PPCFrameLowering.cpp 89.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PPC implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//

#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetOptions.h"

using namespace llvm;

#define DEBUG_TYPE "framelowering"
STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");

static cl::opt<bool>
EnablePEVectorSpills("ppc-enable-pe-vector-spills",
                     cl::desc("Enable spills in prologue to vector registers."),
                     cl::init(false), cl::Hidden);

/// VRRegNo - Map from a numbered VR register to its enum value.
///
static const MCPhysReg VRRegNo[] = {
 PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15,
 PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23,
 PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31
};

static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
  if (STI.isDarwinABI() || STI.isAIXABI())
    return STI.isPPC64() ? 16 : 8;
  // SVR4 ABI:
  return STI.isPPC64() ? 16 : 4;
}

static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
  if (STI.isAIXABI())
    return STI.isPPC64() ? 40 : 20;
  return STI.isELFv2ABI() ? 24 : 40;
}

static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
  // For the Darwin ABI:
  // We cannot use the TOC save slot (offset +20) in the PowerPC linkage area
  // for saving the frame pointer (if needed.)  While the published ABI has
  // not used this slot since at least MacOSX 10.2, there is older code
  // around that does use it, and that needs to continue to work.
  if (STI.isDarwinABI())
    return STI.isPPC64() ? -8U : -4U;

  // SVR4 ABI: First slot in the general register save area.
  return STI.isPPC64() ? -8U : -4U;
}

static unsigned computeLinkageSize(const PPCSubtarget &STI) {
  if ((STI.isDarwinABI() || STI.isAIXABI()) || STI.isPPC64())
    return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);

  // 32-bit SVR4 ABI:
  return 8;
}

static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
  if (STI.isDarwinABI())
    return STI.isPPC64() ? -16U : -8U;

  // SVR4 ABI: First slot in the general register save area.
  return STI.isPPC64()
             ? -16U
             : STI.getTargetMachine().isPositionIndependent() ? -12U : -8U;
}

static unsigned computeCRSaveOffset() {
  // The condition register save offset needs to be updated for AIX PPC32.
  return 8;
}

PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
    : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
                          STI.getPlatformStackAlignment(), 0),
      Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
      TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
      FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
      LinkageSize(computeLinkageSize(Subtarget)),
      BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
      CRSaveOffset(computeCRSaveOffset()) {}

// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
    unsigned &NumEntries) const {
  if (Subtarget.isDarwinABI()) {
    NumEntries = 1;
    if (Subtarget.isPPC64()) {
      static const SpillSlot darwin64Offsets = {PPC::X31, -8};
      return &darwin64Offsets;
    } else {
      static const SpillSlot darwinOffsets = {PPC::R31, -4};
      return &darwinOffsets;
    }
  }

  // Early exit if not using the SVR4 ABI.
  if (!Subtarget.isSVR4ABI()) {
    NumEntries = 0;
    return nullptr;
  }

  // Note that the offsets here overlap, but this is fixed up in
  // processFunctionBeforeFrameFinalized.

  static const SpillSlot Offsets[] = {
      // Floating-point register save area offsets.
      {PPC::F31, -8},
      {PPC::F30, -16},
      {PPC::F29, -24},
      {PPC::F28, -32},
      {PPC::F27, -40},
      {PPC::F26, -48},
      {PPC::F25, -56},
      {PPC::F24, -64},
      {PPC::F23, -72},
      {PPC::F22, -80},
      {PPC::F21, -88},
      {PPC::F20, -96},
      {PPC::F19, -104},
      {PPC::F18, -112},
      {PPC::F17, -120},
      {PPC::F16, -128},
      {PPC::F15, -136},
      {PPC::F14, -144},

      // General register save area offsets.
      {PPC::R31, -4},
      {PPC::R30, -8},
      {PPC::R29, -12},
      {PPC::R28, -16},
      {PPC::R27, -20},
      {PPC::R26, -24},
      {PPC::R25, -28},
      {PPC::R24, -32},
      {PPC::R23, -36},
      {PPC::R22, -40},
      {PPC::R21, -44},
      {PPC::R20, -48},
      {PPC::R19, -52},
      {PPC::R18, -56},
      {PPC::R17, -60},
      {PPC::R16, -64},
      {PPC::R15, -68},
      {PPC::R14, -72},

      // CR save area offset.  We map each of the nonvolatile CR fields
      // to the slot for CR2, which is the first of the nonvolatile CR
      // fields to be assigned, so that we only allocate one save slot.
      // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
      {PPC::CR2, -4},

      // VRSAVE save area offset.
      {PPC::VRSAVE, -4},

      // Vector register save area
      {PPC::V31, -16},
      {PPC::V30, -32},
      {PPC::V29, -48},
      {PPC::V28, -64},
      {PPC::V27, -80},
      {PPC::V26, -96},
      {PPC::V25, -112},
      {PPC::V24, -128},
      {PPC::V23, -144},
      {PPC::V22, -160},
      {PPC::V21, -176},
      {PPC::V20, -192},

      // SPE register save area (overlaps Vector save area).
      {PPC::S31, -8},
      {PPC::S30, -16},
      {PPC::S29, -24},
      {PPC::S28, -32},
      {PPC::S27, -40},
      {PPC::S26, -48},
      {PPC::S25, -56},
      {PPC::S24, -64},
      {PPC::S23, -72},
      {PPC::S22, -80},
      {PPC::S21, -88},
      {PPC::S20, -96},
      {PPC::S19, -104},
      {PPC::S18, -112},
      {PPC::S17, -120},
      {PPC::S16, -128},
      {PPC::S15, -136},
      {PPC::S14, -144}};

  static const SpillSlot Offsets64[] = {
      // Floating-point register save area offsets.
      {PPC::F31, -8},
      {PPC::F30, -16},
      {PPC::F29, -24},
      {PPC::F28, -32},
      {PPC::F27, -40},
      {PPC::F26, -48},
      {PPC::F25, -56},
      {PPC::F24, -64},
      {PPC::F23, -72},
      {PPC::F22, -80},
      {PPC::F21, -88},
      {PPC::F20, -96},
      {PPC::F19, -104},
      {PPC::F18, -112},
      {PPC::F17, -120},
      {PPC::F16, -128},
      {PPC::F15, -136},
      {PPC::F14, -144},

      // General register save area offsets.
      {PPC::X31, -8},
      {PPC::X30, -16},
      {PPC::X29, -24},
      {PPC::X28, -32},
      {PPC::X27, -40},
      {PPC::X26, -48},
      {PPC::X25, -56},
      {PPC::X24, -64},
      {PPC::X23, -72},
      {PPC::X22, -80},
      {PPC::X21, -88},
      {PPC::X20, -96},
      {PPC::X19, -104},
      {PPC::X18, -112},
      {PPC::X17, -120},
      {PPC::X16, -128},
      {PPC::X15, -136},
      {PPC::X14, -144},

      // VRSAVE save area offset.
      {PPC::VRSAVE, -4},

      // Vector register save area
      {PPC::V31, -16},
      {PPC::V30, -32},
      {PPC::V29, -48},
      {PPC::V28, -64},
      {PPC::V27, -80},
      {PPC::V26, -96},
      {PPC::V25, -112},
      {PPC::V24, -128},
      {PPC::V23, -144},
      {PPC::V22, -160},
      {PPC::V21, -176},
      {PPC::V20, -192}};

  if (Subtarget.isPPC64()) {
    NumEntries = array_lengthof(Offsets64);

    return Offsets64;
  } else {
    NumEntries = array_lengthof(Offsets);

    return Offsets;
  }
}

/// RemoveVRSaveCode - We have found that this function does not need any code
/// to manipulate the VRSAVE register, even though it uses vector registers.
/// This can happen when the only registers used are known to be live in or out
/// of the function.  Remove all of the VRSAVE related code from the function.
/// FIXME: The removal of the code results in a compile failure at -O0 when the
/// function contains a function call, as the GPR containing original VRSAVE
/// contents is spilled and reloaded around the call.  Without the prolog code,
/// the spill instruction refers to an undefined register.  This code needs
/// to account for all uses of that GPR.
static void RemoveVRSaveCode(MachineInstr &MI) {
  MachineBasicBlock *Entry = MI.getParent();
  MachineFunction *MF = Entry->getParent();

  // We know that the MTVRSAVE instruction immediately follows MI.  Remove it.
  MachineBasicBlock::iterator MBBI = MI;
  ++MBBI;
  assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE);
  MBBI->eraseFromParent();

  bool RemovedAllMTVRSAVEs = true;
  // See if we can find and remove the MTVRSAVE instruction from all of the
  // epilog blocks.
  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
    // If last instruction is a return instruction, add an epilogue
    if (I->isReturnBlock()) {
      bool FoundIt = false;
      for (MBBI = I->end(); MBBI != I->begin(); ) {
        --MBBI;
        if (MBBI->getOpcode() == PPC::MTVRSAVE) {
          MBBI->eraseFromParent();  // remove it.
          FoundIt = true;
          break;
        }
      }
      RemovedAllMTVRSAVEs &= FoundIt;
    }
  }

  // If we found and removed all MTVRSAVE instructions, remove the read of
  // VRSAVE as well.
  if (RemovedAllMTVRSAVEs) {
    MBBI = MI;
    assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?");
    --MBBI;
    assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?");
    MBBI->eraseFromParent();
  }

  // Finally, nuke the UPDATE_VRSAVE.
  MI.eraseFromParent();
}

// HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the
// instruction selector.  Based on the vector registers that have been used,
// transform this into the appropriate ORI instruction.
static void HandleVRSaveUpdate(MachineInstr &MI, const TargetInstrInfo &TII) {
  MachineFunction *MF = MI.getParent()->getParent();
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  DebugLoc dl = MI.getDebugLoc();

  const MachineRegisterInfo &MRI = MF->getRegInfo();
  unsigned UsedRegMask = 0;
  for (unsigned i = 0; i != 32; ++i)
    if (MRI.isPhysRegModified(VRRegNo[i]))
      UsedRegMask |= 1 << (31-i);

  // Live in and live out values already must be in the mask, so don't bother
  // marking them.
  for (std::pair<unsigned, unsigned> LI : MF->getRegInfo().liveins()) {
    unsigned RegNo = TRI->getEncodingValue(LI.first);
    if (VRRegNo[RegNo] == LI.first)        // If this really is a vector reg.
      UsedRegMask &= ~(1 << (31-RegNo));   // Doesn't need to be marked.
  }

  // Live out registers appear as use operands on return instructions.
  for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end();
       UsedRegMask != 0 && BI != BE; ++BI) {
    const MachineBasicBlock &MBB = *BI;
    if (!MBB.isReturnBlock())
      continue;
    const MachineInstr &Ret = MBB.back();
    for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) {
      const MachineOperand &MO = Ret.getOperand(I);
      if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg()))
        continue;
      unsigned RegNo = TRI->getEncodingValue(MO.getReg());
      UsedRegMask &= ~(1 << (31-RegNo));
    }
  }

  // If no registers are used, turn this into a copy.
  if (UsedRegMask == 0) {
    // Remove all VRSAVE code.
    RemoveVRSaveCode(MI);
    return;
  }

  Register SrcReg = MI.getOperand(1).getReg();
  Register DstReg = MI.getOperand(0).getReg();

  if ((UsedRegMask & 0xFFFF) == UsedRegMask) {
    if (DstReg != SrcReg)
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
          .addReg(SrcReg)
          .addImm(UsedRegMask);
    else
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
          .addReg(SrcReg, RegState::Kill)
          .addImm(UsedRegMask);
  } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) {
    if (DstReg != SrcReg)
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
          .addReg(SrcReg)
          .addImm(UsedRegMask >> 16);
    else
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
          .addReg(SrcReg, RegState::Kill)
          .addImm(UsedRegMask >> 16);
  } else {
    if (DstReg != SrcReg)
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
          .addReg(SrcReg)
          .addImm(UsedRegMask >> 16);
    else
      BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
          .addReg(SrcReg, RegState::Kill)
          .addImm(UsedRegMask >> 16);

    BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
        .addReg(DstReg, RegState::Kill)
        .addImm(UsedRegMask & 0xFFFF);
  }

  // Remove the old UPDATE_VRSAVE instruction.
  MI.eraseFromParent();
}

static bool spillsCR(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->isCRSpilled();
}

static bool spillsVRSAVE(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->isVRSAVESpilled();
}

static bool hasSpills(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->hasSpills();
}

static bool hasNonRISpills(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->hasNonRISpills();
}

/// MustSaveLR - Return true if this function requires that we save the LR
/// register onto the stack in the prolog and restore it in the epilog of the
/// function.
static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
  const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();

  // We need a save/restore of LR if there is any def of LR (which is
  // defined by calls, including the PIC setup sequence), or if there is
  // some use of the LR stack slot (e.g. for builtin_return_address).
  // (LR comes in 32 and 64 bit versions.)
  MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
  return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
}

/// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
/// call frame size. Update the MachineFunction object with the stack size.
unsigned
PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
                                                bool UseEstimate) const {
  unsigned NewMaxCallFrameSize = 0;
  unsigned FrameSize = determineFrameLayout(MF, UseEstimate,
                                            &NewMaxCallFrameSize);
  MF.getFrameInfo().setStackSize(FrameSize);
  MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
  return FrameSize;
}

/// determineFrameLayout - Determine the size of the frame and maximum call
/// frame size.
unsigned
PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
                                       bool UseEstimate,
                                       unsigned *NewMaxCallFrameSize) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();

  // Get the number of bytes to allocate from the FrameInfo
  unsigned FrameSize =
    UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();

  // Get stack alignments. The frame must be aligned to the greatest of these:
  unsigned TargetAlign = getStackAlignment(); // alignment required per the ABI
  unsigned MaxAlign = MFI.getMaxAlignment(); // algmt required by data in frame
  unsigned AlignMask = std::max(MaxAlign, TargetAlign) - 1;

  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  unsigned LR = RegInfo->getRARegister();
  bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
  bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
                       !MFI.adjustsStack() &&       // No calls.
                       !MustSaveLR(MF, LR) &&       // No need to save LR.
                       !FI->mustSaveTOC() &&        // No need to save TOC.
                       !RegInfo->hasBasePointer(MF); // No special alignment.

  // Note: for PPC32 SVR4ABI (Non-DarwinABI), we can still generate stackless
  // code if all local vars are reg-allocated.
  bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();

  // Check whether we can skip adjusting the stack pointer (by using red zone)
  if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
    // No need for frame
    return 0;
  }

  // Get the maximum call frame size of all the calls.
  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();

  // Maximum call frame needs to be at least big enough for linkage area.
  unsigned minCallFrameSize = getLinkageSize();
  maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);

  // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
  // that allocations will be aligned.
  if (MFI.hasVarSizedObjects())
    maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;

  // Update the new max call frame size if the caller passes in a valid pointer.
  if (NewMaxCallFrameSize)
    *NewMaxCallFrameSize = maxCallFrameSize;

  // Include call frame size in total.
  FrameSize += maxCallFrameSize;

  // Make sure the frame is aligned.
  FrameSize = (FrameSize + AlignMask) & ~AlignMask;

  return FrameSize;
}

// hasFP - Return true if the specified function actually has a dedicated frame
// pointer register.
bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  // FIXME: This is pretty much broken by design: hasFP() might be called really
  // early, before the stack layout was calculated and thus hasFP() might return
  // true or false here depending on the time of call.
  return (MFI.getStackSize()) && needsFP(MF);
}

// needsFP - Return true if the specified function should have a dedicated frame
// pointer register.  This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Naked functions have no stack frame pushed, so we don't have a frame
  // pointer.
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
    return false;

  return MF.getTarget().Options.DisableFramePointerElim(MF) ||
    MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
    (MF.getTarget().Options.GuaranteedTailCallOpt &&
     MF.getInfo<PPCFunctionInfo>()->hasFastCall());
}

void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
  bool is31 = needsFP(MF);
  unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
  unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;

  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  bool HasBP = RegInfo->hasBasePointer(MF);
  unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
  unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
       BI != BE; ++BI)
    for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
      --MBBI;
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
        MachineOperand &MO = MBBI->getOperand(I);
        if (!MO.isReg())
          continue;

        switch (MO.getReg()) {
        case PPC::FP:
          MO.setReg(FPReg);
          break;
        case PPC::FP8:
          MO.setReg(FP8Reg);
          break;
        case PPC::BP:
          MO.setReg(BPReg);
          break;
        case PPC::BP8:
          MO.setReg(BP8Reg);
          break;

        }
      }
    }
}

/*  This function will do the following:
    - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
      respectively (defaults recommended by the ABI) and return true
    - If MBB is not an entry block, initialize the register scavenger and look
      for available registers.
    - If the defaults (R0/R12) are available, return true
    - If TwoUniqueRegsRequired is set to true, it looks for two unique
      registers. Otherwise, look for a single available register.
      - If the required registers are found, set SR1 and SR2 and return true.
      - If the required registers are not found, set SR2 or both SR1 and SR2 to
        PPC::NoRegister and return false.

    Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
    is not set, this function will attempt to find two different registers, but
    still return true if only one register is available (and set SR1 == SR2).
*/
bool
PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
                                      bool UseAtEnd,
                                      bool TwoUniqueRegsRequired,
                                      unsigned *SR1,
                                      unsigned *SR2) const {
  RegScavenger RS;
  unsigned R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
  unsigned R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;

  // Set the defaults for the two scratch registers.
  if (SR1)
    *SR1 = R0;

  if (SR2) {
    assert (SR1 && "Asking for the second scratch register but not the first?");
    *SR2 = R12;
  }

  // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
  if ((UseAtEnd && MBB->isReturnBlock()) ||
      (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
    return true;

  RS.enterBasicBlock(*MBB);

  if (UseAtEnd && !MBB->empty()) {
    // The scratch register will be used at the end of the block, so must
    // consider all registers used within the block

    MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
    // If no terminator, back iterator up to previous instruction.
    if (MBBI == MBB->end())
      MBBI = std::prev(MBBI);

    if (MBBI != MBB->begin())
      RS.forward(MBBI);
  }

  // If the two registers are available, we're all good.
  // Note that we only return here if both R0 and R12 are available because
  // although the function may not require two unique registers, it may benefit
  // from having two so we should try to provide them.
  if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
    return true;

  // Get the list of callee-saved registers for the target.
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());

  // Get all the available registers in the block.
  BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
                                     &PPC::GPRCRegClass);

  // We shouldn't use callee-saved registers as scratch registers as they may be
  // available when looking for a candidate block for shrink wrapping but not
  // available when the actual prologue/epilogue is being emitted because they
  // were added as live-in to the prologue block by PrologueEpilogueInserter.
  for (int i = 0; CSRegs[i]; ++i)
    BV.reset(CSRegs[i]);

  // Set the first scratch register to the first available one.
  if (SR1) {
    int FirstScratchReg = BV.find_first();
    *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
  }

  // If there is another one available, set the second scratch register to that.
  // Otherwise, set it to either PPC::NoRegister if this function requires two
  // or to whatever SR1 is set to if this function doesn't require two.
  if (SR2) {
    int SecondScratchReg = BV.find_next(*SR1);
    if (SecondScratchReg != -1)
      *SR2 = SecondScratchReg;
    else
      *SR2 = TwoUniqueRegsRequired ? (unsigned)PPC::NoRegister : *SR1;
  }

  // Now that we've done our best to provide both registers, double check
  // whether we were unable to provide enough.
  if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
    return false;

  return true;
}

// We need a scratch register for spilling LR and for spilling CR. By default,
// we use two scratch registers to hide latency. However, if only one scratch
// register is available, we can adjust for that by not overlapping the spill
// code. However, if we need to realign the stack (i.e. have a base pointer)
// and the stack frame is large, we need two scratch registers.
bool
PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  MachineFunction &MF = *(MBB->getParent());
  bool HasBP = RegInfo->hasBasePointer(MF);
  unsigned FrameSize = determineFrameLayout(MF);
  int NegFrameSize = -FrameSize;
  bool IsLargeFrame = !isInt<16>(NegFrameSize);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned MaxAlign = MFI.getMaxAlignment();
  bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();

  return (IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1;
}

bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);

  return findScratchRegister(TmpMBB, false,
                             twoUniqueScratchRegsRequired(TmpMBB));
}

bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);

  return findScratchRegister(TmpMBB, true);
}

bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();

  // Abort if there is no register info or function info.
  if (!RegInfo || !FI)
    return false;

  // Only move the stack update on ELFv2 ABI and PPC64.
  if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
    return false;

  // Check the frame size first and return false if it does not fit the
  // requirements.
  // We need a non-zero frame size as well as a frame that will fit in the red
  // zone. This is because by moving the stack pointer update we are now storing
  // to the red zone until the stack pointer is updated. If we get an interrupt
  // inside the prologue but before the stack update we now have a number of
  // stores to the red zone and those stores must all fit.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned FrameSize = MFI.getStackSize();
  if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
    return false;

  // Frame pointers and base pointers complicate matters so don't do anything
  // if we have them. For example having a frame pointer will sometimes require
  // a copy of r1 into r31 and that makes keeping track of updates to r1 more
  // difficult.
  if (hasFP(MF) || RegInfo->hasBasePointer(MF))
    return false;

  // Calls to fast_cc functions use different rules for passing parameters on
  // the stack from the ABI and using PIC base in the function imposes
  // similar restrictions to using the base pointer. It is not generally safe
  // to move the stack pointer update in these situations.
  if (FI->hasFastCall() || FI->usesPICBase())
    return false;

  // Finally we can move the stack update if we do not require register
  // scavenging. Register scavenging can introduce more spills and so
  // may make the frame size larger than we have computed.
  return !RegInfo->requiresFrameIndexScavenging(MF);
}

void PPCFrameLowering::emitPrologue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.begin();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
  DebugLoc dl;
  bool needsCFI = MF.needsFrameMoves();

  // Get processor type.
  bool isPPC64 = Subtarget.isPPC64();
  // Get the ABI.
  bool isSVR4ABI = Subtarget.isSVR4ABI();
  bool isAIXABI = Subtarget.isAIXABI();
  bool isELFv2ABI = Subtarget.isELFv2ABI();
  assert((Subtarget.isDarwinABI() || isSVR4ABI || isAIXABI) &&
         "Unsupported PPC ABI.");

  // Scan the prolog, looking for an UPDATE_VRSAVE instruction.  If we find it,
  // process it.
  if (!isSVR4ABI)
    for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) {
      if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) {
        if (isAIXABI)
          report_fatal_error("UPDATE_VRSAVE is unexpected on AIX.");
        HandleVRSaveUpdate(*MBBI, TII);
        break;
      }
    }

  // Move MBBI back to the beginning of the prologue block.
  MBBI = MBB.begin();

  // Work out frame sizes.
  unsigned FrameSize = determineFrameLayoutAndUpdate(MF);
  int NegFrameSize = -FrameSize;
  if (!isInt<32>(NegFrameSize))
    llvm_unreachable("Unhandled stack size!");

  if (MFI.isFrameAddressTaken())
    replaceFPWithRealFP(MF);

  // Check if the link register (LR) must be saved.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  bool MustSaveLR = FI->mustSaveLR();
  bool MustSaveTOC = FI->mustSaveTOC();
  const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
  bool MustSaveCR = !MustSaveCRs.empty();
  // Do we have a frame pointer and/or base pointer for this function?
  bool HasFP = hasFP(MF);
  bool HasBP = RegInfo->hasBasePointer(MF);
  bool HasRedZone = isPPC64 || !isSVR4ABI;

  unsigned SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
  Register BPReg = RegInfo->getBaseRegister(MF);
  unsigned FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
  unsigned LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
  unsigned TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
  unsigned ScratchReg  = 0;
  unsigned TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
  //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
  const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
                                                : PPC::MFLR );
  const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
                                                 : PPC::STW );
  const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
                                                     : PPC::STWU );
  const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
                                                        : PPC::STWUX);
  const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
                                                          : PPC::LIS );
  const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
                                                 : PPC::ORI );
  const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
                                              : PPC::OR );
  const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
                                                            : PPC::SUBFC);
  const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
                                                               : PPC::SUBFIC);

  // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
  // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
  // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
  // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
  assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
         "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");

  // Using the same bool variable as below to suppress compiler warnings.
  bool SingleScratchReg =
    findScratchRegister(&MBB, false, twoUniqueScratchRegsRequired(&MBB),
                        &ScratchReg, &TempReg);
  assert(SingleScratchReg &&
         "Required number of registers not available in this block");

  SingleScratchReg = ScratchReg == TempReg;

  int LROffset = getReturnSaveOffset();

  int FPOffset = 0;
  if (HasFP) {
    if (isSVR4ABI) {
      MachineFrameInfo &MFI = MF.getFrameInfo();
      int FPIndex = FI->getFramePointerSaveIndex();
      assert(FPIndex && "No Frame Pointer Save Slot!");
      FPOffset = MFI.getObjectOffset(FPIndex);
    } else {
      FPOffset = getFramePointerSaveOffset();
    }
  }

  int BPOffset = 0;
  if (HasBP) {
    if (isSVR4ABI) {
      MachineFrameInfo &MFI = MF.getFrameInfo();
      int BPIndex = FI->getBasePointerSaveIndex();
      assert(BPIndex && "No Base Pointer Save Slot!");
      BPOffset = MFI.getObjectOffset(BPIndex);
    } else {
      BPOffset = getBasePointerSaveOffset();
    }
  }

  int PBPOffset = 0;
  if (FI->usesPICBase()) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    int PBPIndex = FI->getPICBasePointerSaveIndex();
    assert(PBPIndex && "No PIC Base Pointer Save Slot!");
    PBPOffset = MFI.getObjectOffset(PBPIndex);
  }

  // Get stack alignments.
  unsigned MaxAlign = MFI.getMaxAlignment();
  if (HasBP && MaxAlign > 1)
    assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) &&
           "Invalid alignment!");

  // Frames of 32KB & larger require special handling because they cannot be
  // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
  bool isLargeFrame = !isInt<16>(NegFrameSize);

  assert((isPPC64 || !MustSaveCR) &&
         "Prologue CR saving supported only in 64-bit mode");

  if (MustSaveCR && isAIXABI)
    report_fatal_error("Prologue CR saving is unimplemented on AIX.");

  // Check if we can move the stack update instruction (stdu) down the prologue
  // past the callee saves. Hopefully this will avoid the situation where the
  // saves are waiting for the update on the store with update to complete.
  MachineBasicBlock::iterator StackUpdateLoc = MBBI;
  bool MovingStackUpdateDown = false;

  // Check if we can move the stack update.
  if (stackUpdateCanBeMoved(MF)) {
    const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
    for (CalleeSavedInfo CSI : Info) {
      int FrIdx = CSI.getFrameIdx();
      // If the frame index is not negative the callee saved info belongs to a
      // stack object that is not a fixed stack object. We ignore non-fixed
      // stack objects because we won't move the stack update pointer past them.
      if (FrIdx >= 0)
        continue;

      if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
        StackUpdateLoc++;
        MovingStackUpdateDown = true;
      } else {
        // We need all of the Frame Indices to meet these conditions.
        // If they do not, abort the whole operation.
        StackUpdateLoc = MBBI;
        MovingStackUpdateDown = false;
        break;
      }
    }

    // If the operation was not aborted then update the object offset.
    if (MovingStackUpdateDown) {
      for (CalleeSavedInfo CSI : Info) {
        int FrIdx = CSI.getFrameIdx();
        if (FrIdx < 0)
          MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
      }
    }
  }

  // If we need to spill the CR and the LR but we don't have two separate
  // registers available, we must spill them one at a time
  if (MustSaveCR && SingleScratchReg && MustSaveLR) {
    // In the ELFv2 ABI, we are not required to save all CR fields.
    // If only one or two CR fields are clobbered, it is more efficient to use
    // mfocrf to selectively save just those fields, because mfocrf has short
    // latency compares to mfcr.
    unsigned MfcrOpcode = PPC::MFCR8;
    unsigned CrState = RegState::ImplicitKill;
    if (isELFv2ABI && MustSaveCRs.size() == 1) {
      MfcrOpcode = PPC::MFOCRF8;
      CrState = RegState::Kill;
    }
    MachineInstrBuilder MIB =
      BuildMI(MBB, MBBI, dl, TII.get(MfcrOpcode), TempReg);
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      MIB.addReg(MustSaveCRs[i], CrState);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::STW8))
      .addReg(TempReg, getKillRegState(true))
      .addImm(getCRSaveOffset())
      .addReg(SPReg);
  }

  if (MustSaveLR)
    BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);

  if (MustSaveCR &&
      !(SingleScratchReg && MustSaveLR)) { // will only occur for PPC64
    // In the ELFv2 ABI, we are not required to save all CR fields.
    // If only one or two CR fields are clobbered, it is more efficient to use
    // mfocrf to selectively save just those fields, because mfocrf has short
    // latency compares to mfcr.
    unsigned MfcrOpcode = PPC::MFCR8;
    unsigned CrState = RegState::ImplicitKill;
    if (isELFv2ABI && MustSaveCRs.size() == 1) {
      MfcrOpcode = PPC::MFOCRF8;
      CrState = RegState::Kill;
    }
    MachineInstrBuilder MIB =
      BuildMI(MBB, MBBI, dl, TII.get(MfcrOpcode), TempReg);
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      MIB.addReg(MustSaveCRs[i], CrState);
  }

  if (HasRedZone) {
    if (HasFP)
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(FPReg)
        .addImm(FPOffset)
        .addReg(SPReg);
    if (FI->usesPICBase())
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(PPC::R30)
        .addImm(PBPOffset)
        .addReg(SPReg);
    if (HasBP)
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(BPReg)
        .addImm(BPOffset)
        .addReg(SPReg);
  }

  if (MustSaveLR)
    BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
      .addReg(ScratchReg, getKillRegState(true))
      .addImm(LROffset)
      .addReg(SPReg);

  if (MustSaveCR &&
      !(SingleScratchReg && MustSaveLR)) { // will only occur for PPC64
    assert(HasRedZone && "A red zone is always available on PPC64");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::STW8))
      .addReg(TempReg, getKillRegState(true))
      .addImm(getCRSaveOffset())
      .addReg(SPReg);
  }

  // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
  if (!FrameSize)
    return;

  // Adjust stack pointer: r1 += NegFrameSize.
  // If there is a preferred stack alignment, align R1 now

  if (HasBP && HasRedZone) {
    // Save a copy of r1 as the base pointer.
    BuildMI(MBB, MBBI, dl, OrInst, BPReg)
      .addReg(SPReg)
      .addReg(SPReg);
  }

  // Have we generated a STUX instruction to claim stack frame? If so,
  // the negated frame size will be placed in ScratchReg.
  bool HasSTUX = false;

  // This condition must be kept in sync with canUseAsPrologue.
  if (HasBP && MaxAlign > 1) {
    if (isPPC64)
      BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
        .addReg(SPReg)
        .addImm(0)
        .addImm(64 - Log2_32(MaxAlign));
    else // PPC32...
      BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
        .addReg(SPReg)
        .addImm(0)
        .addImm(32 - Log2_32(MaxAlign))
        .addImm(31);
    if (!isLargeFrame) {
      BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
        .addReg(ScratchReg, RegState::Kill)
        .addImm(NegFrameSize);
    } else {
      assert(!SingleScratchReg && "Only a single scratch reg available");
      BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
        .addImm(NegFrameSize >> 16);
      BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
        .addReg(TempReg, RegState::Kill)
        .addImm(NegFrameSize & 0xFFFF);
      BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
        .addReg(ScratchReg, RegState::Kill)
        .addReg(TempReg, RegState::Kill);
    }

    BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
      .addReg(SPReg, RegState::Kill)
      .addReg(SPReg)
      .addReg(ScratchReg);
    HasSTUX = true;

  } else if (!isLargeFrame) {
    BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
      .addReg(SPReg)
      .addImm(NegFrameSize)
      .addReg(SPReg);

  } else {
    BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
      .addImm(NegFrameSize >> 16);
    BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
      .addReg(ScratchReg, RegState::Kill)
      .addImm(NegFrameSize & 0xFFFF);
    BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
      .addReg(SPReg, RegState::Kill)
      .addReg(SPReg)
      .addReg(ScratchReg);
    HasSTUX = true;
  }

  // Save the TOC register after the stack pointer update if a prologue TOC
  // save is required for the function.
  if (MustSaveTOC) {
    assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
    BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
      .addReg(TOCReg, getKillRegState(true))
      .addImm(TOCSaveOffset)
      .addReg(SPReg);
  }

  if (!HasRedZone) {
    assert(!isPPC64 && "A red zone is always available on PPC64");
    if (HasSTUX) {
      // The negated frame size is in ScratchReg, and the SPReg has been
      // decremented by the frame size: SPReg = old SPReg + ScratchReg.
      // Since FPOffset, PBPOffset, etc. are relative to the beginning of
      // the stack frame (i.e. the old SP), ideally, we would put the old
      // SP into a register and use it as the base for the stores. The
      // problem is that the only available register may be ScratchReg,
      // which could be R0, and R0 cannot be used as a base address.

      // First, set ScratchReg to the old SP. This may need to be modified
      // later.
      BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
        .addReg(ScratchReg, RegState::Kill)
        .addReg(SPReg);

      if (ScratchReg == PPC::R0) {
        // R0 cannot be used as a base register, but it can be used as an
        // index in a store-indexed.
        int LastOffset = 0;
        if (HasFP)  {
          // R0 += (FPOffset-LastOffset).
          // Need addic, since addi treats R0 as 0.
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(FPOffset-LastOffset);
          LastOffset = FPOffset;
          // Store FP into *R0.
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(FPReg, RegState::Kill)  // Save FP.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
        }
        if (FI->usesPICBase()) {
          // R0 += (PBPOffset-LastOffset).
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(PBPOffset-LastOffset);
          LastOffset = PBPOffset;
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
        }
        if (HasBP) {
          // R0 += (BPOffset-LastOffset).
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(BPOffset-LastOffset);
          LastOffset = BPOffset;
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(BPReg, RegState::Kill)  // Save BP.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
          // BP = R0-LastOffset
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
            .addReg(ScratchReg, RegState::Kill)
            .addImm(-LastOffset);
        }
      } else {
        // ScratchReg is not R0, so use it as the base register. It is
        // already set to the old SP, so we can use the offsets directly.

        // Now that the stack frame has been allocated, save all the necessary
        // registers using ScratchReg as the base address.
        if (HasFP)
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(FPReg)
            .addImm(FPOffset)
            .addReg(ScratchReg);
        if (FI->usesPICBase())
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(PPC::R30)
            .addImm(PBPOffset)
            .addReg(ScratchReg);
        if (HasBP) {
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(BPReg)
            .addImm(BPOffset)
            .addReg(ScratchReg);
          BuildMI(MBB, MBBI, dl, OrInst, BPReg)
            .addReg(ScratchReg, RegState::Kill)
            .addReg(ScratchReg);
        }
      }
    } else {
      // The frame size is a known 16-bit constant (fitting in the immediate
      // field of STWU). To be here we have to be compiling for PPC32.
      // Since the SPReg has been decreased by FrameSize, add it back to each
      // offset.
      if (HasFP)
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(FPReg)
          .addImm(FrameSize + FPOffset)
          .addReg(SPReg);
      if (FI->usesPICBase())
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(PPC::R30)
          .addImm(FrameSize + PBPOffset)
          .addReg(SPReg);
      if (HasBP) {
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(BPReg)
          .addImm(FrameSize + BPOffset)
          .addReg(SPReg);
        BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
          .addReg(SPReg)
          .addImm(FrameSize);
      }
    }
  }

  // Add Call Frame Information for the instructions we generated above.
  if (needsCFI) {
    unsigned CFIIndex;

    if (HasBP) {
      // Define CFA in terms of BP. Do this in preference to using FP/SP,
      // because if the stack needed aligning then CFA won't be at a fixed
      // offset from FP/SP.
      unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
    } else {
      // Adjust the definition of CFA to account for the change in SP.
      assert(NegFrameSize);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaOffset(nullptr, NegFrameSize));
    }
    BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);

    if (HasFP) {
      // Describe where FP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }

    if (FI->usesPICBase()) {
      // Describe where FP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }

    if (HasBP) {
      // Describe where BP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }

    if (MustSaveLR) {
      // Describe where LR was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
  }

  // If there is a frame pointer, copy R1 into R31
  if (HasFP) {
    BuildMI(MBB, MBBI, dl, OrInst, FPReg)
      .addReg(SPReg)
      .addReg(SPReg);

    if (!HasBP && needsCFI) {
      // Change the definition of CFA from SP+offset to FP+offset, because SP
      // will change at every alloca.
      unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
      unsigned CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaRegister(nullptr, Reg));

      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
  }

  if (needsCFI) {
    // Describe where callee saved registers were saved, at fixed offsets from
    // CFA.
    const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
    for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
      unsigned Reg = CSI[I].getReg();
      if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;

      // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
      // subregisters of CR2. We just need to emit a move of CR2.
      if (PPC::CRBITRCRegClass.contains(Reg))
        continue;

      if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
        continue;

      // For SVR4, don't emit a move for the CR spill slot if we haven't
      // spilled CRs.
      if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
          && !MustSaveCR)
        continue;

      // For 64-bit SVR4 when we have spilled CRs, the spill location
      // is SP+8, not a frame-relative slot.
      if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
        // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
        // the whole CR word.  In the ELFv2 ABI, every CR that was
        // actually saved gets its own CFI record.
        unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
        unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
            nullptr, MRI->getDwarfRegNum(CRReg, true), getCRSaveOffset()));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
            .addCFIIndex(CFIIndex);
        continue;
      }

      if (CSI[I].isSpilledToReg()) {
        unsigned SpilledReg = CSI[I].getDstReg();
        unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
            nullptr, MRI->getDwarfRegNum(Reg, true),
            MRI->getDwarfRegNum(SpilledReg, true)));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIRegister);
      } else {
        int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx());
        // We have changed the object offset above but we do not want to change
        // the actual offsets in the CFI instruction so we have to undo the
        // offset change here.
        if (MovingStackUpdateDown)
          Offset -= NegFrameSize;

        unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
            nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
            .addCFIIndex(CFIIndex);
      }
    }
  }
}

void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  DebugLoc dl;

  if (MBBI != MBB.end())
    dl = MBBI->getDebugLoc();

  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  // Get alignment info so we know how to restore the SP.
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Get the number of bytes allocated from the FrameInfo.
  int FrameSize = MFI.getStackSize();

  // Get processor type.
  bool isPPC64 = Subtarget.isPPC64();
  // Get the ABI.
  bool isSVR4ABI = Subtarget.isSVR4ABI();

  // Check if the link register (LR) has been saved.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  bool MustSaveLR = FI->mustSaveLR();
  const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
  bool MustSaveCR = !MustSaveCRs.empty();
  // Do we have a frame pointer and/or base pointer for this function?
  bool HasFP = hasFP(MF);
  bool HasBP = RegInfo->hasBasePointer(MF);
  bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();

  unsigned SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
  Register BPReg = RegInfo->getBaseRegister(MF);
  unsigned FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
  unsigned ScratchReg = 0;
  unsigned TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
  const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
                                                 : PPC::MTLR );
  const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
                                                 : PPC::LWZ );
  const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
                                                           : PPC::LIS );
  const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
                                              : PPC::OR );
  const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
                                                  : PPC::ORI );
  const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
                                                   : PPC::ADDI );
  const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
                                                : PPC::ADD4 );

  int LROffset = getReturnSaveOffset();

  int FPOffset = 0;

  // Using the same bool variable as below to suppress compiler warnings.
  bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
                                              &TempReg);
  assert(SingleScratchReg &&
         "Could not find an available scratch register");

  SingleScratchReg = ScratchReg == TempReg;

  if (HasFP) {
    if (isSVR4ABI) {
      int FPIndex = FI->getFramePointerSaveIndex();
      assert(FPIndex && "No Frame Pointer Save Slot!");
      FPOffset = MFI.getObjectOffset(FPIndex);
    } else {
      FPOffset = getFramePointerSaveOffset();
    }
  }

  int BPOffset = 0;
  if (HasBP) {
    if (isSVR4ABI) {
      int BPIndex = FI->getBasePointerSaveIndex();
      assert(BPIndex && "No Base Pointer Save Slot!");
      BPOffset = MFI.getObjectOffset(BPIndex);
    } else {
      BPOffset = getBasePointerSaveOffset();
    }
  }

  int PBPOffset = 0;
  if (FI->usesPICBase()) {
    int PBPIndex = FI->getPICBasePointerSaveIndex();
    assert(PBPIndex && "No PIC Base Pointer Save Slot!");
    PBPOffset = MFI.getObjectOffset(PBPIndex);
  }

  bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());

  if (IsReturnBlock) {
    unsigned RetOpcode = MBBI->getOpcode();
    bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
                      RetOpcode == PPC::TCRETURNdi ||
                      RetOpcode == PPC::TCRETURNai ||
                      RetOpcode == PPC::TCRETURNri8 ||
                      RetOpcode == PPC::TCRETURNdi8 ||
                      RetOpcode == PPC::TCRETURNai8;

    if (UsesTCRet) {
      int MaxTCRetDelta = FI->getTailCallSPDelta();
      MachineOperand &StackAdjust = MBBI->getOperand(1);
      assert(StackAdjust.isImm() && "Expecting immediate value.");
      // Adjust stack pointer.
      int StackAdj = StackAdjust.getImm();
      int Delta = StackAdj - MaxTCRetDelta;
      assert((Delta >= 0) && "Delta must be positive");
      if (MaxTCRetDelta>0)
        FrameSize += (StackAdj +Delta);
      else
        FrameSize += StackAdj;
    }
  }

  // Frames of 32KB & larger require special handling because they cannot be
  // indexed into with a simple LD/LWZ immediate offset operand.
  bool isLargeFrame = !isInt<16>(FrameSize);

  // On targets without red zone, the SP needs to be restored last, so that
  // all live contents of the stack frame are upwards of the SP. This means
  // that we cannot restore SP just now, since there may be more registers
  // to restore from the stack frame (e.g. R31). If the frame size is not
  // a simple immediate value, we will need a spare register to hold the
  // restored SP. If the frame size is known and small, we can simply adjust
  // the offsets of the registers to be restored, and still use SP to restore
  // them. In such case, the final update of SP will be to add the frame
  // size to it.
  // To simplify the code, set RBReg to the base register used to restore
  // values from the stack, and set SPAdd to the value that needs to be added
  // to the SP at the end. The default values are as if red zone was present.
  unsigned RBReg = SPReg;
  unsigned SPAdd = 0;

  // Check if we can move the stack update instruction up the epilogue
  // past the callee saves. This will allow the move to LR instruction
  // to be executed before the restores of the callee saves which means
  // that the callee saves can hide the latency from the MTLR instrcution.
  MachineBasicBlock::iterator StackUpdateLoc = MBBI;
  if (stackUpdateCanBeMoved(MF)) {
    const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
    for (CalleeSavedInfo CSI : Info) {
      int FrIdx = CSI.getFrameIdx();
      // If the frame index is not negative the callee saved info belongs to a
      // stack object that is not a fixed stack object. We ignore non-fixed
      // stack objects because we won't move the update of the stack pointer
      // past them.
      if (FrIdx >= 0)
        continue;

      if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
        StackUpdateLoc--;
      else {
        // Abort the operation as we can't update all CSR restores.
        StackUpdateLoc = MBBI;
        break;
      }
    }
  }

  if (FrameSize) {
    // In the prologue, the loaded (or persistent) stack pointer value is
    // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
    // zone add this offset back now.

    // If this function contained a fastcc call and GuaranteedTailCallOpt is
    // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
    // call which invalidates the stack pointer value in SP(0). So we use the
    // value of R31 in this case.
    if (FI->hasFastCall()) {
      assert(HasFP && "Expecting a valid frame pointer.");
      if (!HasRedZone)
        RBReg = FPReg;
      if (!isLargeFrame) {
        BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
          .addReg(FPReg).addImm(FrameSize);
      } else {
        BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
          .addImm(FrameSize >> 16);
        BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
          .addReg(ScratchReg, RegState::Kill)
          .addImm(FrameSize & 0xFFFF);
        BuildMI(MBB, MBBI, dl, AddInst)
          .addReg(RBReg)
          .addReg(FPReg)
          .addReg(ScratchReg);
      }
    } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
      if (HasRedZone) {
        BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
          .addReg(SPReg)
          .addImm(FrameSize);
      } else {
        // Make sure that adding FrameSize will not overflow the max offset
        // size.
        assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
               "Local offsets should be negative");
        SPAdd = FrameSize;
        FPOffset += FrameSize;
        BPOffset += FrameSize;
        PBPOffset += FrameSize;
      }
    } else {
      // We don't want to use ScratchReg as a base register, because it
      // could happen to be R0. Use FP instead, but make sure to preserve it.
      if (!HasRedZone) {
        // If FP is not saved, copy it to ScratchReg.
        if (!HasFP)
          BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
            .addReg(FPReg)
            .addReg(FPReg);
        RBReg = FPReg;
      }
      BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
        .addImm(0)
        .addReg(SPReg);
    }
  }
  assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
  // If there is no red zone, ScratchReg may be needed for holding a useful
  // value (although not the base register). Make sure it is not overwritten
  // too early.

  assert((isPPC64 || !MustSaveCR) &&
         "Epilogue CR restoring supported only in 64-bit mode");

  // If we need to restore both the LR and the CR and we only have one
  // available scratch register, we must do them one at a time.
  if (MustSaveCR && SingleScratchReg && MustSaveLR) {
    // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
    // is live here.
    assert(HasRedZone && "Expecting red zone");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ8), TempReg)
      .addImm(getCRSaveOffset())
      .addReg(SPReg);
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      BuildMI(MBB, MBBI, dl, TII.get(PPC::MTOCRF8), MustSaveCRs[i])
        .addReg(TempReg, getKillRegState(i == e-1));
  }

  // Delay restoring of the LR if ScratchReg is needed. This is ok, since
  // LR is stored in the caller's stack frame. ScratchReg will be needed
  // if RBReg is anything other than SP. We shouldn't use ScratchReg as
  // a base register anyway, because it may happen to be R0.
  bool LoadedLR = false;
  if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
    BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
      .addImm(LROffset+SPAdd)
      .addReg(RBReg);
    LoadedLR = true;
  }

  if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
    // This will only occur for PPC64.
    assert(isPPC64 && "Expecting 64-bit mode");
    assert(RBReg == SPReg && "Should be using SP as a base register");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ8), TempReg)
      .addImm(getCRSaveOffset())
      .addReg(RBReg);
  }

  if (HasFP) {
    // If there is red zone, restore FP directly, since SP has already been
    // restored. Otherwise, restore the value of FP into ScratchReg.
    if (HasRedZone || RBReg == SPReg)
      BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
        .addImm(FPOffset)
        .addReg(SPReg);
    else
      BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
        .addImm(FPOffset)
        .addReg(RBReg);
  }

  if (FI->usesPICBase())
    BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
      .addImm(PBPOffset)
      .addReg(RBReg);

  if (HasBP)
    BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
      .addImm(BPOffset)
      .addReg(RBReg);

  // There is nothing more to be loaded from the stack, so now we can
  // restore SP: SP = RBReg + SPAdd.
  if (RBReg != SPReg || SPAdd != 0) {
    assert(!HasRedZone && "This should not happen with red zone");
    // If SPAdd is 0, generate a copy.
    if (SPAdd == 0)
      BuildMI(MBB, MBBI, dl, OrInst, SPReg)
        .addReg(RBReg)
        .addReg(RBReg);
    else
      BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
        .addReg(RBReg)
        .addImm(SPAdd);

    assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
    if (RBReg == FPReg)
      BuildMI(MBB, MBBI, dl, OrInst, FPReg)
        .addReg(ScratchReg)
        .addReg(ScratchReg);

    // Now load the LR from the caller's stack frame.
    if (MustSaveLR && !LoadedLR)
      BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
        .addImm(LROffset)
        .addReg(SPReg);
  }

  if (MustSaveCR &&
      !(SingleScratchReg && MustSaveLR)) // will only occur for PPC64
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      BuildMI(MBB, MBBI, dl, TII.get(PPC::MTOCRF8), MustSaveCRs[i])
        .addReg(TempReg, getKillRegState(i == e-1));

  if (MustSaveLR)
    BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);

  // Callee pop calling convention. Pop parameter/linkage area. Used for tail
  // call optimization
  if (IsReturnBlock) {
    unsigned RetOpcode = MBBI->getOpcode();
    if (MF.getTarget().Options.GuaranteedTailCallOpt &&
        (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
        MF.getFunction().getCallingConv() == CallingConv::Fast) {
      PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
      unsigned CallerAllocatedAmt = FI->getMinReservedArea();

      if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
        BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
          .addReg(SPReg).addImm(CallerAllocatedAmt);
      } else {
        BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
          .addImm(CallerAllocatedAmt >> 16);
        BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
          .addReg(ScratchReg, RegState::Kill)
          .addImm(CallerAllocatedAmt & 0xFFFF);
        BuildMI(MBB, MBBI, dl, AddInst)
          .addReg(SPReg)
          .addReg(FPReg)
          .addReg(ScratchReg);
      }
    } else {
      createTailCallBranchInstr(MBB);
    }
  }
}

void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();

  // If we got this far a first terminator should exist.
  assert(MBBI != MBB.end() && "Failed to find the first terminator.");

  DebugLoc dl = MBBI->getDebugLoc();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();

  // Create branch instruction for pseudo tail call return instruction
  unsigned RetOpcode = MBBI->getOpcode();
  if (RetOpcode == PPC::TCRETURNdi) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
      addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
  } else if (RetOpcode == PPC::TCRETURNri) {
    MBBI = MBB.getLastNonDebugInstr();
    assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
  } else if (RetOpcode == PPC::TCRETURNai) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
  } else if (RetOpcode == PPC::TCRETURNdi8) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
      addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
  } else if (RetOpcode == PPC::TCRETURNri8) {
    MBBI = MBB.getLastNonDebugInstr();
    assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
  } else if (RetOpcode == PPC::TCRETURNai8) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
  }
}

void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
                                            BitVector &SavedRegs,
                                            RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);

  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();

  //  Save and clear the LR state.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  unsigned LR = RegInfo->getRARegister();
  FI->setMustSaveLR(MustSaveLR(MF, LR));
  SavedRegs.reset(LR);

  //  Save R31 if necessary
  int FPSI = FI->getFramePointerSaveIndex();
  const bool isPPC64 = Subtarget.isPPC64();
  const bool IsDarwinABI  = Subtarget.isDarwinABI();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // If the frame pointer save index hasn't been defined yet.
  if (!FPSI && needsFP(MF)) {
    // Find out what the fix offset of the frame pointer save area.
    int FPOffset = getFramePointerSaveOffset();
    // Allocate the frame index for frame pointer save area.
    FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
    // Save the result.
    FI->setFramePointerSaveIndex(FPSI);
  }

  int BPSI = FI->getBasePointerSaveIndex();
  if (!BPSI && RegInfo->hasBasePointer(MF)) {
    int BPOffset = getBasePointerSaveOffset();
    // Allocate the frame index for the base pointer save area.
    BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
    // Save the result.
    FI->setBasePointerSaveIndex(BPSI);
  }

  // Reserve stack space for the PIC Base register (R30).
  // Only used in SVR4 32-bit.
  if (FI->usesPICBase()) {
    int PBPSI = MFI.CreateFixedObject(4, -8, true);
    FI->setPICBasePointerSaveIndex(PBPSI);
  }

  // Make sure we don't explicitly spill r31, because, for example, we have
  // some inline asm which explicitly clobbers it, when we otherwise have a
  // frame pointer and are using r31's spill slot for the prologue/epilogue
  // code. Same goes for the base pointer and the PIC base register.
  if (needsFP(MF))
    SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
  if (RegInfo->hasBasePointer(MF))
    SavedRegs.reset(RegInfo->getBaseRegister(MF));
  if (FI->usesPICBase())
    SavedRegs.reset(PPC::R30);

  // Reserve stack space to move the linkage area to in case of a tail call.
  int TCSPDelta = 0;
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
    MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
  }

  // For 32-bit SVR4, allocate the nonvolatile CR spill slot iff the
  // function uses CR 2, 3, or 4.
  if (!isPPC64 && !IsDarwinABI &&
      (SavedRegs.test(PPC::CR2) ||
       SavedRegs.test(PPC::CR3) ||
       SavedRegs.test(PPC::CR4))) {
    int FrameIdx = MFI.CreateFixedObject((uint64_t)4, (int64_t)-4, true);
    FI->setCRSpillFrameIndex(FrameIdx);
  }
}

void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
                                                       RegScavenger *RS) const {
  // Early exit if not using the SVR4 ABI.
  if (!Subtarget.isSVR4ABI()) {
    addScavengingSpillSlot(MF, RS);
    return;
  }

  // Get callee saved register information.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();

  // If the function is shrink-wrapped, and if the function has a tail call, the
  // tail call might not be in the new RestoreBlock, so real branch instruction
  // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
  // RestoreBlock. So we handle this case here.
  if (MFI.getSavePoint() && MFI.hasTailCall()) {
    MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
    for (MachineBasicBlock &MBB : MF) {
      if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
        createTailCallBranchInstr(MBB);
    }
  }

  // Early exit if no callee saved registers are modified!
  if (CSI.empty() && !needsFP(MF)) {
    addScavengingSpillSlot(MF, RS);
    return;
  }

  unsigned MinGPR = PPC::R31;
  unsigned MinG8R = PPC::X31;
  unsigned MinFPR = PPC::F31;
  unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;

  bool HasGPSaveArea = false;
  bool HasG8SaveArea = false;
  bool HasFPSaveArea = false;
  bool HasVRSAVESaveArea = false;
  bool HasVRSaveArea = false;

  SmallVector<CalleeSavedInfo, 18> GPRegs;
  SmallVector<CalleeSavedInfo, 18> G8Regs;
  SmallVector<CalleeSavedInfo, 18> FPRegs;
  SmallVector<CalleeSavedInfo, 18> VRegs;

  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
            (Reg != PPC::X2 && Reg != PPC::R2)) &&
           "Not expecting to try to spill R2 in a function that must save TOC");
    if (PPC::GPRCRegClass.contains(Reg)) {
      HasGPSaveArea = true;

      GPRegs.push_back(CSI[i]);

      if (Reg < MinGPR) {
        MinGPR = Reg;
      }
    } else if (PPC::G8RCRegClass.contains(Reg)) {
      HasG8SaveArea = true;

      G8Regs.push_back(CSI[i]);

      if (Reg < MinG8R) {
        MinG8R = Reg;
      }
    } else if (PPC::F8RCRegClass.contains(Reg)) {
      HasFPSaveArea = true;

      FPRegs.push_back(CSI[i]);

      if (Reg < MinFPR) {
        MinFPR = Reg;
      }
    } else if (PPC::CRBITRCRegClass.contains(Reg) ||
               PPC::CRRCRegClass.contains(Reg)) {
      ; // do nothing, as we already know whether CRs are spilled
    } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
      HasVRSAVESaveArea = true;
    } else if (PPC::VRRCRegClass.contains(Reg) ||
               PPC::SPERCRegClass.contains(Reg)) {
      // Altivec and SPE are mutually exclusive, but have the same stack
      // alignment requirements, so overload the save area for both cases.
      HasVRSaveArea = true;

      VRegs.push_back(CSI[i]);

      if (Reg < MinVR) {
        MinVR = Reg;
      }
    } else {
      llvm_unreachable("Unknown RegisterClass!");
    }
  }

  PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();

  int64_t LowerBound = 0;

  // Take into account stack space reserved for tail calls.
  int TCSPDelta = 0;
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
    LowerBound = TCSPDelta;
  }

  // The Floating-point register save area is right below the back chain word
  // of the previous stack frame.
  if (HasFPSaveArea) {
    for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
      int FI = FPRegs[i].getFrameIdx();

      MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    }

    LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
  }

  // Check whether the frame pointer register is allocated. If so, make sure it
  // is spilled to the correct offset.
  if (needsFP(MF)) {
    int FI = PFI->getFramePointerSaveIndex();
    assert(FI && "No Frame Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    // FP is R31/X31, so no need to update MinGPR/MinG8R.
    HasGPSaveArea = true;
  }

  if (PFI->usesPICBase()) {
    int FI = PFI->getPICBasePointerSaveIndex();
    assert(FI && "No PIC Base Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));

    MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
    HasGPSaveArea = true;
  }

  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  if (RegInfo->hasBasePointer(MF)) {
    int FI = PFI->getBasePointerSaveIndex();
    assert(FI && "No Base Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));

    Register BP = RegInfo->getBaseRegister(MF);
    if (PPC::G8RCRegClass.contains(BP)) {
      MinG8R = std::min<unsigned>(MinG8R, BP);
      HasG8SaveArea = true;
    } else if (PPC::GPRCRegClass.contains(BP)) {
      MinGPR = std::min<unsigned>(MinGPR, BP);
      HasGPSaveArea = true;
    }
  }

  // General register save area starts right below the Floating-point
  // register save area.
  if (HasGPSaveArea || HasG8SaveArea) {
    // Move general register save area spill slots down, taking into account
    // the size of the Floating-point register save area.
    for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
      if (!GPRegs[i].isSpilledToReg()) {
        int FI = GPRegs[i].getFrameIdx();
        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }

    // Move general register save area spill slots down, taking into account
    // the size of the Floating-point register save area.
    for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
      if (!G8Regs[i].isSpilledToReg()) {
        int FI = G8Regs[i].getFrameIdx();
        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }

    unsigned MinReg =
      std::min<unsigned>(TRI->getEncodingValue(MinGPR),
                         TRI->getEncodingValue(MinG8R));

    if (Subtarget.isPPC64()) {
      LowerBound -= (31 - MinReg + 1) * 8;
    } else {
      LowerBound -= (31 - MinReg + 1) * 4;
    }
  }

  // For 32-bit only, the CR save area is below the general register
  // save area.  For 64-bit SVR4, the CR save area is addressed relative
  // to the stack pointer and hence does not need an adjustment here.
  // Only CR2 (the first nonvolatile spilled) has an associated frame
  // index so that we have a single uniform save area.
  if (spillsCR(MF) && !(Subtarget.isPPC64() && Subtarget.isSVR4ABI())) {
    // Adjust the frame index of the CR spill slot.
    for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
      unsigned Reg = CSI[i].getReg();

      if ((Subtarget.isSVR4ABI() && Reg == PPC::CR2)
          // Leave Darwin logic as-is.
          || (!Subtarget.isSVR4ABI() &&
              (PPC::CRBITRCRegClass.contains(Reg) ||
               PPC::CRRCRegClass.contains(Reg)))) {
        int FI = CSI[i].getFrameIdx();

        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }

    LowerBound -= 4; // The CR save area is always 4 bytes long.
  }

  if (HasVRSAVESaveArea) {
    // FIXME SVR4: Is it actually possible to have multiple elements in CSI
    //             which have the VRSAVE register class?
    // Adjust the frame index of the VRSAVE spill slot.
    for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
      unsigned Reg = CSI[i].getReg();

      if (PPC::VRSAVERCRegClass.contains(Reg)) {
        int FI = CSI[i].getFrameIdx();

        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }

    LowerBound -= 4; // The VRSAVE save area is always 4 bytes long.
  }

  // Both Altivec and SPE have the same alignment and padding requirements
  // within the stack frame.
  if (HasVRSaveArea) {
    // Insert alignment padding, we need 16-byte alignment. Note: for positive
    // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
    // we are using negative number here (the stack grows downward). We should
    // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
    // is the alignment size ( n = 16 here) and y is the size after aligning.
    assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
    LowerBound &= ~(15);

    for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
      int FI = VRegs[i].getFrameIdx();

      MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    }
  }

  addScavengingSpillSlot(MF, RS);
}

void
PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
                                         RegScavenger *RS) const {
  // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
  // a large stack, which will require scavenging a register to materialize a
  // large offset.

  // We need to have a scavenger spill slot for spills if the frame size is
  // large. In case there is no free register for large-offset addressing,
  // this slot is used for the necessary emergency spill. Also, we need the
  // slot for dynamic stack allocations.

  // The scavenger might be invoked if the frame offset does not fit into
  // the 16-bit immediate. We don't know the complete frame size here
  // because we've not yet computed callee-saved register spills or the
  // needed alignment padding.
  unsigned StackSize = determineFrameLayout(MF, true);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MFI.hasVarSizedObjects() || spillsCR(MF) || spillsVRSAVE(MF) ||
      hasNonRISpills(MF) || (hasSpills(MF) && !isInt<16>(StackSize))) {
    const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
    const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
    const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
    const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
    unsigned Size = TRI.getSpillSize(RC);
    unsigned Align = TRI.getSpillAlignment(RC);
    RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));

    // Might we have over-aligned allocas?
    bool HasAlVars = MFI.hasVarSizedObjects() &&
                     MFI.getMaxAlignment() > getStackAlignment();

    // These kinds of spills might need two registers.
    if (spillsCR(MF) || spillsVRSAVE(MF) || HasAlVars)
      RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));

  }
}

// This function checks if a callee saved gpr can be spilled to a volatile
// vector register. This occurs for leaf functions when the option
// ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
// which were not spilled to vectors, return false so the target independent
// code can handle them by assigning a FrameIdx to a stack slot.
bool PPCFrameLowering::assignCalleeSavedSpillSlots(
    MachineFunction &MF, const TargetRegisterInfo *TRI,
    std::vector<CalleeSavedInfo> &CSI) const {

  if (CSI.empty())
    return true; // Early exit if no callee saved registers are modified!

  // Early exit if cannot spill gprs to volatile vector registers.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
    return false;

  // Build a BitVector of VSRs that can be used for spilling GPRs.
  BitVector BVAllocatable = TRI->getAllocatableSet(MF);
  BitVector BVCalleeSaved(TRI->getNumRegs());
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
  for (unsigned i = 0; CSRegs[i]; ++i)
    BVCalleeSaved.set(CSRegs[i]);

  for (unsigned Reg : BVAllocatable.set_bits()) {
    // Set to 0 if the register is not a volatile VF/F8 register, or if it is
    // used in the function.
    if (BVCalleeSaved[Reg] ||
        (!PPC::F8RCRegClass.contains(Reg) &&
         !PPC::VFRCRegClass.contains(Reg)) ||
        (MF.getRegInfo().isPhysRegUsed(Reg)))
      BVAllocatable.reset(Reg);
  }

  bool AllSpilledToReg = true;
  for (auto &CS : CSI) {
    if (BVAllocatable.none())
      return false;

    unsigned Reg = CS.getReg();
    if (!PPC::G8RCRegClass.contains(Reg) && !PPC::GPRCRegClass.contains(Reg)) {
      AllSpilledToReg = false;
      continue;
    }

    unsigned VolatileVFReg = BVAllocatable.find_first();
    if (VolatileVFReg < BVAllocatable.size()) {
      CS.setDstReg(VolatileVFReg);
      BVAllocatable.reset(VolatileVFReg);
    } else {
      AllSpilledToReg = false;
    }
  }
  return AllSpilledToReg;
}


bool
PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator MI,
                                     const std::vector<CalleeSavedInfo> &CSI,
                                     const TargetRegisterInfo *TRI) const {

  // Currently, this function only handles SVR4 32- and 64-bit ABIs.
  // Return false otherwise to maintain pre-existing behavior.
  if (!Subtarget.isSVR4ABI())
    return false;

  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
  bool MustSaveTOC = FI->mustSaveTOC();
  DebugLoc DL;
  bool CRSpilled = false;
  MachineInstrBuilder CRMIB;

  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    // Only Darwin actually uses the VRSAVE register, but it can still appear
    // here if, for example, @llvm.eh.unwind.init() is used.  If we're not on
    // Darwin, ignore it.
    if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
      continue;

    // CR2 through CR4 are the nonvolatile CR fields.
    bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;

    // Add the callee-saved register as live-in; it's killed at the spill.
    // Do not do this for callee-saved registers that are live-in to the
    // function because they will already be marked live-in and this will be
    // adding it for a second time. It is an error to add the same register
    // to the set more than once.
    const MachineRegisterInfo &MRI = MF->getRegInfo();
    bool IsLiveIn = MRI.isLiveIn(Reg);
    if (!IsLiveIn)
       MBB.addLiveIn(Reg);

    if (CRSpilled && IsCRField) {
      CRMIB.addReg(Reg, RegState::ImplicitKill);
      continue;
    }

    // The actual spill will happen in the prologue.
    if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
      continue;

    // Insert the spill to the stack frame.
    if (IsCRField) {
      PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
      if (Subtarget.isPPC64()) {
        // The actual spill will happen at the start of the prologue.
        FuncInfo->addMustSaveCR(Reg);
      } else {
        CRSpilled = true;
        FuncInfo->setSpillsCR();

        // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
        // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
        CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
                  .addReg(Reg, RegState::ImplicitKill);

        MBB.insert(MI, CRMIB);
        MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
                                         .addReg(PPC::R12,
                                                 getKillRegState(true)),
                                         CSI[i].getFrameIdx()));
      }
    } else {
      if (CSI[i].isSpilledToReg()) {
        NumPESpillVSR++;
        BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), CSI[i].getDstReg())
          .addReg(Reg, getKillRegState(true));
      } else {
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        // Use !IsLiveIn for the kill flag.
        // We do not want to kill registers that are live in this function
        // before their use because they will become undefined registers.
        TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn,
                                CSI[i].getFrameIdx(), RC, TRI);
      }
    }
  }
  return true;
}

static void
restoreCRs(bool isPPC64, bool is31,
           bool CR2Spilled, bool CR3Spilled, bool CR4Spilled,
           MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
           const std::vector<CalleeSavedInfo> &CSI, unsigned CSIIndex) {

  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  DebugLoc DL;
  unsigned RestoreOp, MoveReg;

  if (isPPC64)
    // This is handled during epilogue generation.
    return;
  else {
    // 32-bit:  FP-relative
    MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ),
                                             PPC::R12),
                                     CSI[CSIIndex].getFrameIdx()));
    RestoreOp = PPC::MTOCRF;
    MoveReg = PPC::R12;
  }

  if (CR2Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
               .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));

  if (CR3Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
               .addReg(MoveReg, getKillRegState(!CR4Spilled)));

  if (CR4Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
               .addReg(MoveReg, getKillRegState(true)));
}

MachineBasicBlock::iterator PPCFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I) const {
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      I->getOpcode() == PPC::ADJCALLSTACKUP) {
    // Add (actually subtract) back the amount the callee popped on return.
    if (int CalleeAmt =  I->getOperand(1).getImm()) {
      bool is64Bit = Subtarget.isPPC64();
      CalleeAmt *= -1;
      unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
      unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
      unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
      unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
      unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
      unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
      const DebugLoc &dl = I->getDebugLoc();

      if (isInt<16>(CalleeAmt)) {
        BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
          .addReg(StackReg, RegState::Kill)
          .addImm(CalleeAmt);
      } else {
        MachineBasicBlock::iterator MBBI = I;
        BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
          .addImm(CalleeAmt >> 16);
        BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
          .addReg(TmpReg, RegState::Kill)
          .addImm(CalleeAmt & 0xFFFF);
        BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
          .addReg(StackReg, RegState::Kill)
          .addReg(TmpReg);
      }
    }
  }
  // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
  return MBB.erase(I);
}

bool
PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator MI,
                                        std::vector<CalleeSavedInfo> &CSI,
                                        const TargetRegisterInfo *TRI) const {

  // Currently, this function only handles SVR4 32- and 64-bit ABIs.
  // Return false otherwise to maintain pre-existing behavior.
  if (!Subtarget.isSVR4ABI())
    return false;

  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
  bool MustSaveTOC = FI->mustSaveTOC();
  bool CR2Spilled = false;
  bool CR3Spilled = false;
  bool CR4Spilled = false;
  unsigned CSIIndex = 0;

  // Initialize insertion-point logic; we will be restoring in reverse
  // order of spill.
  MachineBasicBlock::iterator I = MI, BeforeI = I;
  bool AtStart = I == MBB.begin();

  if (!AtStart)
    --BeforeI;

  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();

    // Only Darwin actually uses the VRSAVE register, but it can still appear
    // here if, for example, @llvm.eh.unwind.init() is used.  If we're not on
    // Darwin, ignore it.
    if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
      continue;

    if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
      continue;

    if (Reg == PPC::CR2) {
      CR2Spilled = true;
      // The spill slot is associated only with CR2, which is the
      // first nonvolatile spilled.  Save it here.
      CSIIndex = i;
      continue;
    } else if (Reg == PPC::CR3) {
      CR3Spilled = true;
      continue;
    } else if (Reg == PPC::CR4) {
      CR4Spilled = true;
      continue;
    } else {
      // When we first encounter a non-CR register after seeing at
      // least one CR register, restore all spilled CRs together.
      if ((CR2Spilled || CR3Spilled || CR4Spilled)
          && !(PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
        bool is31 = needsFP(*MF);
        restoreCRs(Subtarget.isPPC64(), is31,
                   CR2Spilled, CR3Spilled, CR4Spilled,
                   MBB, I, CSI, CSIIndex);
        CR2Spilled = CR3Spilled = CR4Spilled = false;
      }

      if (CSI[i].isSpilledToReg()) {
        DebugLoc DL;
        NumPEReloadVSR++;
        BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), Reg)
            .addReg(CSI[i].getDstReg(), getKillRegState(true));
      } else {
       // Default behavior for non-CR saves.
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
        assert(I != MBB.begin() &&
               "loadRegFromStackSlot didn't insert any code!");
      }
    }

    // Insert in reverse order.
    if (AtStart)
      I = MBB.begin();
    else {
      I = BeforeI;
      ++I;
    }
  }

  // If we haven't yet spilled the CRs, do so now.
  if (CR2Spilled || CR3Spilled || CR4Spilled) {
    bool is31 = needsFP(*MF);
    restoreCRs(Subtarget.isPPC64(), is31, CR2Spilled, CR3Spilled, CR4Spilled,
               MBB, I, CSI, CSIIndex);
  }

  return true;
}

unsigned PPCFrameLowering::getTOCSaveOffset() const {
  return TOCSaveOffset;
}

unsigned PPCFrameLowering::getFramePointerSaveOffset() const {
  if (Subtarget.isAIXABI())
    report_fatal_error("FramePointer is not implemented on AIX yet.");
  return FramePointerSaveOffset;
}

unsigned PPCFrameLowering::getBasePointerSaveOffset() const {
  if (Subtarget.isAIXABI())
    report_fatal_error("BasePointer is not implemented on AIX yet.");
  return BasePointerSaveOffset;
}

bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
  if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
    return false;
  return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() &&
          MF.getSubtarget<PPCSubtarget>().isPPC64());
}