MSP430ISelLowering.cpp
61.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the MSP430TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "MSP430ISelLowering.h"
#include "MSP430.h"
#include "MSP430MachineFunctionInfo.h"
#include "MSP430Subtarget.h"
#include "MSP430TargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "msp430-lower"
static cl::opt<bool>MSP430NoLegalImmediate(
"msp430-no-legal-immediate", cl::Hidden,
cl::desc("Enable non legal immediates (for testing purposes only)"),
cl::init(false));
MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
const MSP430Subtarget &STI)
: TargetLowering(TM) {
// Set up the register classes.
addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
// Compute derived properties from the register classes
computeRegisterProperties(STI.getRegisterInfo());
// Provide all sorts of operation actions
setStackPointerRegisterToSaveRestore(MSP430::SP);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
// We have post-incremented loads / stores.
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
}
// We don't have any truncstores
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
setOperationAction(ISD::SRA, MVT::i8, Custom);
setOperationAction(ISD::SHL, MVT::i8, Custom);
setOperationAction(ISD::SRL, MVT::i8, Custom);
setOperationAction(ISD::SRA, MVT::i16, Custom);
setOperationAction(ISD::SHL, MVT::i16, Custom);
setOperationAction(ISD::SRL, MVT::i16, Custom);
setOperationAction(ISD::ROTL, MVT::i8, Expand);
setOperationAction(ISD::ROTR, MVT::i8, Expand);
setOperationAction(ISD::ROTL, MVT::i16, Expand);
setOperationAction(ISD::ROTR, MVT::i16, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i8, Custom);
setOperationAction(ISD::BR_CC, MVT::i16, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::SETCC, MVT::i8, Custom);
setOperationAction(ISD::SETCC, MVT::i16, Custom);
setOperationAction(ISD::SELECT, MVT::i8, Expand);
setOperationAction(ISD::SELECT, MVT::i16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::CTTZ, MVT::i8, Expand);
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
setOperationAction(ISD::CTLZ, MVT::i8, Expand);
setOperationAction(ISD::CTLZ, MVT::i16, Expand);
setOperationAction(ISD::CTPOP, MVT::i8, Expand);
setOperationAction(ISD::CTPOP, MVT::i16, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// FIXME: Implement efficiently multiplication by a constant
setOperationAction(ISD::MUL, MVT::i8, Promote);
setOperationAction(ISD::MULHS, MVT::i8, Promote);
setOperationAction(ISD::MULHU, MVT::i8, Promote);
setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
setOperationAction(ISD::MUL, MVT::i16, LibCall);
setOperationAction(ISD::MULHS, MVT::i16, Expand);
setOperationAction(ISD::MULHU, MVT::i16, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
setOperationAction(ISD::UDIV, MVT::i8, Promote);
setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
setOperationAction(ISD::UREM, MVT::i8, Promote);
setOperationAction(ISD::SDIV, MVT::i8, Promote);
setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
setOperationAction(ISD::SREM, MVT::i8, Promote);
setOperationAction(ISD::UDIV, MVT::i16, LibCall);
setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
setOperationAction(ISD::UREM, MVT::i16, LibCall);
setOperationAction(ISD::SDIV, MVT::i16, LibCall);
setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
setOperationAction(ISD::SREM, MVT::i16, LibCall);
// varargs support
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::JumpTable, MVT::i16, Custom);
// EABI Libcalls - EABI Section 6.2
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Floating point conversions - EABI Table 6
{ RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc but is not in the EABI
{ RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
// The following IS implemented in libgcc but is not in the EABI
{ RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc but is not in the EABI
{ RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
// The following IS implemented in libgcc but is not in the EABI
{ RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
// Floating point comparisons - EABI Table 7
{ RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
{ RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
{ RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
{ RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
{ RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
{ RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
{ RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
{ RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
{ RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
{ RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
{ RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
{ RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
// Floating point arithmetic - EABI Table 8
{ RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
{ RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
// The following are NOT implemented in libgcc
// { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
// { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
// Universal Integer Operations - EABI Table 9
{ RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
{ RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
{ RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
{ RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
{ RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
{ RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
{ RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
{ RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
{ RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
// Bitwise Operations - EABI Table 10
// TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
{ RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
{ RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
{ RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
// __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
if (STI.hasHWMult16()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
// TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else if (STI.hasHWMult32()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
// TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else if (STI.hasHWMultF5()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
// TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else { // NoHWMult
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi" },
{ RTLIB::MUL_I32, "__mspabi_mpyl" },
{ RTLIB::MUL_I64, "__mspabi_mpyll" },
// The __mspabi_mpysl* functions are NOT implemented in libgcc
// The __mspabi_mpyul* functions are NOT implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
}
// Several of the runtime library functions use a special calling conv
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
// TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
setMinFunctionAlignment(Align(2));
setPrefFunctionAlignment(Align(2));
}
SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::SHL: // FALLTHROUGH
case ISD::SRL:
case ISD::SRA: return LowerShifts(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
default:
llvm_unreachable("unimplemented operand");
}
}
// Define non profitable transforms into shifts
bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
unsigned Amount) const {
return !(Amount == 8 || Amount == 9 || Amount<=2);
}
// Implemented to verify test case assertions in
// tests/codegen/msp430/shift-amount-threshold-b.ll
bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
if (MSP430NoLegalImmediate)
return Immed >= -32 && Immed < 32;
return TargetLowering::isLegalICmpImmediate(Immed);
}
//===----------------------------------------------------------------------===//
// MSP430 Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
TargetLowering::ConstraintType
MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
MSP430TargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
if (VT == MVT::i8)
return std::make_pair(0U, &MSP430::GR8RegClass);
return std::make_pair(0U, &MSP430::GR16RegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "MSP430GenCallingConv.inc"
/// For each argument in a function store the number of pieces it is composed
/// of.
template<typename ArgT>
static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
SmallVectorImpl<unsigned> &Out) {
unsigned CurrentArgIndex;
if (Args.empty())
return;
CurrentArgIndex = Args[0].OrigArgIndex;
Out.push_back(0);
for (auto &Arg : Args) {
if (CurrentArgIndex == Arg.OrigArgIndex) {
Out.back() += 1;
} else {
Out.push_back(1);
CurrentArgIndex = Arg.OrigArgIndex;
}
}
}
static void AnalyzeVarArgs(CCState &State,
const SmallVectorImpl<ISD::OutputArg> &Outs) {
State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
}
static void AnalyzeVarArgs(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) {
State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
}
/// Analyze incoming and outgoing function arguments. We need custom C++ code
/// to handle special constraints in the ABI like reversing the order of the
/// pieces of splitted arguments. In addition, all pieces of a certain argument
/// have to be passed either using registers or the stack but never mixing both.
template<typename ArgT>
static void AnalyzeArguments(CCState &State,
SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<ArgT> &Args) {
static const MCPhysReg CRegList[] = {
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
};
static const unsigned CNbRegs = array_lengthof(CRegList);
static const MCPhysReg BuiltinRegList[] = {
MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
};
static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
ArrayRef<MCPhysReg> RegList;
unsigned NbRegs;
bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
if (Builtin) {
RegList = BuiltinRegList;
NbRegs = BuiltinNbRegs;
} else {
RegList = CRegList;
NbRegs = CNbRegs;
}
if (State.isVarArg()) {
AnalyzeVarArgs(State, Args);
return;
}
SmallVector<unsigned, 4> ArgsParts;
ParseFunctionArgs(Args, ArgsParts);
if (Builtin) {
assert(ArgsParts.size() == 2 &&
"Builtin calling convention requires two arguments");
}
unsigned RegsLeft = NbRegs;
bool UsedStack = false;
unsigned ValNo = 0;
for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
MVT ArgVT = Args[ValNo].VT;
ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
MVT LocVT = ArgVT;
CCValAssign::LocInfo LocInfo = CCValAssign::Full;
// Promote i8 to i16
if (LocVT == MVT::i8) {
LocVT = MVT::i16;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
// Handle byval arguments
if (ArgFlags.isByVal()) {
State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
continue;
}
unsigned Parts = ArgsParts[i];
if (Builtin) {
assert(Parts == 4 &&
"Builtin calling convention requires 64-bit arguments");
}
if (!UsedStack && Parts == 2 && RegsLeft == 1) {
// Special case for 32-bit register split, see EABI section 3.3.3
unsigned Reg = State.AllocateReg(RegList);
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
RegsLeft -= 1;
UsedStack = true;
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
} else if (Parts <= RegsLeft) {
for (unsigned j = 0; j < Parts; j++) {
unsigned Reg = State.AllocateReg(RegList);
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
RegsLeft--;
}
} else {
UsedStack = true;
for (unsigned j = 0; j < Parts; j++)
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
}
}
}
static void AnalyzeRetResult(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) {
State.AnalyzeCallResult(Ins, RetCC_MSP430);
}
static void AnalyzeRetResult(CCState &State,
const SmallVectorImpl<ISD::OutputArg> &Outs) {
State.AnalyzeReturn(Outs, RetCC_MSP430);
}
template<typename ArgT>
static void AnalyzeReturnValues(CCState &State,
SmallVectorImpl<CCValAssign> &RVLocs,
const SmallVectorImpl<ArgT> &Args) {
AnalyzeRetResult(State, Args);
}
SDValue MSP430TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
case CallingConv::MSP430_INTR:
if (Ins.empty())
return Chain;
report_fatal_error("ISRs cannot have arguments");
}
}
SDValue
MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// MSP430 target does not yet support tail call optimization.
isTailCall = false;
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::MSP430_BUILTIN:
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, OutVals, Ins, dl, DAG, InVals);
case CallingConv::MSP430_INTR:
report_fatal_error("ISRs cannot be called directly");
}
}
/// LowerCCCArguments - transform physical registers into virtual registers and
/// generate load operations for arguments places on the stack.
// FIXME: struct return stuff
SDValue MSP430TargetLowering::LowerCCCArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Ins);
// Create frame index for the start of the first vararg value
if (isVarArg) {
unsigned Offset = CCInfo.getNextStackOffset();
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
default:
{
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getEVTString() << "\n";
#endif
llvm_unreachable(nullptr);
}
case MVT::i16:
Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
// If this is an 8-bit value, it is really passed promoted to 16
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
}
} else {
// Sanity check
assert(VA.isMemLoc());
SDValue InVal;
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) {
int FI = MFI.CreateFixedObject(Flags.getByValSize(),
VA.getLocMemOffset(), true);
InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
} else {
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > 2) {
errs() << "LowerFormalArguments Unhandled argument type: "
<< EVT(VA.getLocVT()).getEVTString()
<< "\n";
}
// Create the frame index object for this incoming parameter...
int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
InVal = DAG.getLoad(
VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
}
InVals.push_back(InVal);
}
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
if (Ins[i].Flags.isSRet()) {
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(MVT::i16));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
}
return Chain;
}
bool
MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_MSP430);
}
SDValue
MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// ISRs cannot return any value.
if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
report_fatal_error("ISRs cannot return any value");
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analize return values.
AnalyzeReturnValues(CCInfo, RVLocs, Outs);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
if (MF.getFunction().hasStructRetAttr()) {
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in entry block");
SDValue Val =
DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
unsigned R12 = MSP430::R12;
Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
}
unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(Opc, dl, MVT::Other, RetOps);
}
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue MSP430TargetLowering::LowerCCCCallTo(
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Outs);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
SDValue PtrOff =
DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
SDValue MemOp;
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
Flags.getByValAlign(),
/*isVolatile*/false,
/*AlwaysInline=*/true,
/*isTailCall=*/false,
MachinePointerInfo(),
MachinePointerInfo());
} else {
MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
}
MemOpChains.push_back(MemOp);
}
}
// Transform all store nodes into one single node because all store nodes are
// independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain and
// flag operands which copy the outgoing args into registers. The InFlag in
// necessary since all emitted instructions must be stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue MSP430TargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
AnalyzeReturnValues(CCInfo, RVLocs, Ins);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
SDNode* N = Op.getNode();
EVT VT = Op.getValueType();
SDLoc dl(N);
// Expand non-constant shifts to loops:
if (!isa<ConstantSDNode>(N->getOperand(1)))
return Op;
uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
// Expand the stuff into sequence of shifts.
SDValue Victim = N->getOperand(0);
if (ShiftAmount >= 8) {
assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
switch(Opc) {
default:
llvm_unreachable("Unknown shift");
case ISD::SHL:
// foo << (8 + N) => swpb(zext(foo)) << N
Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
break;
case ISD::SRA:
case ISD::SRL:
// foo >> (8 + N) => sxt(swpb(foo)) >> N
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
Victim = (Opc == ISD::SRA)
? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
DAG.getValueType(MVT::i8))
: DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
break;
}
ShiftAmount -= 8;
}
if (Opc == ISD::SRL && ShiftAmount) {
// Emit a special goodness here:
// srl A, 1 => clrc; rrc A
Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
ShiftAmount -= 1;
}
while (ShiftAmount--)
Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
dl, VT, Victim);
return Victim;
}
SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Create the TargetGlobalAddress node, folding in the constant offset.
SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
}
SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
}
SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
}
static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
// FIXME: Handle bittests someday
assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
// FIXME: Handle jump negative someday
MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
switch (CC) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
TCC = MSP430CC::COND_E; // aka COND_Z
// Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETNE:
TCC = MSP430CC::COND_NE; // aka COND_NZ
// Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETULE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETUGE:
// Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_LO;
break;
}
TCC = MSP430CC::COND_HS; // aka COND_C
break;
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT:
// Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_HS;
break;
}
TCC = MSP430CC::COND_LO; // aka COND_NC
break;
case ISD::SETLE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETGE:
// Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_L;
break;
}
TCC = MSP430CC::COND_GE;
break;
case ISD::SETGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETLT:
// Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_GE;
break;
}
TCC = MSP430CC::COND_L;
break;
}
TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
}
SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl (Op);
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
Chain, Dest, TargetCC, Flag);
}
SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl (Op);
// If we are doing an AND and testing against zero, then the CMP
// will not be generated. The AND (or BIT) will generate the condition codes,
// but they are different from CMP.
// FIXME: since we're doing a post-processing, use a pseudoinstr here, so
// lowering & isel wouldn't diverge.
bool andCC = false;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (RHSC->isNullValue() && LHS.hasOneUse() &&
(LHS.getOpcode() == ISD::AND ||
(LHS.getOpcode() == ISD::TRUNCATE &&
LHS.getOperand(0).getOpcode() == ISD::AND))) {
andCC = true;
}
}
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
// Get the condition codes directly from the status register, if its easy.
// Otherwise a branch will be generated. Note that the AND and BIT
// instructions generate different flags than CMP, the carry bit can be used
// for NE/EQ.
bool Invert = false;
bool Shift = false;
bool Convert = true;
switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
default:
Convert = false;
break;
case MSP430CC::COND_HS:
// Res = SR & 1, no processing is required
break;
case MSP430CC::COND_LO:
// Res = ~(SR & 1)
Invert = true;
break;
case MSP430CC::COND_NE:
if (andCC) {
// C = ~Z, thus Res = SR & 1, no processing is required
} else {
// Res = ~((SR >> 1) & 1)
Shift = true;
Invert = true;
}
break;
case MSP430CC::COND_E:
Shift = true;
// C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
// Res = (SR >> 1) & 1 is 1 word shorter.
break;
}
EVT VT = Op.getValueType();
SDValue One = DAG.getConstant(1, dl, VT);
if (Convert) {
SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
MVT::i16, Flag);
if (Shift)
// FIXME: somewhere this is turned into a SRL, lower it MSP specific?
SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
if (Invert)
SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
return SR;
} else {
SDValue Zero = DAG.getConstant(0, dl, VT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {One, Zero, TargetCC, Flag};
return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
}
}
SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueV = Op.getOperand(2);
SDValue FalseV = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc dl (Op);
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
}
SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
SDValue Val = Op.getOperand(0);
EVT VT = Op.getValueType();
SDLoc dl(Op);
assert(VT == MVT::i16 && "Only support i16 for now!");
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
DAG.getValueType(Val.getValueType()));
}
SDValue
MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
auto PtrVT = getPointerTy(MF.getDataLayout());
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
uint64_t SlotSize = MF.getDataLayout().getPointerSize();
ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
true);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
}
SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
MachinePointerInfo());
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
MachinePointerInfo());
}
SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
MSP430::FP, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Frame index of first vararg argument
SDValue FrameIndex =
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Create a store of the frame index to the location operand
return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
return false;
EVT VT = LD->getMemoryVT();
if (VT != MVT::i8 && VT != MVT::i16)
return false;
if (Op->getOpcode() != ISD::ADD)
return false;
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
uint64_t RHSC = RHS->getZExtValue();
if ((VT == MVT::i16 && RHSC != 2) ||
(VT == MVT::i8 && RHSC != 1))
return false;
Base = Op->getOperand(0);
Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
AM = ISD::POST_INC;
return true;
}
return false;
}
const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((MSP430ISD::NodeType)Opcode) {
case MSP430ISD::FIRST_NUMBER: break;
case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
case MSP430ISD::RRA: return "MSP430ISD::RRA";
case MSP430ISD::RLA: return "MSP430ISD::RLA";
case MSP430ISD::RRC: return "MSP430ISD::RRC";
case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
case MSP430ISD::CALL: return "MSP430ISD::CALL";
case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
case MSP430ISD::CMP: return "MSP430ISD::CMP";
case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
case MSP430ISD::DADD: return "MSP430ISD::DADD";
}
return nullptr;
}
bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
}
bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
return (VT1.getSizeInBits() > VT2.getSizeInBits());
}
bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
}
bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
}
bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *F = BB->getParent();
MachineRegisterInfo &RI = F->getRegInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
unsigned Opc;
bool ClearCarry = false;
const TargetRegisterClass * RC;
switch (MI.getOpcode()) {
default: llvm_unreachable("Invalid shift opcode!");
case MSP430::Shl8:
Opc = MSP430::ADD8rr;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Shl16:
Opc = MSP430::ADD16rr;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Sra8:
Opc = MSP430::RRA8r;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Sra16:
Opc = MSP430::RRA16r;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Srl8:
ClearCarry = true;
Opc = MSP430::RRC8r;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Srl16:
ClearCarry = true;
Opc = MSP430::RRC16r;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Rrcl8:
case MSP430::Rrcl16: {
BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
.addReg(MSP430::SR).addImm(1);
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
? MSP430::RRC16r : MSP430::RRC8r;
BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
.addReg(SrcReg);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
}
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = ++BB->getIterator();
// Create loop block
MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, LoopBB);
F->insert(I, RemBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the block containing instructions after shift.
RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
BB->end());
RemBB->transferSuccessorsAndUpdatePHIs(BB);
// Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
BB->addSuccessor(LoopBB);
BB->addSuccessor(RemBB);
LoopBB->addSuccessor(RemBB);
LoopBB->addSuccessor(LoopBB);
Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
Register ShiftReg = RI.createVirtualRegister(RC);
Register ShiftReg2 = RI.createVirtualRegister(RC);
Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
// BB:
// cmp 0, N
// je RemBB
BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
.addReg(ShiftAmtSrcReg).addImm(0);
BuildMI(BB, dl, TII.get(MSP430::JCC))
.addMBB(RemBB)
.addImm(MSP430CC::COND_E);
// LoopBB:
// ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
// ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
// ShiftReg2 = shift ShiftReg
// ShiftAmt2 = ShiftAmt - 1;
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
.addReg(SrcReg).addMBB(BB)
.addReg(ShiftReg2).addMBB(LoopBB);
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
.addReg(ShiftAmtSrcReg).addMBB(BB)
.addReg(ShiftAmtReg2).addMBB(LoopBB);
if (ClearCarry)
BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
.addReg(MSP430::SR).addImm(1);
if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
.addReg(ShiftReg)
.addReg(ShiftReg);
else
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
.addReg(ShiftReg);
BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
.addReg(ShiftAmtReg).addImm(1);
BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
.addMBB(LoopBB)
.addImm(MSP430CC::COND_NE);
// RemBB:
// DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
.addReg(SrcReg).addMBB(BB)
.addReg(ShiftReg2).addMBB(LoopBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return RemBB;
}
MachineBasicBlock *
MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
unsigned Opc = MI.getOpcode();
if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
return EmitShiftInstr(MI, BB);
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
"Unexpected instr type to insert");
// To "insert" a SELECT instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// jCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, copy0MBB);
F->insert(I, copy1MBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
copy1MBB->splice(copy1MBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(copy1MBB);
BuildMI(BB, dl, TII.get(MSP430::JCC))
.addMBB(copy1MBB)
.addImm(MI.getOperand(3).getImm());
// copy0MBB:
// %FalseValue = ...
// # fallthrough to copy1MBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
// copy1MBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = copy1MBB;
BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(2).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(1).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}