X86AsmBackend.cpp 41.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
/// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind
class X86AlignBranchKind {
private:
  uint8_t AlignBranchKind = 0;

public:
  void operator=(const std::string &Val) {
    if (Val.empty())
      return;
    SmallVector<StringRef, 6> BranchTypes;
    StringRef(Val).split(BranchTypes, '+', -1, false);
    for (auto BranchType : BranchTypes) {
      if (BranchType == "fused")
        addKind(X86::AlignBranchFused);
      else if (BranchType == "jcc")
        addKind(X86::AlignBranchJcc);
      else if (BranchType == "jmp")
        addKind(X86::AlignBranchJmp);
      else if (BranchType == "call")
        addKind(X86::AlignBranchCall);
      else if (BranchType == "ret")
        addKind(X86::AlignBranchRet);
      else if (BranchType == "indirect")
        addKind(X86::AlignBranchIndirect);
      else {
        report_fatal_error(
            "'-x86-align-branch 'The branches's type is combination of jcc, "
            "fused, jmp, call, ret, indirect.(plus separated)",
            false);
      }
    }
  }

  operator uint8_t() const { return AlignBranchKind; }
  void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; }
};

X86AlignBranchKind X86AlignBranchKindLoc;

cl::opt<unsigned> X86AlignBranchBoundary(
    "x86-align-branch-boundary", cl::init(0),
    cl::desc(
        "Control how the assembler should align branches with NOP. If the "
        "boundary's size is not 0, it should be a power of 2 and no less "
        "than 32. Branches will be aligned to prevent from being across or "
        "against the boundary of specified size. The default value 0 does not "
        "align branches."));

cl::opt<X86AlignBranchKind, true, cl::parser<std::string>> X86AlignBranch(
    "x86-align-branch",
    cl::desc(
        "Specify types of branches to align. The branches's types are "
        "combination of jcc, fused, jmp, call, ret, indirect. jcc indicates "
        "conditional jumps, fused indicates fused conditional jumps, jmp "
        "indicates unconditional jumps, call indicates direct and indirect "
        "calls, ret indicates rets, indirect indicates indirect jumps."),
    cl::value_desc("(plus separated list of types)"),
    cl::location(X86AlignBranchKindLoc));

cl::opt<bool> X86AlignBranchWithin32BBoundaries(
    "x86-branches-within-32B-boundaries", cl::init(false),
    cl::desc(
        "Align selected instructions to mitigate negative performance impact "
        "of Intel's micro code update for errata skx102.  May break "
        "assumptions about labels corresponding to particular instructions, "
        "and should be used with caution."));

class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
                     bool HasRelocationAddend, bool foobar)
    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
};

class X86AsmBackend : public MCAsmBackend {
  const MCSubtargetInfo &STI;
  std::unique_ptr<const MCInstrInfo> MCII;
  X86AlignBranchKind AlignBranchType;
  Align AlignBoundary;

  bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const;

  bool needAlign(MCObjectStreamer &OS) const;
  bool needAlignInst(const MCInst &Inst) const;
  MCBoundaryAlignFragment *
  getOrCreateBoundaryAlignFragment(MCObjectStreamer &OS) const;
  MCInst PrevInst;

public:
  X86AsmBackend(const Target &T, const MCSubtargetInfo &STI)
      : MCAsmBackend(support::little), STI(STI),
        MCII(T.createMCInstrInfo()) {
    if (X86AlignBranchWithin32BBoundaries) {
      // At the moment, this defaults to aligning fused branches, unconditional
      // jumps, and (unfused) conditional jumps with nops.  Both the
      // instructions aligned and the alignment method (nop vs prefix) may
      // change in the future.
      AlignBoundary = assumeAligned(32);;
      AlignBranchType.addKind(X86::AlignBranchFused);
      AlignBranchType.addKind(X86::AlignBranchJcc);
      AlignBranchType.addKind(X86::AlignBranchJmp);
    }
    // Allow overriding defaults set by master flag
    if (X86AlignBranchBoundary.getNumOccurrences())
      AlignBoundary = assumeAligned(X86AlignBranchBoundary);
    if (X86AlignBranch.getNumOccurrences())
      AlignBranchType = X86AlignBranchKindLoc;
  }

  bool allowAutoPadding() const override;
  void alignBranchesBegin(MCObjectStreamer &OS, const MCInst &Inst) override;
  void alignBranchesEnd(MCObjectStreamer &OS, const MCInst &Inst) override;

  unsigned getNumFixupKinds() const override {
    return X86::NumTargetFixupKinds;
  }

  Optional<MCFixupKind> getFixupKind(StringRef Name) const override;

  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
  
  bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
                             const MCValue &Target) override;

  void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
                  const MCValue &Target, MutableArrayRef<char> Data,
                  uint64_t Value, bool IsResolved,
                  const MCSubtargetInfo *STI) const override;

  bool mayNeedRelaxation(const MCInst &Inst,
                         const MCSubtargetInfo &STI) const override;

  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
                            const MCRelaxableFragment *DF,
                            const MCAsmLayout &Layout) const override;

  void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
                        MCInst &Res) const override;

  bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
};
} // end anonymous namespace

static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool is16BitMode) {
  unsigned Op = Inst.getOpcode();
  switch (Op) {
  default:
    return Op;
  case X86::JCC_1:
    return (is16BitMode) ? X86::JCC_2 : X86::JCC_4;
  case X86::JMP_1:
    return (is16BitMode) ? X86::JMP_2 : X86::JMP_4;
  }
}

static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
  unsigned Op = Inst.getOpcode();
  switch (Op) {
  default:
    return Op;

    // IMUL
  case X86::IMUL16rri8: return X86::IMUL16rri;
  case X86::IMUL16rmi8: return X86::IMUL16rmi;
  case X86::IMUL32rri8: return X86::IMUL32rri;
  case X86::IMUL32rmi8: return X86::IMUL32rmi;
  case X86::IMUL64rri8: return X86::IMUL64rri32;
  case X86::IMUL64rmi8: return X86::IMUL64rmi32;

    // AND
  case X86::AND16ri8: return X86::AND16ri;
  case X86::AND16mi8: return X86::AND16mi;
  case X86::AND32ri8: return X86::AND32ri;
  case X86::AND32mi8: return X86::AND32mi;
  case X86::AND64ri8: return X86::AND64ri32;
  case X86::AND64mi8: return X86::AND64mi32;

    // OR
  case X86::OR16ri8: return X86::OR16ri;
  case X86::OR16mi8: return X86::OR16mi;
  case X86::OR32ri8: return X86::OR32ri;
  case X86::OR32mi8: return X86::OR32mi;
  case X86::OR64ri8: return X86::OR64ri32;
  case X86::OR64mi8: return X86::OR64mi32;

    // XOR
  case X86::XOR16ri8: return X86::XOR16ri;
  case X86::XOR16mi8: return X86::XOR16mi;
  case X86::XOR32ri8: return X86::XOR32ri;
  case X86::XOR32mi8: return X86::XOR32mi;
  case X86::XOR64ri8: return X86::XOR64ri32;
  case X86::XOR64mi8: return X86::XOR64mi32;

    // ADD
  case X86::ADD16ri8: return X86::ADD16ri;
  case X86::ADD16mi8: return X86::ADD16mi;
  case X86::ADD32ri8: return X86::ADD32ri;
  case X86::ADD32mi8: return X86::ADD32mi;
  case X86::ADD64ri8: return X86::ADD64ri32;
  case X86::ADD64mi8: return X86::ADD64mi32;

   // ADC
  case X86::ADC16ri8: return X86::ADC16ri;
  case X86::ADC16mi8: return X86::ADC16mi;
  case X86::ADC32ri8: return X86::ADC32ri;
  case X86::ADC32mi8: return X86::ADC32mi;
  case X86::ADC64ri8: return X86::ADC64ri32;
  case X86::ADC64mi8: return X86::ADC64mi32;

    // SUB
  case X86::SUB16ri8: return X86::SUB16ri;
  case X86::SUB16mi8: return X86::SUB16mi;
  case X86::SUB32ri8: return X86::SUB32ri;
  case X86::SUB32mi8: return X86::SUB32mi;
  case X86::SUB64ri8: return X86::SUB64ri32;
  case X86::SUB64mi8: return X86::SUB64mi32;

   // SBB
  case X86::SBB16ri8: return X86::SBB16ri;
  case X86::SBB16mi8: return X86::SBB16mi;
  case X86::SBB32ri8: return X86::SBB32ri;
  case X86::SBB32mi8: return X86::SBB32mi;
  case X86::SBB64ri8: return X86::SBB64ri32;
  case X86::SBB64mi8: return X86::SBB64mi32;

    // CMP
  case X86::CMP16ri8: return X86::CMP16ri;
  case X86::CMP16mi8: return X86::CMP16mi;
  case X86::CMP32ri8: return X86::CMP32ri;
  case X86::CMP32mi8: return X86::CMP32mi;
  case X86::CMP64ri8: return X86::CMP64ri32;
  case X86::CMP64mi8: return X86::CMP64mi32;

    // PUSH
  case X86::PUSH32i8:  return X86::PUSHi32;
  case X86::PUSH16i8:  return X86::PUSHi16;
  case X86::PUSH64i8:  return X86::PUSH64i32;
  }
}

static unsigned getRelaxedOpcode(const MCInst &Inst, bool is16BitMode) {
  unsigned R = getRelaxedOpcodeArith(Inst);
  if (R != Inst.getOpcode())
    return R;
  return getRelaxedOpcodeBranch(Inst, is16BitMode);
}

static X86::CondCode getCondFromBranch(const MCInst &MI,
                                       const MCInstrInfo &MCII) {
  unsigned Opcode = MI.getOpcode();
  switch (Opcode) {
  default:
    return X86::COND_INVALID;
  case X86::JCC_1: {
    const MCInstrDesc &Desc = MCII.get(Opcode);
    return static_cast<X86::CondCode>(
        MI.getOperand(Desc.getNumOperands() - 1).getImm());
  }
  }
}

static X86::SecondMacroFusionInstKind
classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) {
  X86::CondCode CC = getCondFromBranch(MI, MCII);
  return classifySecondCondCodeInMacroFusion(CC);
}

/// Check if the instruction uses RIP relative addressing.
static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;
  unsigned CurOp = X86II::getOperandBias(Desc);
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
  if (MemoryOperand < 0)
    return false;
  unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg;
  unsigned BaseReg = MI.getOperand(BaseRegNum).getReg();
  return (BaseReg == X86::RIP);
}

/// Check if the instruction is valid as the first instruction in macro fusion.
static bool isFirstMacroFusibleInst(const MCInst &Inst,
                                    const MCInstrInfo &MCII) {
  // An Intel instruction with RIP relative addressing is not macro fusible.
  if (isRIPRelative(Inst, MCII))
    return false;
  X86::FirstMacroFusionInstKind FIK =
      X86::classifyFirstOpcodeInMacroFusion(Inst.getOpcode());
  return FIK != X86::FirstMacroFusionInstKind::Invalid;
}

/// Check if the two instructions will be macro-fused on the target cpu.
bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const {
  const MCInstrDesc &InstDesc = MCII->get(Jcc.getOpcode());
  if (!InstDesc.isConditionalBranch())
    return false;
  if (!isFirstMacroFusibleInst(Cmp, *MCII))
    return false;
  const X86::FirstMacroFusionInstKind CmpKind =
      X86::classifyFirstOpcodeInMacroFusion(Cmp.getOpcode());
  const X86::SecondMacroFusionInstKind BranchKind =
      classifySecondInstInMacroFusion(Jcc, *MCII);
  return X86::isMacroFused(CmpKind, BranchKind);
}

/// Check if the instruction has a variant symbol operand.
static bool hasVariantSymbol(const MCInst &MI) {
  for (auto &Operand : MI) {
    if (!Operand.isExpr())
      continue;
    const MCExpr &Expr = *Operand.getExpr();
    if (Expr.getKind() == MCExpr::SymbolRef &&
        cast<MCSymbolRefExpr>(Expr).getKind() != MCSymbolRefExpr::VK_None)
      return true;
  }
  return false;
}

bool X86AsmBackend::allowAutoPadding() const {
  return (AlignBoundary != Align::None() &&
          AlignBranchType != X86::AlignBranchNone);
}

bool X86AsmBackend::needAlign(MCObjectStreamer &OS) const {
  if (!OS.getAllowAutoPadding())
    return false;
  assert(allowAutoPadding() && "incorrect initialization!");

  MCAssembler &Assembler = OS.getAssembler();
  MCSection *Sec = OS.getCurrentSectionOnly();
  // To be Done: Currently don't deal with Bundle cases.
  if (Assembler.isBundlingEnabled() && Sec->isBundleLocked())
    return false;

  // Branches only need to be aligned in 32-bit or 64-bit mode.
  if (!(STI.hasFeature(X86::Mode64Bit) || STI.hasFeature(X86::Mode32Bit)))
    return false;

  return true;
}

/// Check if the instruction operand needs to be aligned. Padding is disabled
/// before intruction which may be rewritten by linker(e.g. TLSCALL).
bool X86AsmBackend::needAlignInst(const MCInst &Inst) const {
  // Linker may rewrite the instruction with variant symbol operand.
  if (hasVariantSymbol(Inst))
    return false;

  const MCInstrDesc &InstDesc = MCII->get(Inst.getOpcode());
  return (InstDesc.isConditionalBranch() &&
          (AlignBranchType & X86::AlignBranchJcc)) ||
         (InstDesc.isUnconditionalBranch() &&
          (AlignBranchType & X86::AlignBranchJmp)) ||
         (InstDesc.isCall() &&
          (AlignBranchType & X86::AlignBranchCall)) ||
         (InstDesc.isReturn() &&
          (AlignBranchType & X86::AlignBranchRet)) ||
         (InstDesc.isIndirectBranch() &&
          (AlignBranchType & X86::AlignBranchIndirect));
}

static bool canReuseBoundaryAlignFragment(const MCBoundaryAlignFragment &F) {
  // If a MCBoundaryAlignFragment has not been used to emit NOP,we can reuse it.
  return !F.canEmitNops();
}

MCBoundaryAlignFragment *
X86AsmBackend::getOrCreateBoundaryAlignFragment(MCObjectStreamer &OS) const {
  auto *F = dyn_cast_or_null<MCBoundaryAlignFragment>(OS.getCurrentFragment());
  if (!F || !canReuseBoundaryAlignFragment(*F)) {
    F = new MCBoundaryAlignFragment(AlignBoundary);
    OS.insert(F);
  }
  return F;
}

/// Insert MCBoundaryAlignFragment before instructions to align branches.
void X86AsmBackend::alignBranchesBegin(MCObjectStreamer &OS,
                                       const MCInst &Inst) {
  if (!needAlign(OS))
    return;

  MCFragment *CF = OS.getCurrentFragment();
  bool NeedAlignFused = AlignBranchType & X86::AlignBranchFused;
  if (NeedAlignFused && isMacroFused(PrevInst, Inst) && CF) {
    // Macro fusion actually happens and there is no other fragment inserted
    // after the previous instruction. NOP can be emitted in PF to align fused
    // jcc.
    if (auto *PF =
            dyn_cast_or_null<MCBoundaryAlignFragment>(CF->getPrevNode())) {
      const_cast<MCBoundaryAlignFragment *>(PF)->setEmitNops(true);
      const_cast<MCBoundaryAlignFragment *>(PF)->setFused(true);
    }
  } else if (needAlignInst(Inst)) {
    // Note: When there is at least one fragment, such as MCAlignFragment,
    // inserted after the previous instruction, e.g.
    //
    // \code
    //   cmp %rax %rcx
    //   .align 16
    //   je .Label0
    // \ endcode
    //
    // We will treat the JCC as a unfused branch although it may be fused
    // with the CMP.
    auto *F = getOrCreateBoundaryAlignFragment(OS);
    F->setEmitNops(true);
    F->setFused(false);
  } else if (NeedAlignFused && isFirstMacroFusibleInst(Inst, *MCII)) {
    // We don't know if macro fusion happens until the reaching the next
    // instruction, so a place holder is put here if necessary.
    getOrCreateBoundaryAlignFragment(OS);
  }

  PrevInst = Inst;
}

/// Insert a MCBoundaryAlignFragment to mark the end of the branch to be aligned
/// if necessary.
void X86AsmBackend::alignBranchesEnd(MCObjectStreamer &OS, const MCInst &Inst) {
  if (!needAlign(OS))
    return;
  // If the branch is emitted into a MCRelaxableFragment, we can determine the
  // size of the branch easily in MCAssembler::relaxBoundaryAlign. When the
  // branch is fused, the fused branch(macro fusion pair) must be emitted into
  // two fragments. Or when the branch is unfused, the branch must be emitted
  // into one fragment. The MCRelaxableFragment naturally marks the end of the
  // fused or unfused branch.
  // Otherwise, we need to insert a MCBoundaryAlignFragment to mark the end of
  // the branch. This MCBoundaryAlignFragment may be reused to emit NOP to align
  // other branch.
  if (needAlignInst(Inst) && !isa<MCRelaxableFragment>(OS.getCurrentFragment()))
    OS.insert(new MCBoundaryAlignFragment(AlignBoundary));

  // Update the maximum alignment on the current section if necessary.
  MCSection *Sec = OS.getCurrentSectionOnly();
  if (AlignBoundary.value() > Sec->getAlignment())
    Sec->setAlignment(AlignBoundary);
}

Optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const {
  if (STI.getTargetTriple().isOSBinFormatELF()) {
    if (STI.getTargetTriple().getArch() == Triple::x86_64) {
      if (Name == "R_X86_64_NONE")
        return FK_NONE;
    } else {
      if (Name == "R_386_NONE")
        return FK_NONE;
    }
  }
  return MCAsmBackend::getFixupKind(Name);
}

const MCFixupKindInfo &X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
  const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
      {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"reloc_signed_4byte", 0, 32, 0},
      {"reloc_signed_4byte_relax", 0, 32, 0},
      {"reloc_global_offset_table", 0, 32, 0},
      {"reloc_global_offset_table8", 0, 64, 0},
      {"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
  };

  if (Kind < FirstTargetFixupKind)
    return MCAsmBackend::getFixupKindInfo(Kind);

  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
         "Invalid kind!");
  assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!");
  return Infos[Kind - FirstTargetFixupKind];
}

bool X86AsmBackend::shouldForceRelocation(const MCAssembler &,
                                          const MCFixup &Fixup,
                                          const MCValue &) {
  return Fixup.getKind() == FK_NONE;
}

static unsigned getFixupKindSize(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("invalid fixup kind!");
  case FK_NONE:
    return 0;
  case FK_PCRel_1:
  case FK_SecRel_1:
  case FK_Data_1:
    return 1;
  case FK_PCRel_2:
  case FK_SecRel_2:
  case FK_Data_2:
    return 2;
  case FK_PCRel_4:
  case X86::reloc_riprel_4byte:
  case X86::reloc_riprel_4byte_relax:
  case X86::reloc_riprel_4byte_relax_rex:
  case X86::reloc_riprel_4byte_movq_load:
  case X86::reloc_signed_4byte:
  case X86::reloc_signed_4byte_relax:
  case X86::reloc_global_offset_table:
  case X86::reloc_branch_4byte_pcrel:
  case FK_SecRel_4:
  case FK_Data_4:
    return 4;
  case FK_PCRel_8:
  case FK_SecRel_8:
  case FK_Data_8:
  case X86::reloc_global_offset_table8:
    return 8;
  }
}

void X86AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
                               const MCValue &Target,
                               MutableArrayRef<char> Data,
                               uint64_t Value, bool IsResolved,
                               const MCSubtargetInfo *STI) const {
  unsigned Size = getFixupKindSize(Fixup.getKind());

  assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");

  int64_t SignedValue = static_cast<int64_t>(Value);
  if ((Target.isAbsolute() || IsResolved) &&
      getFixupKindInfo(Fixup.getKind()).Flags &
      MCFixupKindInfo::FKF_IsPCRel) {
    // check that PC relative fixup fits into the fixup size.
    if (Size > 0 && !isIntN(Size * 8, SignedValue))
      Asm.getContext().reportError(
                                   Fixup.getLoc(), "value of " + Twine(SignedValue) +
                                   " is too large for field of " + Twine(Size) +
                                   ((Size == 1) ? " byte." : " bytes."));
  } else {
    // Check that uppper bits are either all zeros or all ones.
    // Specifically ignore overflow/underflow as long as the leakage is
    // limited to the lower bits. This is to remain compatible with
    // other assemblers.
    assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) &&
           "Value does not fit in the Fixup field");
  }

  for (unsigned i = 0; i != Size; ++i)
    Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}

bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst,
                                      const MCSubtargetInfo &STI) const {
  // Branches can always be relaxed in either mode.
  if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
    return true;

  // Check if this instruction is ever relaxable.
  if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
    return false;


  // Check if the relaxable operand has an expression. For the current set of
  // relaxable instructions, the relaxable operand is always the last operand.
  unsigned RelaxableOp = Inst.getNumOperands() - 1;
  if (Inst.getOperand(RelaxableOp).isExpr())
    return true;

  return false;
}

bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
                                         uint64_t Value,
                                         const MCRelaxableFragment *DF,
                                         const MCAsmLayout &Layout) const {
  // Relax if the value is too big for a (signed) i8.
  return !isInt<8>(Value);
}

// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(const MCInst &Inst,
                                     const MCSubtargetInfo &STI,
                                     MCInst &Res) const {
  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
  bool is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
  unsigned RelaxedOp = getRelaxedOpcode(Inst, is16BitMode);

  if (RelaxedOp == Inst.getOpcode()) {
    SmallString<256> Tmp;
    raw_svector_ostream OS(Tmp);
    Inst.dump_pretty(OS);
    OS << "\n";
    report_fatal_error("unexpected instruction to relax: " + OS.str());
  }

  Res = Inst;
  Res.setOpcode(RelaxedOp);
}

/// Write a sequence of optimal nops to the output, covering \p Count
/// bytes.
/// \return - true on success, false on failure
bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
  static const char Nops[10][11] = {
    // nop
    "\x90",
    // xchg %ax,%ax
    "\x66\x90",
    // nopl (%[re]ax)
    "\x0f\x1f\x00",
    // nopl 0(%[re]ax)
    "\x0f\x1f\x40\x00",
    // nopl 0(%[re]ax,%[re]ax,1)
    "\x0f\x1f\x44\x00\x00",
    // nopw 0(%[re]ax,%[re]ax,1)
    "\x66\x0f\x1f\x44\x00\x00",
    // nopl 0L(%[re]ax)
    "\x0f\x1f\x80\x00\x00\x00\x00",
    // nopl 0L(%[re]ax,%[re]ax,1)
    "\x0f\x1f\x84\x00\x00\x00\x00\x00",
    // nopw 0L(%[re]ax,%[re]ax,1)
    "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
    // nopw %cs:0L(%[re]ax,%[re]ax,1)
    "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
  };

  // This CPU doesn't support long nops. If needed add more.
  // FIXME: We could generated something better than plain 0x90.
  if (!STI.getFeatureBits()[X86::FeatureNOPL]) {
    for (uint64_t i = 0; i < Count; ++i)
      OS << '\x90';
    return true;
  }

  // 15-bytes is the longest single NOP instruction, but 10-bytes is
  // commonly the longest that can be efficiently decoded.
  uint64_t MaxNopLength = 10;
  if (STI.getFeatureBits()[X86::ProcIntelSLM])
    MaxNopLength = 7;
  else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP])
    MaxNopLength = 15;
  else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP])
    MaxNopLength = 11;

  // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining
  // length.
  do {
    const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
    for (uint8_t i = 0; i < Prefixes; i++)
      OS << '\x66';
    const uint8_t Rest = ThisNopLength - Prefixes;
    if (Rest != 0)
      OS.write(Nops[Rest - 1], Rest);
    Count -= ThisNopLength;
  } while (Count != 0);

  return true;
}

/* *** */

namespace {

class ELFX86AsmBackend : public X86AsmBackend {
public:
  uint8_t OSABI;
  ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI)
      : X86AsmBackend(T, STI), OSABI(OSABI) {}
};

class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI,
                      const MCSubtargetInfo &STI)
    : ELFX86AsmBackend(T, OSABI, STI) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386);
  }
};

class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
                       const MCSubtargetInfo &STI)
      : ELFX86AsmBackend(T, OSABI, STI) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
                                    ELF::EM_X86_64);
  }
};

class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
                         const MCSubtargetInfo &STI)
      : ELFX86AsmBackend(T, OSABI, STI) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
                                    ELF::EM_IAMCU);
  }
};

class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI,
                      const MCSubtargetInfo &STI)
    : ELFX86AsmBackend(T, OSABI, STI) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64);
  }
};

class WindowsX86AsmBackend : public X86AsmBackend {
  bool Is64Bit;

public:
  WindowsX86AsmBackend(const Target &T, bool is64Bit,
                       const MCSubtargetInfo &STI)
    : X86AsmBackend(T, STI)
    , Is64Bit(is64Bit) {
  }

  Optional<MCFixupKind> getFixupKind(StringRef Name) const override {
    return StringSwitch<Optional<MCFixupKind>>(Name)
        .Case("dir32", FK_Data_4)
        .Case("secrel32", FK_SecRel_4)
        .Case("secidx", FK_SecRel_2)
        .Default(MCAsmBackend::getFixupKind(Name));
  }

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86WinCOFFObjectWriter(Is64Bit);
  }
};

namespace CU {

  /// Compact unwind encoding values.
  enum CompactUnwindEncodings {
    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
    /// the return address, then [RE]SP is moved to [RE]BP.
    UNWIND_MODE_BP_FRAME                   = 0x01000000,

    /// A frameless function with a small constant stack size.
    UNWIND_MODE_STACK_IMMD                 = 0x02000000,

    /// A frameless function with a large constant stack size.
    UNWIND_MODE_STACK_IND                  = 0x03000000,

    /// No compact unwind encoding is available.
    UNWIND_MODE_DWARF                      = 0x04000000,

    /// Mask for encoding the frame registers.
    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,

    /// Mask for encoding the frameless registers.
    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
  };

} // end CU namespace

class DarwinX86AsmBackend : public X86AsmBackend {
  const MCRegisterInfo &MRI;

  /// Number of registers that can be saved in a compact unwind encoding.
  enum { CU_NUM_SAVED_REGS = 6 };

  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
  bool Is64Bit;

  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
  unsigned StackDivide;                  ///< Amount to adjust stack size by.
protected:
  /// Size of a "push" instruction for the given register.
  unsigned PushInstrSize(unsigned Reg) const {
    switch (Reg) {
      case X86::EBX:
      case X86::ECX:
      case X86::EDX:
      case X86::EDI:
      case X86::ESI:
      case X86::EBP:
      case X86::RBX:
      case X86::RBP:
        return 1;
      case X86::R12:
      case X86::R13:
      case X86::R14:
      case X86::R15:
        return 2;
    }
    return 1;
  }

  /// Implementation of algorithm to generate the compact unwind encoding
  /// for the CFI instructions.
  uint32_t
  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
    if (Instrs.empty()) return 0;

    // Reset the saved registers.
    unsigned SavedRegIdx = 0;
    memset(SavedRegs, 0, sizeof(SavedRegs));

    bool HasFP = false;

    // Encode that we are using EBP/RBP as the frame pointer.
    uint32_t CompactUnwindEncoding = 0;

    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
    unsigned InstrOffset = 0;
    unsigned StackAdjust = 0;
    unsigned StackSize = 0;
    unsigned NumDefCFAOffsets = 0;

    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
      const MCCFIInstruction &Inst = Instrs[i];

      switch (Inst.getOperation()) {
      default:
        // Any other CFI directives indicate a frame that we aren't prepared
        // to represent via compact unwind, so just bail out.
        return 0;
      case MCCFIInstruction::OpDefCfaRegister: {
        // Defines a frame pointer. E.g.
        //
        //     movq %rsp, %rbp
        //  L0:
        //     .cfi_def_cfa_register %rbp
        //
        HasFP = true;

        // If the frame pointer is other than esp/rsp, we do not have a way to
        // generate a compact unwinding representation, so bail out.
        if (*MRI.getLLVMRegNum(Inst.getRegister(), true) !=
            (Is64Bit ? X86::RBP : X86::EBP))
          return 0;

        // Reset the counts.
        memset(SavedRegs, 0, sizeof(SavedRegs));
        StackAdjust = 0;
        SavedRegIdx = 0;
        InstrOffset += MoveInstrSize;
        break;
      }
      case MCCFIInstruction::OpDefCfaOffset: {
        // Defines a new offset for the CFA. E.g.
        //
        //  With frame:
        //
        //     pushq %rbp
        //  L0:
        //     .cfi_def_cfa_offset 16
        //
        //  Without frame:
        //
        //     subq $72, %rsp
        //  L0:
        //     .cfi_def_cfa_offset 80
        //
        StackSize = std::abs(Inst.getOffset()) / StackDivide;
        ++NumDefCFAOffsets;
        break;
      }
      case MCCFIInstruction::OpOffset: {
        // Defines a "push" of a callee-saved register. E.g.
        //
        //     pushq %r15
        //     pushq %r14
        //     pushq %rbx
        //  L0:
        //     subq $120, %rsp
        //  L1:
        //     .cfi_offset %rbx, -40
        //     .cfi_offset %r14, -32
        //     .cfi_offset %r15, -24
        //
        if (SavedRegIdx == CU_NUM_SAVED_REGS)
          // If there are too many saved registers, we cannot use a compact
          // unwind encoding.
          return CU::UNWIND_MODE_DWARF;

        unsigned Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
        SavedRegs[SavedRegIdx++] = Reg;
        StackAdjust += OffsetSize;
        InstrOffset += PushInstrSize(Reg);
        break;
      }
      }
    }

    StackAdjust /= StackDivide;

    if (HasFP) {
      if ((StackAdjust & 0xFF) != StackAdjust)
        // Offset was too big for a compact unwind encoding.
        return CU::UNWIND_MODE_DWARF;

      // Get the encoding of the saved registers when we have a frame pointer.
      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;

      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    } else {
      SubtractInstrIdx += InstrOffset;
      ++StackAdjust;

      if ((StackSize & 0xFF) == StackSize) {
        // Frameless stack with a small stack size.
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;

        // Encode the stack size.
        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
      } else {
        if ((StackAdjust & 0x7) != StackAdjust)
          // The extra stack adjustments are too big for us to handle.
          return CU::UNWIND_MODE_DWARF;

        // Frameless stack with an offset too large for us to encode compactly.
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;

        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
        // instruction.
        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;

        // Encode any extra stack adjustments (done via push instructions).
        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
      }

      // Encode the number of registers saved. (Reverse the list first.)
      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;

      // Get the encoding of the saved registers when we don't have a frame
      // pointer.
      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;

      // Encode the register encoding.
      CompactUnwindEncoding |=
        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    }

    return CompactUnwindEncoding;
  }

private:
  /// Get the compact unwind number for a given register. The number
  /// corresponds to the enum lists in compact_unwind_encoding.h.
  int getCompactUnwindRegNum(unsigned Reg) const {
    static const MCPhysReg CU32BitRegs[7] = {
      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    };
    static const MCPhysReg CU64BitRegs[] = {
      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    };
    const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
      if (*CURegs == Reg)
        return Idx;

    return -1;
  }

  /// Return the registers encoded for a compact encoding with a frame
  /// pointer.
  uint32_t encodeCompactUnwindRegistersWithFrame() const {
    // Encode the registers in the order they were saved --- 3-bits per
    // register. The list of saved registers is assumed to be in reverse
    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
    uint32_t RegEnc = 0;
    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
      unsigned Reg = SavedRegs[i];
      if (Reg == 0) break;

      int CURegNum = getCompactUnwindRegNum(Reg);
      if (CURegNum == -1) return ~0U;

      // Encode the 3-bit register number in order, skipping over 3-bits for
      // each register.
      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    }

    assert((RegEnc & 0x3FFFF) == RegEnc &&
           "Invalid compact register encoding!");
    return RegEnc;
  }

  /// Create the permutation encoding used with frameless stacks. It is
  /// passed the number of registers to be saved and an array of the registers
  /// saved.
  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
    // The saved registers are numbered from 1 to 6. In order to encode the
    // order in which they were saved, we re-number them according to their
    // place in the register order. The re-numbering is relative to the last
    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
    // that order:
    //
    //    Orig  Re-Num
    //    ----  ------
    //     6       6
    //     2       2
    //     4       3
    //     5       3
    //
    for (unsigned i = 0; i < RegCount; ++i) {
      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
      if (CUReg == -1) return ~0U;
      SavedRegs[i] = CUReg;
    }

    // Reverse the list.
    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);

    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
      unsigned Countless = 0;
      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
        if (SavedRegs[j] < SavedRegs[i])
          ++Countless;

      RenumRegs[i] = SavedRegs[i] - Countless - 1;
    }

    // Take the renumbered values and encode them into a 10-bit number.
    uint32_t permutationEncoding = 0;
    switch (RegCount) {
    case 6:
      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
                             +     RenumRegs[4];
      break;
    case 5:
      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
                             +     RenumRegs[5];
      break;
    case 4:
      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
                             + 3 * RenumRegs[4] +      RenumRegs[5];
      break;
    case 3:
      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
                             +     RenumRegs[5];
      break;
    case 2:
      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
      break;
    case 1:
      permutationEncoding |=       RenumRegs[5];
      break;
    }

    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
           "Invalid compact register encoding!");
    return permutationEncoding;
  }

public:
  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
                      const MCSubtargetInfo &STI, bool Is64Bit)
    : X86AsmBackend(T, STI), MRI(MRI), Is64Bit(Is64Bit) {
    memset(SavedRegs, 0, sizeof(SavedRegs));
    OffsetSize = Is64Bit ? 8 : 4;
    MoveInstrSize = Is64Bit ? 3 : 2;
    StackDivide = Is64Bit ? 8 : 4;
  }
};

class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
                         const MCSubtargetInfo &STI)
      : DarwinX86AsmBackend(T, MRI, STI, false) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86MachObjectWriter(/*Is64Bit=*/false,
                                     MachO::CPU_TYPE_I386,
                                     MachO::CPU_SUBTYPE_I386_ALL);
  }

  /// Generate the compact unwind encoding for the CFI instructions.
  uint32_t generateCompactUnwindEncoding(
                             ArrayRef<MCCFIInstruction> Instrs) const override {
    return generateCompactUnwindEncodingImpl(Instrs);
  }
};

class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
  const MachO::CPUSubTypeX86 Subtype;
public:
  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
                         const MCSubtargetInfo &STI, MachO::CPUSubTypeX86 st)
      : DarwinX86AsmBackend(T, MRI, STI, true), Subtype(st) {}

  std::unique_ptr<MCObjectTargetWriter>
  createObjectTargetWriter() const override {
    return createX86MachObjectWriter(/*Is64Bit=*/true, MachO::CPU_TYPE_X86_64,
                                     Subtype);
  }

  /// Generate the compact unwind encoding for the CFI instructions.
  uint32_t generateCompactUnwindEncoding(
                             ArrayRef<MCCFIInstruction> Instrs) const override {
    return generateCompactUnwindEncodingImpl(Instrs);
  }
};

} // end anonymous namespace

MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
                                           const MCSubtargetInfo &STI,
                                           const MCRegisterInfo &MRI,
                                           const MCTargetOptions &Options) {
  const Triple &TheTriple = STI.getTargetTriple();
  if (TheTriple.isOSBinFormatMachO())
    return new DarwinX86_32AsmBackend(T, MRI, STI);

  if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
    return new WindowsX86AsmBackend(T, false, STI);

  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());

  if (TheTriple.isOSIAMCU())
    return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);

  return new ELFX86_32AsmBackend(T, OSABI, STI);
}

MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
                                           const MCSubtargetInfo &STI,
                                           const MCRegisterInfo &MRI,
                                           const MCTargetOptions &Options) {
  const Triple &TheTriple = STI.getTargetTriple();
  if (TheTriple.isOSBinFormatMachO()) {
    MachO::CPUSubTypeX86 CS =
        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
    return new DarwinX86_64AsmBackend(T, MRI, STI, CS);
  }

  if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
    return new WindowsX86AsmBackend(T, true, STI);

  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());

  if (TheTriple.getEnvironment() == Triple::GNUX32)
    return new ELFX86_X32AsmBackend(T, OSABI, STI);
  return new ELFX86_64AsmBackend(T, OSABI, STI);
}