X86ShuffleDecode.cpp
20 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics into a
// generic vector mask.
//
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecode.h"
#include "llvm/ADT/ArrayRef.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
// Defaults the copying the dest value.
ShuffleMask.push_back(0);
ShuffleMask.push_back(1);
ShuffleMask.push_back(2);
ShuffleMask.push_back(3);
// Decode the immediate.
unsigned ZMask = Imm & 15;
unsigned CountD = (Imm >> 4) & 3;
unsigned CountS = (Imm >> 6) & 3;
// CountS selects which input element to use.
unsigned InVal = 4 + CountS;
// CountD specifies which element of destination to update.
ShuffleMask[CountD] = InVal;
// ZMask zaps values, potentially overriding the CountD elt.
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
}
void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
SmallVectorImpl<int> &ShuffleMask) {
assert((Idx + Len) <= NumElts && "Insertion out of range");
for (unsigned i = 0; i != NumElts; ++i)
ShuffleMask.push_back(i);
for (unsigned i = 0; i != Len; ++i)
ShuffleMask[Idx + i] = NumElts + i;
}
// <3,1> or <6,7,2,3>
void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = NElts / 2; i != NElts; ++i)
ShuffleMask.push_back(NElts + i);
for (unsigned i = NElts / 2; i != NElts; ++i)
ShuffleMask.push_back(i);
}
// <0,2> or <0,1,4,5>
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i != NElts / 2; ++i)
ShuffleMask.push_back(i);
for (unsigned i = 0; i != NElts / 2; ++i)
ShuffleMask.push_back(NElts + i);
}
void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
for (int i = 0, e = NumElts / 2; i < e; ++i) {
ShuffleMask.push_back(2 * i);
ShuffleMask.push_back(2 * i);
}
}
void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
for (int i = 0, e = NumElts / 2; i < e; ++i) {
ShuffleMask.push_back(2 * i + 1);
ShuffleMask.push_back(2 * i + 1);
}
}
void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
const unsigned NumLaneElts = 2;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; ++i)
ShuffleMask.push_back(l);
}
void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
const unsigned NumLaneElts = 16;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; ++i) {
int M = SM_SentinelZero;
if (i >= Imm) M = i - Imm + l;
ShuffleMask.push_back(M);
}
}
void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
const unsigned NumLaneElts = 16;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; ++i) {
unsigned Base = i + Imm;
int M = Base + l;
if (Base >= NumLaneElts) M = SM_SentinelZero;
ShuffleMask.push_back(M);
}
}
void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
const unsigned NumLaneElts = 16;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
unsigned Base = i + Imm;
// if i+imm is out of this lane then we actually need the other source
if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
ShuffleMask.push_back(Base + l);
}
}
}
void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
// Not all bits of the immediate are used so mask it.
assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
Imm = Imm & (NumElts - 1);
for (unsigned i = 0; i != NumElts; ++i)
ShuffleMask.push_back(i + Imm);
}
/// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
/// VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned Size = NumElts * ScalarBits;
unsigned NumLanes = Size / 128;
if (NumLanes == 0) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
ShuffleMask.push_back(SplatImm % NumLaneElts + l);
SplatImm /= NumLaneElts;
}
}
}
void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + 4 + (NewImm & 3));
NewImm >>= 2;
}
}
}
void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + (NewImm & 3));
NewImm >>= 2;
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
}
}
void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumHalfElts = NumElts / 2;
for (unsigned l = 0; l != NumHalfElts; ++l)
ShuffleMask.push_back(l + NumHalfElts);
for (unsigned h = 0; h != NumHalfElts; ++h)
ShuffleMask.push_back(h);
}
/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
/// the type of the vector allowing it to handle different datatypes and vector
/// widths.
void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumLaneElts = 128 / ScalarBits;
unsigned NewImm = Imm;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
// each half of a lane comes from different source
for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
NewImm /= NumLaneElts;
}
}
if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
/// and punpckh*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
SmallVectorImpl<int> &ShuffleMask) {
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = (NumElts * ScalarBits) / 128;
if (NumLanes == 0) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
}
}
}
/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// and punpckl*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
SmallVectorImpl<int> &ShuffleMask) {
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = (NumElts * ScalarBits) / 128;
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i + NumElts); // Reads from src/src2
}
}
}
/// Decodes a broadcast of the first element of a vector.
void DecodeVectorBroadcast(unsigned NumElts,
SmallVectorImpl<int> &ShuffleMask) {
ShuffleMask.append(NumElts, 0);
}
/// Decodes a broadcast of a subvector to a larger vector type.
void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
SmallVectorImpl<int> &ShuffleMask) {
unsigned Scale = DstNumElts / SrcNumElts;
for (unsigned i = 0; i != Scale; ++i)
for (unsigned j = 0; j != SrcNumElts; ++j)
ShuffleMask.push_back(j);
}
/// Decode a shuffle packed values at 128-bit granularity
/// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
/// immediate mask into a shuffle mask.
void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElementsInLane = 128 / ScalarSize;
unsigned NumLanes = NumElts / NumElementsInLane;
for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
unsigned Index = (Imm % NumLanes) * NumElementsInLane;
Imm /= NumLanes; // Discard the bits we just used.
// We actually need the other source.
if (l >= (NumElts / 2))
Index += NumElts;
for (unsigned i = 0; i != NumElementsInLane; ++i)
ShuffleMask.push_back(Index + i);
}
}
void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned HalfSize = NumElts / 2;
for (unsigned l = 0; l != 2; ++l) {
unsigned HalfMask = Imm >> (l * 4);
unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i);
}
}
void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
for (int i = 0, e = RawMask.size(); i < e; ++i) {
uint64_t M = RawMask[i];
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
// For 256/512-bit vectors the base of the shuffle is the 128-bit
// subvector we're inside.
int Base = (i / 16) * 16;
// If the high bit (7) of the byte is set, the element is zeroed.
if (M & (1 << 7))
ShuffleMask.push_back(SM_SentinelZero);
else {
// Only the least significant 4 bits of the byte are used.
int Index = Base + (M & 0xf);
ShuffleMask.push_back(Index);
}
}
}
void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i < NumElts; ++i) {
// If there are more than 8 elements in the vector, then any immediate blend
// mask wraps around.
unsigned Bit = i % 8;
ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i);
}
}
void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
// VPPERM Operation
// Bits[4:0] - Byte Index (0 - 31)
// Bits[7:5] - Permute Operation
//
// Permute Operation:
// 0 - Source byte (no logical operation).
// 1 - Invert source byte.
// 2 - Bit reverse of source byte.
// 3 - Bit reverse of inverted source byte.
// 4 - 00h (zero - fill).
// 5 - FFh (ones - fill).
// 6 - Most significant bit of source byte replicated in all bit positions.
// 7 - Invert most significant bit of source byte and replicate in all bit positions.
for (int i = 0, e = RawMask.size(); i < e; ++i) {
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t M = RawMask[i];
uint64_t PermuteOp = (M >> 5) & 0x7;
if (PermuteOp == 4) {
ShuffleMask.push_back(SM_SentinelZero);
continue;
}
if (PermuteOp != 0) {
ShuffleMask.clear();
return;
}
uint64_t Index = M & 0x1F;
ShuffleMask.push_back((int)Index);
}
}
/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
for (unsigned l = 0; l != NumElts; l += 4)
for (unsigned i = 0; i != 4; ++i)
ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3));
}
void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
unsigned NumDstElts, bool IsAnyExtend,
SmallVectorImpl<int> &Mask) {
unsigned Scale = DstScalarBits / SrcScalarBits;
assert(SrcScalarBits < DstScalarBits &&
"Expected zero extension mask to increase scalar size");
for (unsigned i = 0; i != NumDstElts; i++) {
Mask.push_back(i);
for (unsigned j = 1; j != Scale; j++)
Mask.push_back(IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero);
}
}
void DecodeZeroMoveLowMask(unsigned NumElts,
SmallVectorImpl<int> &ShuffleMask) {
ShuffleMask.push_back(0);
for (unsigned i = 1; i < NumElts; i++)
ShuffleMask.push_back(SM_SentinelZero);
}
void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
SmallVectorImpl<int> &Mask) {
// First element comes from the first element of second source.
// Remaining elements: Load zero extends / Move copies from first source.
Mask.push_back(NumElts);
for (unsigned i = 1; i < NumElts; i++)
Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
}
void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
SmallVectorImpl<int> &ShuffleMask) {
unsigned HalfElts = NumElts / 2;
// Only the bottom 6 bits are valid for each immediate.
Len &= 0x3F;
Idx &= 0x3F;
// We can only decode this bit extraction instruction as a shuffle if both the
// length and index work with whole elements.
if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
return;
// A length of zero is equivalent to a bit length of 64.
if (Len == 0)
Len = 64;
// If the length + index exceeds the bottom 64 bits the result is undefined.
if ((Len + Idx) > 64) {
ShuffleMask.append(NumElts, SM_SentinelUndef);
return;
}
// Convert index and index to work with elements.
Len /= EltSize;
Idx /= EltSize;
// EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
// elements of the lower 64-bits. The upper 64-bits are undefined.
for (int i = 0; i != Len; ++i)
ShuffleMask.push_back(i + Idx);
for (int i = Len; i != (int)HalfElts; ++i)
ShuffleMask.push_back(SM_SentinelZero);
for (int i = HalfElts; i != (int)NumElts; ++i)
ShuffleMask.push_back(SM_SentinelUndef);
}
void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
SmallVectorImpl<int> &ShuffleMask) {
unsigned HalfElts = NumElts / 2;
// Only the bottom 6 bits are valid for each immediate.
Len &= 0x3F;
Idx &= 0x3F;
// We can only decode this bit insertion instruction as a shuffle if both the
// length and index work with whole elements.
if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
return;
// A length of zero is equivalent to a bit length of 64.
if (Len == 0)
Len = 64;
// If the length + index exceeds the bottom 64 bits the result is undefined.
if ((Len + Idx) > 64) {
ShuffleMask.append(NumElts, SM_SentinelUndef);
return;
}
// Convert index and index to work with elements.
Len /= EltSize;
Idx /= EltSize;
// INSERTQ: Extract lowest Len elements from lower half of second source and
// insert over first source starting at Idx element. The upper 64-bits are
// undefined.
for (int i = 0; i != Idx; ++i)
ShuffleMask.push_back(i);
for (int i = 0; i != Len; ++i)
ShuffleMask.push_back(i + NumElts);
for (int i = Idx + Len; i != (int)HalfElts; ++i)
ShuffleMask.push_back(i);
for (int i = HalfElts; i != (int)NumElts; ++i)
ShuffleMask.push_back(SM_SentinelUndef);
}
void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
unsigned VecSize = NumElts * ScalarBits;
unsigned NumLanes = VecSize / 128;
unsigned NumEltsPerLane = NumElts / NumLanes;
assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
"Unexpected vector size");
assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t M = RawMask[i];
M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
ShuffleMask.push_back((int)(LaneOffset + M));
}
}
void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
unsigned VecSize = NumElts * ScalarBits;
unsigned NumLanes = VecSize / 128;
unsigned NumEltsPerLane = NumElts / NumLanes;
assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
assert((NumElts == RawMask.size()) && "Unexpected mask size");
for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
// VPERMIL2 Operation.
// Bits[3] - Match Bit.
// Bits[2:1] - (Per Lane) PD Shuffle Mask.
// Bits[2:0] - (Per Lane) PS Shuffle Mask.
uint64_t Selector = RawMask[i];
unsigned MatchBit = (Selector >> 3) & 0x1;
// M2Z[0:1] MatchBit
// 0Xb X Source selected by Selector index.
// 10b 0 Source selected by Selector index.
// 10b 1 Zero.
// 11b 0 Zero.
// 11b 1 Source selected by Selector index.
if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
ShuffleMask.push_back(SM_SentinelZero);
continue;
}
int Index = i & ~(NumEltsPerLane - 1);
if (ScalarBits == 64)
Index += (Selector >> 1) & 0x1;
else
Index += Selector & 0x3;
int Src = (Selector >> 2) & 0x1;
Index += Src * NumElts;
ShuffleMask.push_back(Index);
}
}
void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
uint64_t EltMaskSize = RawMask.size() - 1;
for (int i = 0, e = RawMask.size(); i != e; ++i) {
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t M = RawMask[i];
M &= EltMaskSize;
ShuffleMask.push_back((int)M);
}
}
void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
SmallVectorImpl<int> &ShuffleMask) {
uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
for (int i = 0, e = RawMask.size(); i != e; ++i) {
if (UndefElts[i]) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t M = RawMask[i];
M &= EltMaskSize;
ShuffleMask.push_back((int)M);
}
}
} // llvm namespace