getBaseOperand(NewStore).setIsKill(false);
  MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
  assert(StoreSrcVReg.isReg() && "Expected virtual register");
  NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
  LLVM_DEBUG(NewStore->dump());
}

void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
                                  int64_t LdDispImm, MachineInstr *StoreInst,
                                  int64_t StDispImm, int64_t LMMOffset,
                                  int64_t SMMOffset) {
  int LdDisp = LdDispImm;
  int StDisp = StDispImm;
  while (Size > 0) {
    if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
      Size = Size - MOV128SZ;
      buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
                StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
                StDisp, MOV128SZ, LMMOffset, SMMOffset);
      LdDisp += MOV128SZ;
      StDisp += MOV128SZ;
      LMMOffset += MOV128SZ;
      SMMOffset += MOV128SZ;
      continue;
    }
    if (Size - MOV64SZ >= 0) {
      Size = Size - MOV64SZ;
      buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
                MOV64SZ, LMMOffset, SMMOffset);
      LdDisp += MOV64SZ;
      StDisp += MOV64SZ;
      LMMOffset += MOV64SZ;
      SMMOffset += MOV64SZ;
      continue;
    }
    if (Size - MOV32SZ >= 0) {
      Size = Size - MOV32SZ;
      buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
                MOV32SZ, LMMOffset, SMMOffset);
      LdDisp += MOV32SZ;
      StDisp += MOV32SZ;
      LMMOffset += MOV32SZ;
      SMMOffset += MOV32SZ;
      continue;
    }
    if (Size - MOV16SZ >= 0) {
      Size = Size - MOV16SZ;
      buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
                MOV16SZ, LMMOffset, SMMOffset);
      LdDisp += MOV16SZ;
      StDisp += MOV16SZ;
      LMMOffset += MOV16SZ;
      SMMOffset += MOV16SZ;
      continue;
    }
    if (Size - MOV8SZ >= 0) {
      Size = Size - MOV8SZ;
      buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
                MOV8SZ, LMMOffset, SMMOffset);
      LdDisp += MOV8SZ;
      StDisp += MOV8SZ;
      LMMOffset += MOV8SZ;
      SMMOffset += MOV8SZ;
      continue;
    }
  }
  assert(Size == 0 && "Wrong size division");
}

static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
  MachineOperand &LoadBase = getBaseOperand(LoadInst);
  MachineOperand &StoreBase = getBaseOperand(StoreInst);
  auto StorePrevNonDbgInstr = skipDebugInstructionsBackward(
          std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
          LoadInst->getParent()->instr_begin()).getNodePtr();
  if (LoadBase.isReg()) {
    MachineInstr *LastLoad = LoadInst->getPrevNode();
    // If the original load and store to xmm/ymm were consecutive
    // then the partial copies were also created in
    // a consecutive order to reduce register pressure,
    // and the location of the last load is before the last store.
    if (StorePrevNonDbgInstr == LoadInst)
      LastLoad = LoadInst->getPrevNode()->getPrevNode();
    getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
  }
  if (StoreBase.isReg()) {
    MachineInstr *StInst = StoreInst;
    if (StorePrevNonDbgInstr == LoadInst)
      StInst = LoadInst;
    getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
  }
}

bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
                            const MachineMemOperand &Op2) const {
  if (!Op1.getValue() || !Op2.getValue())
    return true;

  int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
  int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
  int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;

  AliasResult AAResult =
      AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
                MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
  return AAResult != NoAlias;
}

void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
  for (auto &MBB : MF)
    for (auto &MI : MBB) {
      if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
        continue;
      int DefVR = MI.getOperand(0).getReg();
      if (!MRI->hasOneNonDBGUse(DefVR))
        continue;
      for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
           UI != UE;) {
        MachineOperand &StoreMO = *UI++;
        MachineInstr &StoreMI = *StoreMO.getParent();
        // Skip cases where the memcpy may overlap.
        if (StoreMI.getParent() == MI.getParent() &&
            isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
            isRelevantAddressingMode(&MI) &&
            isRelevantAddressingMode(&StoreMI)) {
          assert(MI.hasOneMemOperand() &&
                 "Expected one memory operand for load instruction");
          assert(StoreMI.hasOneMemOperand() &&
                 "Expected one memory operand for store instruction");
          if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
            BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
        }
      }
    }
}

unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
  auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
                              *LoadInst->getParent()->getParent());
  return TRI->getRegSizeInBits(*TRC) / 8;
}

void X86AvoidSFBPass::breakBlockedCopies(
    MachineInstr *LoadInst, MachineInstr *StoreInst,
    const DisplacementSizeMap &BlockingStoresDispSizeMap) {
  int64_t LdDispImm = getDispOperand(LoadInst).getImm();
  int64_t StDispImm = getDispOperand(StoreInst).getImm();
  int64_t LMMOffset = 0;
  int64_t SMMOffset = 0;

  int64_t LdDisp1 = LdDispImm;
  int64_t LdDisp2 = 0;
  int64_t StDisp1 = StDispImm;
  int64_t StDisp2 = 0;
  unsigned Size1 = 0;
  unsigned Size2 = 0;
  int64_t LdStDelta = StDispImm - LdDispImm;

  for (auto DispSizePair : BlockingStoresDispSizeMap) {
    LdDisp2 = DispSizePair.first;
    StDisp2 = DispSizePair.first + LdStDelta;
    Size2 = DispSizePair.second;
    // Avoid copying overlapping areas.
    if (LdDisp2 < LdDisp1) {
      int OverlapDelta = LdDisp1 - LdDisp2;
      LdDisp2 += OverlapDelta;
      StDisp2 += OverlapDelta;
      Size2 -= OverlapDelta;
    }
    Size1 = LdDisp2 - LdDisp1;

    // Build a copy for the point until the current blocking store's
    // displacement.
    buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
                SMMOffset);
    // Build a copy for the current blocking store.
    buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
                SMMOffset + Size1);
    LdDisp1 = LdDisp2 + Size2;
    StDisp1 = StDisp2 + Size2;
    LMMOffset += Size1 + Size2;
    SMMOffset += Size1 + Size2;
  }
  unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
  buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
              LMMOffset);
}

static bool hasSameBaseOpValue(MachineInstr *LoadInst,
                               MachineInstr *StoreInst) {
  MachineOperand &LoadBase = getBaseOperand(LoadInst);
  MachineOperand &StoreBase = getBaseOperand(StoreInst);
  if (LoadBase.isReg() != StoreBase.isReg())
    return false;
  if (LoadBase.isReg())
    return LoadBase.getReg() == StoreBase.getReg();
  return LoadBase.getIndex() == StoreBase.getIndex();
}

static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
                            int64_t StoreDispImm, unsigned StoreSize) {
  return ((StoreDispImm >= LoadDispImm) &&
          (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
}

// Keep track of all stores blocking a load
static void
updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
                                int64_t DispImm, unsigned Size) {
  if (BlockingStoresDispSizeMap.count(DispImm)) {
    // Choose the smallest blocking store starting at this displacement.
    if (BlockingStoresDispSizeMap[DispImm] > Size)
      BlockingStoresDispSizeMap[DispImm] = Size;

  } else
    BlockingStoresDispSizeMap[DispImm] = Size;
}

// Remove blocking stores contained in each other.
static void
removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
  if (BlockingStoresDispSizeMap.size() <= 1)
    return;

  SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
  for (auto DispSizePair : BlockingStoresDispSizeMap) {
    int64_t CurrDisp = DispSizePair.first;
    unsigned CurrSize = DispSizePair.second;
    while (DispSizeStack.size()) {
      int64_t PrevDisp = DispSizeStack.back().first;
      unsigned PrevSize = DispSizeStack.back().second;
      if (CurrDisp + CurrSize > PrevDisp + PrevSize)
        break;
      DispSizeStack.pop_back();
    }
    DispSizeStack.push_back(DispSizePair);
  }
  BlockingStoresDispSizeMap.clear();
  for (auto Disp : DispSizeStack)
    BlockingStoresDispSizeMap.insert(Disp);
}

bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
      !MF.getSubtarget<X86Subtarget>().is64Bit())
    return false;

  MRI = &MF.getRegInfo();
  assert(MRI->isSSA() && "Expected MIR to be in SSA form");
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
  // Look for a load then a store to XMM/YMM which look like a memcpy
  findPotentiallylBlockedCopies(MF);

  for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
    MachineInstr *LoadInst = LoadStoreInstPair.first;
    int64_t LdDispImm = getDispOperand(LoadInst).getImm();
    DisplacementSizeMap BlockingStoresDispSizeMap;

    SmallVector<MachineInstr *, 2> PotentialBlockers =
        findPotentialBlockers(LoadInst);
    for (auto PBInst : PotentialBlockers) {
      if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
                                        LoadInst->getOpcode()) ||
          !isRelevantAddressingMode(PBInst))
        continue;
      int64_t PBstDispImm = getDispOperand(PBInst).getImm();
      assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
      unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
      // This check doesn't cover all cases, but it will suffice for now.
      // TODO: take branch probability into consideration, if the blocking
      // store is in an unreached block, breaking the memcopy could lose
      // performance.
      if (hasSameBaseOpValue(LoadInst, PBInst) &&
          isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
                          PBstSize))
        updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
                                        PBstSize);
    }

    if (BlockingStoresDispSizeMap.empty())
      continue;

    // We found a store forward block, break the memcpy's load and store
    // into smaller copies such that each smaller store that was causing
    // a store block would now be copied separately.
    MachineInstr *StoreInst = LoadStoreInstPair.second;
    LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
    LLVM_DEBUG(LoadInst->dump());
    LLVM_DEBUG(StoreInst->dump());
    LLVM_DEBUG(dbgs() << "Replaced with:\n");
    removeRedundantBlockingStores(BlockingStoresDispSizeMap);
    breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
    updateKillStatus(LoadInst, StoreInst);
    ForRemoval.push_back(LoadInst);
    ForRemoval.push_back(StoreInst);
  }
  for (auto RemovedInst : ForRemoval) {
    RemovedInst->eraseFromParent();
  }
  ForRemoval.clear();
  BlockedLoadsStoresPairs.clear();
  LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);

  return Changed;
}