AArch64AsmParser.cpp 202 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "MCTargetDesc/AArch64TargetStreamer.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "AArch64InstrInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

enum class RegKind {
  Scalar,
  NeonVector,
  SVEDataVector,
  SVEPredicateVector
};

enum RegConstraintEqualityTy {
  EqualsReg,
  EqualsSuperReg,
  EqualsSubReg
};

class AArch64AsmParser : public MCTargetAsmParser {
private:
  StringRef Mnemonic; ///< Instruction mnemonic.

  // Map of register aliases registers via the .req directive.
  StringMap<std::pair<RegKind, unsigned>> RegisterReqs;

  class PrefixInfo {
  public:
    static PrefixInfo CreateFromInst(const MCInst &Inst, uint64_t TSFlags) {
      PrefixInfo Prefix;
      switch (Inst.getOpcode()) {
      case AArch64::MOVPRFX_ZZ:
        Prefix.Active = true;
        Prefix.Dst = Inst.getOperand(0).getReg();
        break;
      case AArch64::MOVPRFX_ZPmZ_B:
      case AArch64::MOVPRFX_ZPmZ_H:
      case AArch64::MOVPRFX_ZPmZ_S:
      case AArch64::MOVPRFX_ZPmZ_D:
        Prefix.Active = true;
        Prefix.Predicated = true;
        Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
        assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
               "No destructive element size set for movprfx");
        Prefix.Dst = Inst.getOperand(0).getReg();
        Prefix.Pg = Inst.getOperand(2).getReg();
        break;
      case AArch64::MOVPRFX_ZPzZ_B:
      case AArch64::MOVPRFX_ZPzZ_H:
      case AArch64::MOVPRFX_ZPzZ_S:
      case AArch64::MOVPRFX_ZPzZ_D:
        Prefix.Active = true;
        Prefix.Predicated = true;
        Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
        assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
               "No destructive element size set for movprfx");
        Prefix.Dst = Inst.getOperand(0).getReg();
        Prefix.Pg = Inst.getOperand(1).getReg();
        break;
      default:
        break;
      }

      return Prefix;
    }

    PrefixInfo() : Active(false), Predicated(false) {}
    bool isActive() const { return Active; }
    bool isPredicated() const { return Predicated; }
    unsigned getElementSize() const {
      assert(Predicated);
      return ElementSize;
    }
    unsigned getDstReg() const { return Dst; }
    unsigned getPgReg() const {
      assert(Predicated);
      return Pg;
    }

  private:
    bool Active;
    bool Predicated;
    unsigned ElementSize;
    unsigned Dst;
    unsigned Pg;
  } NextPrefix;

  AArch64TargetStreamer &getTargetStreamer() {
    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    return static_cast<AArch64TargetStreamer &>(TS);
  }

  SMLoc getLoc() const { return getParser().getTok().getLoc(); }

  bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
  void createSysAlias(uint16_t Encoding, OperandVector &Operands, SMLoc S);
  AArch64CC::CondCode parseCondCodeString(StringRef Cond);
  bool parseCondCode(OperandVector &Operands, bool invertCondCode);
  unsigned matchRegisterNameAlias(StringRef Name, RegKind Kind);
  bool parseRegister(OperandVector &Operands);
  bool parseSymbolicImmVal(const MCExpr *&ImmVal);
  bool parseNeonVectorList(OperandVector &Operands);
  bool parseOptionalMulOperand(OperandVector &Operands);
  bool parseOperand(OperandVector &Operands, bool isCondCode,
                    bool invertCondCode);

  bool showMatchError(SMLoc Loc, unsigned ErrCode, uint64_t ErrorInfo,
                      OperandVector &Operands);

  bool parseDirectiveArch(SMLoc L);
  bool parseDirectiveArchExtension(SMLoc L);
  bool parseDirectiveCPU(SMLoc L);
  bool parseDirectiveInst(SMLoc L);

  bool parseDirectiveTLSDescCall(SMLoc L);

  bool parseDirectiveLOH(StringRef LOH, SMLoc L);
  bool parseDirectiveLtorg(SMLoc L);

  bool parseDirectiveReq(StringRef Name, SMLoc L);
  bool parseDirectiveUnreq(SMLoc L);
  bool parseDirectiveCFINegateRAState();
  bool parseDirectiveCFIBKeyFrame();

  bool validateInstruction(MCInst &Inst, SMLoc &IDLoc,
                           SmallVectorImpl<SMLoc> &Loc);
  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;
/// @name Auto-generated Match Functions
/// {

#define GET_ASSEMBLER_HEADER
#include "AArch64GenAsmMatcher.inc"

  /// }

  OperandMatchResultTy tryParseScalarRegister(unsigned &Reg);
  OperandMatchResultTy tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
                                              RegKind MatchKind);
  OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands);
  OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
  OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
  OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
  OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
  template <bool IsSVEPrefetch = false>
  OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
  OperandMatchResultTy tryParsePSBHint(OperandVector &Operands);
  OperandMatchResultTy tryParseBTIHint(OperandVector &Operands);
  OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
  OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
  template<bool AddFPZeroAsLiteral>
  OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
  OperandMatchResultTy tryParseImmWithOptionalShift(OperandVector &Operands);
  OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands);
  bool tryParseNeonVectorRegister(OperandVector &Operands);
  OperandMatchResultTy tryParseVectorIndex(OperandVector &Operands);
  OperandMatchResultTy tryParseGPRSeqPair(OperandVector &Operands);
  template <bool ParseShiftExtend,
            RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg>
  OperandMatchResultTy tryParseGPROperand(OperandVector &Operands);
  template <bool ParseShiftExtend, bool ParseSuffix>
  OperandMatchResultTy tryParseSVEDataVector(OperandVector &Operands);
  OperandMatchResultTy tryParseSVEPredicateVector(OperandVector &Operands);
  template <RegKind VectorKind>
  OperandMatchResultTy tryParseVectorList(OperandVector &Operands,
                                          bool ExpectMatch = false);
  OperandMatchResultTy tryParseSVEPattern(OperandVector &Operands);

public:
  enum AArch64MatchResultTy {
    Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "AArch64GenAsmMatcher.inc"
  };
  bool IsILP32;

  AArch64AsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
                   const MCInstrInfo &MII, const MCTargetOptions &Options)
    : MCTargetAsmParser(Options, STI, MII) {
    IsILP32 = Options.getABIName() == "ilp32";
    MCAsmParserExtension::Initialize(Parser);
    MCStreamer &S = getParser().getStreamer();
    if (S.getTargetStreamer() == nullptr)
      new AArch64TargetStreamer(S);

    // Alias .hword/.word/.[dx]word to the target-independent
    // .2byte/.4byte/.8byte directives as they have the same form and
    // semantics:
    ///  ::= (.hword | .word | .dword | .xword ) [ expression (, expression)* ]
    Parser.addAliasForDirective(".hword", ".2byte");
    Parser.addAliasForDirective(".word", ".4byte");
    Parser.addAliasForDirective(".dword", ".8byte");
    Parser.addAliasForDirective(".xword", ".8byte");

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
  }

  bool regsEqual(const MCParsedAsmOperand &Op1,
                 const MCParsedAsmOperand &Op2) const override;
  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
  bool ParseDirective(AsmToken DirectiveID) override;
  unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
                                      unsigned Kind) override;

  static bool classifySymbolRef(const MCExpr *Expr,
                                AArch64MCExpr::VariantKind &ELFRefKind,
                                MCSymbolRefExpr::VariantKind &DarwinRefKind,
                                int64_t &Addend);
};

/// AArch64Operand - Instances of this class represent a parsed AArch64 machine
/// instruction.
class AArch64Operand : public MCParsedAsmOperand {
private:
  enum KindTy {
    k_Immediate,
    k_ShiftedImm,
    k_CondCode,
    k_Register,
    k_VectorList,
    k_VectorIndex,
    k_Token,
    k_SysReg,
    k_SysCR,
    k_Prefetch,
    k_ShiftExtend,
    k_FPImm,
    k_Barrier,
    k_PSBHint,
    k_BTIHint,
  } Kind;

  SMLoc StartLoc, EndLoc;

  struct TokOp {
    const char *Data;
    unsigned Length;
    bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
  };

  // Separate shift/extend operand.
  struct ShiftExtendOp {
    AArch64_AM::ShiftExtendType Type;
    unsigned Amount;
    bool HasExplicitAmount;
  };

  struct RegOp {
    unsigned RegNum;
    RegKind Kind;
    int ElementWidth;

    // The register may be allowed as a different register class,
    // e.g. for GPR64as32 or GPR32as64.
    RegConstraintEqualityTy EqualityTy;

    // In some cases the shift/extend needs to be explicitly parsed together
    // with the register, rather than as a separate operand. This is needed
    // for addressing modes where the instruction as a whole dictates the
    // scaling/extend, rather than specific bits in the instruction.
    // By parsing them as a single operand, we avoid the need to pass an
    // extra operand in all CodeGen patterns (because all operands need to
    // have an associated value), and we avoid the need to update TableGen to
    // accept operands that have no associated bits in the instruction.
    //
    // An added benefit of parsing them together is that the assembler
    // can give a sensible diagnostic if the scaling is not correct.
    //
    // The default is 'lsl #0' (HasExplicitAmount = false) if no
    // ShiftExtend is specified.
    ShiftExtendOp ShiftExtend;
  };

  struct VectorListOp {
    unsigned RegNum;
    unsigned Count;
    unsigned NumElements;
    unsigned ElementWidth;
    RegKind  RegisterKind;
  };

  struct VectorIndexOp {
    unsigned Val;
  };

  struct ImmOp {
    const MCExpr *Val;
  };

  struct ShiftedImmOp {
    const MCExpr *Val;
    unsigned ShiftAmount;
  };

  struct CondCodeOp {
    AArch64CC::CondCode Code;
  };

  struct FPImmOp {
    uint64_t Val; // APFloat value bitcasted to uint64_t.
    bool IsExact; // describes whether parsed value was exact.
  };

  struct BarrierOp {
    const char *Data;
    unsigned Length;
    unsigned Val; // Not the enum since not all values have names.
  };

  struct SysRegOp {
    const char *Data;
    unsigned Length;
    uint32_t MRSReg;
    uint32_t MSRReg;
    uint32_t PStateField;
  };

  struct SysCRImmOp {
    unsigned Val;
  };

  struct PrefetchOp {
    const char *Data;
    unsigned Length;
    unsigned Val;
  };

  struct PSBHintOp {
    const char *Data;
    unsigned Length;
    unsigned Val;
  };

  struct BTIHintOp {
    const char *Data;
    unsigned Length;
    unsigned Val;
  };

  struct ExtendOp {
    unsigned Val;
  };

  union {
    struct TokOp Tok;
    struct RegOp Reg;
    struct VectorListOp VectorList;
    struct VectorIndexOp VectorIndex;
    struct ImmOp Imm;
    struct ShiftedImmOp ShiftedImm;
    struct CondCodeOp CondCode;
    struct FPImmOp FPImm;
    struct BarrierOp Barrier;
    struct SysRegOp SysReg;
    struct SysCRImmOp SysCRImm;
    struct PrefetchOp Prefetch;
    struct PSBHintOp PSBHint;
    struct BTIHintOp BTIHint;
    struct ShiftExtendOp ShiftExtend;
  };

  // Keep the MCContext around as the MCExprs may need manipulated during
  // the add<>Operands() calls.
  MCContext &Ctx;

public:
  AArch64Operand(KindTy K, MCContext &Ctx) : Kind(K), Ctx(Ctx) {}

  AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
    Kind = o.Kind;
    StartLoc = o.StartLoc;
    EndLoc = o.EndLoc;
    switch (Kind) {
    case k_Token:
      Tok = o.Tok;
      break;
    case k_Immediate:
      Imm = o.Imm;
      break;
    case k_ShiftedImm:
      ShiftedImm = o.ShiftedImm;
      break;
    case k_CondCode:
      CondCode = o.CondCode;
      break;
    case k_FPImm:
      FPImm = o.FPImm;
      break;
    case k_Barrier:
      Barrier = o.Barrier;
      break;
    case k_Register:
      Reg = o.Reg;
      break;
    case k_VectorList:
      VectorList = o.VectorList;
      break;
    case k_VectorIndex:
      VectorIndex = o.VectorIndex;
      break;
    case k_SysReg:
      SysReg = o.SysReg;
      break;
    case k_SysCR:
      SysCRImm = o.SysCRImm;
      break;
    case k_Prefetch:
      Prefetch = o.Prefetch;
      break;
    case k_PSBHint:
      PSBHint = o.PSBHint;
      break;
    case k_BTIHint:
      BTIHint = o.BTIHint;
      break;
    case k_ShiftExtend:
      ShiftExtend = o.ShiftExtend;
      break;
    }
  }

  /// getStartLoc - Get the location of the first token of this operand.
  SMLoc getStartLoc() const override { return StartLoc; }
  /// getEndLoc - Get the location of the last token of this operand.
  SMLoc getEndLoc() const override { return EndLoc; }

  StringRef getToken() const {
    assert(Kind == k_Token && "Invalid access!");
    return StringRef(Tok.Data, Tok.Length);
  }

  bool isTokenSuffix() const {
    assert(Kind == k_Token && "Invalid access!");
    return Tok.IsSuffix;
  }

  const MCExpr *getImm() const {
    assert(Kind == k_Immediate && "Invalid access!");
    return Imm.Val;
  }

  const MCExpr *getShiftedImmVal() const {
    assert(Kind == k_ShiftedImm && "Invalid access!");
    return ShiftedImm.Val;
  }

  unsigned getShiftedImmShift() const {
    assert(Kind == k_ShiftedImm && "Invalid access!");
    return ShiftedImm.ShiftAmount;
  }

  AArch64CC::CondCode getCondCode() const {
    assert(Kind == k_CondCode && "Invalid access!");
    return CondCode.Code;
  }

  APFloat getFPImm() const {
    assert (Kind == k_FPImm && "Invalid access!");
    return APFloat(APFloat::IEEEdouble(), APInt(64, FPImm.Val, true));
  }

  bool getFPImmIsExact() const {
    assert (Kind == k_FPImm && "Invalid access!");
    return FPImm.IsExact;
  }

  unsigned getBarrier() const {
    assert(Kind == k_Barrier && "Invalid access!");
    return Barrier.Val;
  }

  StringRef getBarrierName() const {
    assert(Kind == k_Barrier && "Invalid access!");
    return StringRef(Barrier.Data, Barrier.Length);
  }

  unsigned getReg() const override {
    assert(Kind == k_Register && "Invalid access!");
    return Reg.RegNum;
  }

  RegConstraintEqualityTy getRegEqualityTy() const {
    assert(Kind == k_Register && "Invalid access!");
    return Reg.EqualityTy;
  }

  unsigned getVectorListStart() const {
    assert(Kind == k_VectorList && "Invalid access!");
    return VectorList.RegNum;
  }

  unsigned getVectorListCount() const {
    assert(Kind == k_VectorList && "Invalid access!");
    return VectorList.Count;
  }

  unsigned getVectorIndex() const {
    assert(Kind == k_VectorIndex && "Invalid access!");
    return VectorIndex.Val;
  }

  StringRef getSysReg() const {
    assert(Kind == k_SysReg && "Invalid access!");
    return StringRef(SysReg.Data, SysReg.Length);
  }

  unsigned getSysCR() const {
    assert(Kind == k_SysCR && "Invalid access!");
    return SysCRImm.Val;
  }

  unsigned getPrefetch() const {
    assert(Kind == k_Prefetch && "Invalid access!");
    return Prefetch.Val;
  }

  unsigned getPSBHint() const {
    assert(Kind == k_PSBHint && "Invalid access!");
    return PSBHint.Val;
  }

  StringRef getPSBHintName() const {
    assert(Kind == k_PSBHint && "Invalid access!");
    return StringRef(PSBHint.Data, PSBHint.Length);
  }

  unsigned getBTIHint() const {
    assert(Kind == k_BTIHint && "Invalid access!");
    return BTIHint.Val;
  }

  StringRef getBTIHintName() const {
    assert(Kind == k_BTIHint && "Invalid access!");
    return StringRef(BTIHint.Data, BTIHint.Length);
  }

  StringRef getPrefetchName() const {
    assert(Kind == k_Prefetch && "Invalid access!");
    return StringRef(Prefetch.Data, Prefetch.Length);
  }

  AArch64_AM::ShiftExtendType getShiftExtendType() const {
    if (Kind == k_ShiftExtend)
      return ShiftExtend.Type;
    if (Kind == k_Register)
      return Reg.ShiftExtend.Type;
    llvm_unreachable("Invalid access!");
  }

  unsigned getShiftExtendAmount() const {
    if (Kind == k_ShiftExtend)
      return ShiftExtend.Amount;
    if (Kind == k_Register)
      return Reg.ShiftExtend.Amount;
    llvm_unreachable("Invalid access!");
  }

  bool hasShiftExtendAmount() const {
    if (Kind == k_ShiftExtend)
      return ShiftExtend.HasExplicitAmount;
    if (Kind == k_Register)
      return Reg.ShiftExtend.HasExplicitAmount;
    llvm_unreachable("Invalid access!");
  }

  bool isImm() const override { return Kind == k_Immediate; }
  bool isMem() const override { return false; }

  bool isUImm6() const {
    if (!isImm())
      return false;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return false;
    int64_t Val = MCE->getValue();
    return (Val >= 0 && Val < 64);
  }

  template <int Width> bool isSImm() const { return isSImmScaled<Width, 1>(); }

  template <int Bits, int Scale> DiagnosticPredicate isSImmScaled() const {
    return isImmScaled<Bits, Scale>(true);
  }

  template <int Bits, int Scale> DiagnosticPredicate isUImmScaled() const {
    return isImmScaled<Bits, Scale>(false);
  }

  template <int Bits, int Scale>
  DiagnosticPredicate isImmScaled(bool Signed) const {
    if (!isImm())
      return DiagnosticPredicateTy::NoMatch;

    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return DiagnosticPredicateTy::NoMatch;

    int64_t MinVal, MaxVal;
    if (Signed) {
      int64_t Shift = Bits - 1;
      MinVal = (int64_t(1) << Shift) * -Scale;
      MaxVal = ((int64_t(1) << Shift) - 1) * Scale;
    } else {
      MinVal = 0;
      MaxVal = ((int64_t(1) << Bits) - 1) * Scale;
    }

    int64_t Val = MCE->getValue();
    if (Val >= MinVal && Val <= MaxVal && (Val % Scale) == 0)
      return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  DiagnosticPredicate isSVEPattern() const {
    if (!isImm())
      return DiagnosticPredicateTy::NoMatch;
    auto *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return DiagnosticPredicateTy::NoMatch;
    int64_t Val = MCE->getValue();
    if (Val >= 0 && Val < 32)
      return DiagnosticPredicateTy::Match;
    return DiagnosticPredicateTy::NearMatch;
  }

  bool isSymbolicUImm12Offset(const MCExpr *Expr) const {
    AArch64MCExpr::VariantKind ELFRefKind;
    MCSymbolRefExpr::VariantKind DarwinRefKind;
    int64_t Addend;
    if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
                                           Addend)) {
      // If we don't understand the expression, assume the best and
      // let the fixup and relocation code deal with it.
      return true;
    }

    if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
        ELFRefKind == AArch64MCExpr::VK_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_GOT_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
        ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
        ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC ||
        ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
        ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) {
      // Note that we don't range-check the addend. It's adjusted modulo page
      // size when converted, so there is no "out of range" condition when using
      // @pageoff.
      return true;
    } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
               DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
      // @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
      return Addend == 0;
    }

    return false;
  }

  template <int Scale> bool isUImm12Offset() const {
    if (!isImm())
      return false;

    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return isSymbolicUImm12Offset(getImm());

    int64_t Val = MCE->getValue();
    return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000;
  }

  template <int N, int M>
  bool isImmInRange() const {
    if (!isImm())
      return false;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return false;
    int64_t Val = MCE->getValue();
    return (Val >= N && Val <= M);
  }

  // NOTE: Also used for isLogicalImmNot as anything that can be represented as
  // a logical immediate can always be represented when inverted.
  template <typename T>
  bool isLogicalImm() const {
    if (!isImm())
      return false;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return false;

    int64_t Val = MCE->getValue();
    int64_t SVal = typename std::make_signed<T>::type(Val);
    int64_t UVal = typename std::make_unsigned<T>::type(Val);
    if (Val != SVal && Val != UVal)
      return false;

    return AArch64_AM::isLogicalImmediate(UVal, sizeof(T) * 8);
  }

  bool isShiftedImm() const { return Kind == k_ShiftedImm; }

  /// Returns the immediate value as a pair of (imm, shift) if the immediate is
  /// a shifted immediate by value 'Shift' or '0', or if it is an unshifted
  /// immediate that can be shifted by 'Shift'.
  template <unsigned Width>
  Optional<std::pair<int64_t, unsigned> > getShiftedVal() const {
    if (isShiftedImm() && Width == getShiftedImmShift())
      if (auto *CE = dyn_cast<MCConstantExpr>(getShiftedImmVal()))
        return std::make_pair(CE->getValue(), Width);

    if (isImm())
      if (auto *CE = dyn_cast<MCConstantExpr>(getImm())) {
        int64_t Val = CE->getValue();
        if ((Val != 0) && (uint64_t(Val >> Width) << Width) == uint64_t(Val))
          return std::make_pair(Val >> Width, Width);
        else
          return std::make_pair(Val, 0u);
      }

    return {};
  }

  bool isAddSubImm() const {
    if (!isShiftedImm() && !isImm())
      return false;

    const MCExpr *Expr;

    // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
    if (isShiftedImm()) {
      unsigned Shift = ShiftedImm.ShiftAmount;
      Expr = ShiftedImm.Val;
      if (Shift != 0 && Shift != 12)
        return false;
    } else {
      Expr = getImm();
    }

    AArch64MCExpr::VariantKind ELFRefKind;
    MCSymbolRefExpr::VariantKind DarwinRefKind;
    int64_t Addend;
    if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind,
                                          DarwinRefKind, Addend)) {
      return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF
          || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF
          || (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0)
          || ELFRefKind == AArch64MCExpr::VK_LO12
          || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12
          || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12
          || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC
          || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12
          || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12
          || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC
          || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12
          || ELFRefKind == AArch64MCExpr::VK_SECREL_HI12
          || ELFRefKind == AArch64MCExpr::VK_SECREL_LO12;
    }

    // If it's a constant, it should be a real immediate in range.
    if (auto ShiftedVal = getShiftedVal<12>())
      return ShiftedVal->first >= 0 && ShiftedVal->first <= 0xfff;

    // If it's an expression, we hope for the best and let the fixup/relocation
    // code deal with it.
    return true;
  }

  bool isAddSubImmNeg() const {
    if (!isShiftedImm() && !isImm())
      return false;

    // Otherwise it should be a real negative immediate in range.
    if (auto ShiftedVal = getShiftedVal<12>())
      return ShiftedVal->first < 0 && -ShiftedVal->first <= 0xfff;

    return false;
  }

  // Signed value in the range -128 to +127. For element widths of
  // 16 bits or higher it may also be a signed multiple of 256 in the
  // range -32768 to +32512.
  // For element-width of 8 bits a range of -128 to 255 is accepted,
  // since a copy of a byte can be either signed/unsigned.
  template <typename T>
  DiagnosticPredicate isSVECpyImm() const {
    if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
      return DiagnosticPredicateTy::NoMatch;

    bool IsByte =
        std::is_same<int8_t, typename std::make_signed<T>::type>::value;
    if (auto ShiftedImm = getShiftedVal<8>())
      if (!(IsByte && ShiftedImm->second) &&
          AArch64_AM::isSVECpyImm<T>(uint64_t(ShiftedImm->first)
                                     << ShiftedImm->second))
        return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  // Unsigned value in the range 0 to 255. For element widths of
  // 16 bits or higher it may also be a signed multiple of 256 in the
  // range 0 to 65280.
  template <typename T> DiagnosticPredicate isSVEAddSubImm() const {
    if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
      return DiagnosticPredicateTy::NoMatch;

    bool IsByte =
        std::is_same<int8_t, typename std::make_signed<T>::type>::value;
    if (auto ShiftedImm = getShiftedVal<8>())
      if (!(IsByte && ShiftedImm->second) &&
          AArch64_AM::isSVEAddSubImm<T>(ShiftedImm->first
                                        << ShiftedImm->second))
        return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  template <typename T> DiagnosticPredicate isSVEPreferredLogicalImm() const {
    if (isLogicalImm<T>() && !isSVECpyImm<T>())
      return DiagnosticPredicateTy::Match;
    return DiagnosticPredicateTy::NoMatch;
  }

  bool isCondCode() const { return Kind == k_CondCode; }

  bool isSIMDImmType10() const {
    if (!isImm())
      return false;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return false;
    return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue());
  }

  template<int N>
  bool isBranchTarget() const {
    if (!isImm())
      return false;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      return true;
    int64_t Val = MCE->getValue();
    if (Val & 0x3)
      return false;
    assert(N > 0 && "Branch target immediate cannot be 0 bits!");
    return (Val >= -((1<<(N-1)) << 2) && Val <= (((1<<(N-1))-1) << 2));
  }

  bool
  isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const {
    if (!isImm())
      return false;

    AArch64MCExpr::VariantKind ELFRefKind;
    MCSymbolRefExpr::VariantKind DarwinRefKind;
    int64_t Addend;
    if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind,
                                             DarwinRefKind, Addend)) {
      return false;
    }
    if (DarwinRefKind != MCSymbolRefExpr::VK_None)
      return false;

    for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
      if (ELFRefKind == AllowedModifiers[i])
        return true;
    }

    return false;
  }

  bool isMovWSymbolG3() const {
    return isMovWSymbol({AArch64MCExpr::VK_ABS_G3, AArch64MCExpr::VK_PREL_G3});
  }

  bool isMovWSymbolG2() const {
    return isMovWSymbol(
        {AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S,
         AArch64MCExpr::VK_ABS_G2_NC, AArch64MCExpr::VK_PREL_G2,
         AArch64MCExpr::VK_PREL_G2_NC, AArch64MCExpr::VK_TPREL_G2,
         AArch64MCExpr::VK_DTPREL_G2});
  }

  bool isMovWSymbolG1() const {
    return isMovWSymbol(
        {AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S,
         AArch64MCExpr::VK_ABS_G1_NC, AArch64MCExpr::VK_PREL_G1,
         AArch64MCExpr::VK_PREL_G1_NC, AArch64MCExpr::VK_GOTTPREL_G1,
         AArch64MCExpr::VK_TPREL_G1, AArch64MCExpr::VK_TPREL_G1_NC,
         AArch64MCExpr::VK_DTPREL_G1, AArch64MCExpr::VK_DTPREL_G1_NC});
  }

  bool isMovWSymbolG0() const {
    return isMovWSymbol(
        {AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S,
         AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_PREL_G0,
         AArch64MCExpr::VK_PREL_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC,
         AArch64MCExpr::VK_TPREL_G0, AArch64MCExpr::VK_TPREL_G0_NC,
         AArch64MCExpr::VK_DTPREL_G0, AArch64MCExpr::VK_DTPREL_G0_NC});
  }

  template<int RegWidth, int Shift>
  bool isMOVZMovAlias() const {
    if (!isImm()) return false;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    uint64_t Value = CE->getValue();

    return AArch64_AM::isMOVZMovAlias(Value, Shift, RegWidth);
  }

  template<int RegWidth, int Shift>
  bool isMOVNMovAlias() const {
    if (!isImm()) return false;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    uint64_t Value = CE->getValue();

    return AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth);
  }

  bool isFPImm() const {
    return Kind == k_FPImm &&
           AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt()) != -1;
  }

  bool isBarrier() const { return Kind == k_Barrier; }
  bool isSysReg() const { return Kind == k_SysReg; }

  bool isMRSSystemRegister() const {
    if (!isSysReg()) return false;

    return SysReg.MRSReg != -1U;
  }

  bool isMSRSystemRegister() const {
    if (!isSysReg()) return false;
    return SysReg.MSRReg != -1U;
  }

  bool isSystemPStateFieldWithImm0_1() const {
    if (!isSysReg()) return false;
    return (SysReg.PStateField == AArch64PState::PAN ||
            SysReg.PStateField == AArch64PState::DIT ||
            SysReg.PStateField == AArch64PState::UAO ||
            SysReg.PStateField == AArch64PState::SSBS);
  }

  bool isSystemPStateFieldWithImm0_15() const {
    if (!isSysReg() || isSystemPStateFieldWithImm0_1()) return false;
    return SysReg.PStateField != -1U;
  }

  bool isReg() const override {
    return Kind == k_Register;
  }

  bool isScalarReg() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar;
  }

  bool isNeonVectorReg() const {
    return Kind == k_Register && Reg.Kind == RegKind::NeonVector;
  }

  bool isNeonVectorRegLo() const {
    return Kind == k_Register && Reg.Kind == RegKind::NeonVector &&
           AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains(
               Reg.RegNum);
  }

  template <unsigned Class> bool isSVEVectorReg() const {
    RegKind RK;
    switch (Class) {
    case AArch64::ZPRRegClassID:
    case AArch64::ZPR_3bRegClassID:
    case AArch64::ZPR_4bRegClassID:
      RK = RegKind::SVEDataVector;
      break;
    case AArch64::PPRRegClassID:
    case AArch64::PPR_3bRegClassID:
      RK = RegKind::SVEPredicateVector;
      break;
    default:
      llvm_unreachable("Unsupport register class");
    }

    return (Kind == k_Register && Reg.Kind == RK) &&
           AArch64MCRegisterClasses[Class].contains(getReg());
  }

  template <unsigned Class> bool isFPRasZPR() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
           AArch64MCRegisterClasses[Class].contains(getReg());
  }

  template <int ElementWidth, unsigned Class>
  DiagnosticPredicate isSVEPredicateVectorRegOfWidth() const {
    if (Kind != k_Register || Reg.Kind != RegKind::SVEPredicateVector)
      return DiagnosticPredicateTy::NoMatch;

    if (isSVEVectorReg<Class>() && (Reg.ElementWidth == ElementWidth))
      return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  template <int ElementWidth, unsigned Class>
  DiagnosticPredicate isSVEDataVectorRegOfWidth() const {
    if (Kind != k_Register || Reg.Kind != RegKind::SVEDataVector)
      return DiagnosticPredicateTy::NoMatch;

    if (isSVEVectorReg<Class>() && Reg.ElementWidth == ElementWidth)
      return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  template <int ElementWidth, unsigned Class,
            AArch64_AM::ShiftExtendType ShiftExtendTy, int ShiftWidth,
            bool ShiftWidthAlwaysSame>
  DiagnosticPredicate isSVEDataVectorRegWithShiftExtend() const {
    auto VectorMatch = isSVEDataVectorRegOfWidth<ElementWidth, Class>();
    if (!VectorMatch.isMatch())
      return DiagnosticPredicateTy::NoMatch;

    // Give a more specific diagnostic when the user has explicitly typed in
    // a shift-amount that does not match what is expected, but for which
    // there is also an unscaled addressing mode (e.g. sxtw/uxtw).
    bool MatchShift = getShiftExtendAmount() == Log2_32(ShiftWidth / 8);
    if (!MatchShift && (ShiftExtendTy == AArch64_AM::UXTW ||
                        ShiftExtendTy == AArch64_AM::SXTW) &&
        !ShiftWidthAlwaysSame && hasShiftExtendAmount() && ShiftWidth == 8)
      return DiagnosticPredicateTy::NoMatch;

    if (MatchShift && ShiftExtendTy == getShiftExtendType())
      return DiagnosticPredicateTy::Match;

    return DiagnosticPredicateTy::NearMatch;
  }

  bool isGPR32as64() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
      AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum);
  }

  bool isGPR64as32() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
      AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(Reg.RegNum);
  }

  bool isWSeqPair() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
           AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID].contains(
               Reg.RegNum);
  }

  bool isXSeqPair() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
           AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID].contains(
               Reg.RegNum);
  }

  template<int64_t Angle, int64_t Remainder>
  DiagnosticPredicate isComplexRotation() const {
    if (!isImm()) return DiagnosticPredicateTy::NoMatch;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return DiagnosticPredicateTy::NoMatch;
    uint64_t Value = CE->getValue();

    if (Value % Angle == Remainder && Value <= 270)
      return DiagnosticPredicateTy::Match;
    return DiagnosticPredicateTy::NearMatch;
  }

  template <unsigned RegClassID> bool isGPR64() const {
    return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
           AArch64MCRegisterClasses[RegClassID].contains(getReg());
  }

  template <unsigned RegClassID, int ExtWidth>
  DiagnosticPredicate isGPR64WithShiftExtend() const {
    if (Kind != k_Register || Reg.Kind != RegKind::Scalar)
      return DiagnosticPredicateTy::NoMatch;

    if (isGPR64<RegClassID>() && getShiftExtendType() == AArch64_AM::LSL &&
        getShiftExtendAmount() == Log2_32(ExtWidth / 8))
      return DiagnosticPredicateTy::Match;
    return DiagnosticPredicateTy::NearMatch;
  }

  /// Is this a vector list with the type implicit (presumably attached to the
  /// instruction itself)?
  template <RegKind VectorKind, unsigned NumRegs>
  bool isImplicitlyTypedVectorList() const {
    return Kind == k_VectorList && VectorList.Count == NumRegs &&
           VectorList.NumElements == 0 &&
           VectorList.RegisterKind == VectorKind;
  }

  template <RegKind VectorKind, unsigned NumRegs, unsigned NumElements,
            unsigned ElementWidth>
  bool isTypedVectorList() const {
    if (Kind != k_VectorList)
      return false;
    if (VectorList.Count != NumRegs)
      return false;
    if (VectorList.RegisterKind != VectorKind)
      return false;
    if (VectorList.ElementWidth != ElementWidth)
      return false;
    return VectorList.NumElements == NumElements;
  }

  template <int Min, int Max>
  DiagnosticPredicate isVectorIndex() const {
    if (Kind != k_VectorIndex)
      return DiagnosticPredicateTy::NoMatch;
    if (VectorIndex.Val >= Min && VectorIndex.Val <= Max)
      return DiagnosticPredicateTy::Match;
    return DiagnosticPredicateTy::NearMatch;
  }

  bool isToken() const override { return Kind == k_Token; }

  bool isTokenEqual(StringRef Str) const {
    return Kind == k_Token && getToken() == Str;
  }
  bool isSysCR() const { return Kind == k_SysCR; }
  bool isPrefetch() const { return Kind == k_Prefetch; }
  bool isPSBHint() const { return Kind == k_PSBHint; }
  bool isBTIHint() const { return Kind == k_BTIHint; }
  bool isShiftExtend() const { return Kind == k_ShiftExtend; }
  bool isShifter() const {
    if (!isShiftExtend())
      return false;

    AArch64_AM::ShiftExtendType ST = getShiftExtendType();
    return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
            ST == AArch64_AM::ASR || ST == AArch64_AM::ROR ||
            ST == AArch64_AM::MSL);
  }

  template <unsigned ImmEnum> DiagnosticPredicate isExactFPImm() const {
    if (Kind != k_FPImm)
      return DiagnosticPredicateTy::NoMatch;

    if (getFPImmIsExact()) {
      // Lookup the immediate from table of supported immediates.
      auto *Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmEnum);
      assert(Desc && "Unknown enum value");

      // Calculate its FP value.
      APFloat RealVal(APFloat::IEEEdouble());
      auto StatusOrErr =
          RealVal.convertFromString(Desc->Repr, APFloat::rmTowardZero);
      if (errorToBool(StatusOrErr.takeError()) || *StatusOrErr != APFloat::opOK)
        llvm_unreachable("FP immediate is not exact");

      if (getFPImm().bitwiseIsEqual(RealVal))
        return DiagnosticPredicateTy::Match;
    }

    return DiagnosticPredicateTy::NearMatch;
  }

  template <unsigned ImmA, unsigned ImmB>
  DiagnosticPredicate isExactFPImm() const {
    DiagnosticPredicate Res = DiagnosticPredicateTy::NoMatch;
    if ((Res = isExactFPImm<ImmA>()))
      return DiagnosticPredicateTy::Match;
    if ((Res = isExactFPImm<ImmB>()))
      return DiagnosticPredicateTy::Match;
    return Res;
  }

  bool isExtend() const {
    if (!isShiftExtend())
      return false;

    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
            ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
            ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW ||
            ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
            ET == AArch64_AM::LSL) &&
           getShiftExtendAmount() <= 4;
  }

  bool isExtend64() const {
    if (!isExtend())
      return false;
    // Make sure the extend expects a 32-bit source register.
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    return ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
           ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
           ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW;
  }

  bool isExtendLSL64() const {
    if (!isExtend())
      return false;
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
            ET == AArch64_AM::LSL) &&
           getShiftExtendAmount() <= 4;
  }

  template<int Width> bool isMemXExtend() const {
    if (!isExtend())
      return false;
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) &&
           (getShiftExtendAmount() == Log2_32(Width / 8) ||
            getShiftExtendAmount() == 0);
  }

  template<int Width> bool isMemWExtend() const {
    if (!isExtend())
      return false;
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) &&
           (getShiftExtendAmount() == Log2_32(Width / 8) ||
            getShiftExtendAmount() == 0);
  }

  template <unsigned width>
  bool isArithmeticShifter() const {
    if (!isShifter())
      return false;

    // An arithmetic shifter is LSL, LSR, or ASR.
    AArch64_AM::ShiftExtendType ST = getShiftExtendType();
    return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
            ST == AArch64_AM::ASR) && getShiftExtendAmount() < width;
  }

  template <unsigned width>
  bool isLogicalShifter() const {
    if (!isShifter())
      return false;

    // A logical shifter is LSL, LSR, ASR or ROR.
    AArch64_AM::ShiftExtendType ST = getShiftExtendType();
    return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
            ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) &&
           getShiftExtendAmount() < width;
  }

  bool isMovImm32Shifter() const {
    if (!isShifter())
      return false;

    // A MOVi shifter is LSL of 0, 16, 32, or 48.
    AArch64_AM::ShiftExtendType ST = getShiftExtendType();
    if (ST != AArch64_AM::LSL)
      return false;
    uint64_t Val = getShiftExtendAmount();
    return (Val == 0 || Val == 16);
  }

  bool isMovImm64Shifter() const {
    if (!isShifter())
      return false;

    // A MOVi shifter is LSL of 0 or 16.
    AArch64_AM::ShiftExtendType ST = getShiftExtendType();
    if (ST != AArch64_AM::LSL)
      return false;
    uint64_t Val = getShiftExtendAmount();
    return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
  }

  bool isLogicalVecShifter() const {
    if (!isShifter())
      return false;

    // A logical vector shifter is a left shift by 0, 8, 16, or 24.
    unsigned Shift = getShiftExtendAmount();
    return getShiftExtendType() == AArch64_AM::LSL &&
           (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
  }

  bool isLogicalVecHalfWordShifter() const {
    if (!isLogicalVecShifter())
      return false;

    // A logical vector shifter is a left shift by 0 or 8.
    unsigned Shift = getShiftExtendAmount();
    return getShiftExtendType() == AArch64_AM::LSL &&
           (Shift == 0 || Shift == 8);
  }

  bool isMoveVecShifter() const {
    if (!isShiftExtend())
      return false;

    // A logical vector shifter is a left shift by 8 or 16.
    unsigned Shift = getShiftExtendAmount();
    return getShiftExtendType() == AArch64_AM::MSL &&
           (Shift == 8 || Shift == 16);
  }

  // Fallback unscaled operands are for aliases of LDR/STR that fall back
  // to LDUR/STUR when the offset is not legal for the former but is for
  // the latter. As such, in addition to checking for being a legal unscaled
  // address, also check that it is not a legal scaled address. This avoids
  // ambiguity in the matcher.
  template<int Width>
  bool isSImm9OffsetFB() const {
    return isSImm<9>() && !isUImm12Offset<Width / 8>();
  }

  bool isAdrpLabel() const {
    // Validation was handled during parsing, so we just sanity check that
    // something didn't go haywire.
    if (!isImm())
        return false;

    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
      int64_t Val = CE->getValue();
      int64_t Min = - (4096 * (1LL << (21 - 1)));
      int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
      return (Val % 4096) == 0 && Val >= Min && Val <= Max;
    }

    return true;
  }

  bool isAdrLabel() const {
    // Validation was handled during parsing, so we just sanity check that
    // something didn't go haywire.
    if (!isImm())
        return false;

    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
      int64_t Val = CE->getValue();
      int64_t Min = - (1LL << (21 - 1));
      int64_t Max = ((1LL << (21 - 1)) - 1);
      return Val >= Min && Val <= Max;
    }

    return true;
  }

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    // Add as immediates when possible.  Null MCExpr = 0.
    if (!Expr)
      Inst.addOperand(MCOperand::createImm(0));
    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
      Inst.addOperand(MCOperand::createImm(CE->getValue()));
    else
      Inst.addOperand(MCOperand::createExpr(Expr));
  }

  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addGPR32as64Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(
        AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg()));

    const MCRegisterInfo *RI = Ctx.getRegisterInfo();
    uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister(
        RI->getEncodingValue(getReg()));

    Inst.addOperand(MCOperand::createReg(Reg));
  }

  void addGPR64as32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(
        AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(getReg()));

    const MCRegisterInfo *RI = Ctx.getRegisterInfo();
    uint32_t Reg = RI->getRegClass(AArch64::GPR64RegClassID).getRegister(
        RI->getEncodingValue(getReg()));

    Inst.addOperand(MCOperand::createReg(Reg));
  }

  template <int Width>
  void addFPRasZPRRegOperands(MCInst &Inst, unsigned N) const {
    unsigned Base;
    switch (Width) {
    case 8:   Base = AArch64::B0; break;
    case 16:  Base = AArch64::H0; break;
    case 32:  Base = AArch64::S0; break;
    case 64:  Base = AArch64::D0; break;
    case 128: Base = AArch64::Q0; break;
    default:
      llvm_unreachable("Unsupported width");
    }
    Inst.addOperand(MCOperand::createReg(AArch64::Z0 + getReg() - Base));
  }

  void addVectorReg64Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(
        AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
    Inst.addOperand(MCOperand::createReg(AArch64::D0 + getReg() - AArch64::Q0));
  }

  void addVectorReg128Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(
        AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  enum VecListIndexType {
    VecListIdx_DReg = 0,
    VecListIdx_QReg = 1,
    VecListIdx_ZReg = 2,
  };

  template <VecListIndexType RegTy, unsigned NumRegs>
  void addVectorListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    static const unsigned FirstRegs[][5] = {
      /* DReg */ { AArch64::Q0,
                   AArch64::D0,       AArch64::D0_D1,
                   AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 },
      /* QReg */ { AArch64::Q0,
                   AArch64::Q0,       AArch64::Q0_Q1,
                   AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 },
      /* ZReg */ { AArch64::Z0,
                   AArch64::Z0,       AArch64::Z0_Z1,
                   AArch64::Z0_Z1_Z2, AArch64::Z0_Z1_Z2_Z3 }
    };

    assert((RegTy != VecListIdx_ZReg || NumRegs <= 4) &&
           " NumRegs must be <= 4 for ZRegs");

    unsigned FirstReg = FirstRegs[(unsigned)RegTy][NumRegs];
    Inst.addOperand(MCOperand::createReg(FirstReg + getVectorListStart() -
                                         FirstRegs[(unsigned)RegTy][0]));
  }

  void addVectorIndexOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  template <unsigned ImmIs0, unsigned ImmIs1>
  void addExactFPImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(bool(isExactFPImm<ImmIs0, ImmIs1>()) && "Invalid operand");
    Inst.addOperand(MCOperand::createImm(bool(isExactFPImm<ImmIs1>())));
  }

  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // If this is a pageoff symrefexpr with an addend, adjust the addend
    // to be only the page-offset portion. Otherwise, just add the expr
    // as-is.
    addExpr(Inst, getImm());
  }

  template <int Shift>
  void addImmWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    if (auto ShiftedVal = getShiftedVal<Shift>()) {
      Inst.addOperand(MCOperand::createImm(ShiftedVal->first));
      Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
    } else if (isShiftedImm()) {
      addExpr(Inst, getShiftedImmVal());
      Inst.addOperand(MCOperand::createImm(getShiftedImmShift()));
    } else {
      addExpr(Inst, getImm());
      Inst.addOperand(MCOperand::createImm(0));
    }
  }

  template <int Shift>
  void addImmNegWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    if (auto ShiftedVal = getShiftedVal<Shift>()) {
      Inst.addOperand(MCOperand::createImm(-ShiftedVal->first));
      Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
    } else
      llvm_unreachable("Not a shifted negative immediate");
  }

  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getCondCode()));
  }

  void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE)
      addExpr(Inst, getImm());
    else
      Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 12));
  }

  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
    addImmOperands(Inst, N);
  }

  template<int Scale>
  void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());

    if (!MCE) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      return;
    }
    Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
  }

  void addUImm6Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(MCE->getValue()));
  }

  template <int Scale>
  void addImmScaledOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
  }

  template <typename T>
  void addLogicalImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    typename std::make_unsigned<T>::type Val = MCE->getValue();
    uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
    Inst.addOperand(MCOperand::createImm(encoding));
  }

  template <typename T>
  void addLogicalImmNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    typename std::make_unsigned<T>::type Val = ~MCE->getValue();
    uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
    Inst.addOperand(MCOperand::createImm(encoding));
  }

  void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
    Inst.addOperand(MCOperand::createImm(encoding));
  }

  void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
    // Branch operands don't encode the low bits, so shift them off
    // here. If it's a label, however, just put it on directly as there's
    // not enough information now to do anything.
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE) {
      addExpr(Inst, getImm());
      return;
    }
    assert(MCE && "Invalid constant immediate operand!");
    Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
  }

  void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
    // Branch operands don't encode the low bits, so shift them off
    // here. If it's a label, however, just put it on directly as there's
    // not enough information now to do anything.
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE) {
      addExpr(Inst, getImm());
      return;
    }
    assert(MCE && "Invalid constant immediate operand!");
    Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
  }

  void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
    // Branch operands don't encode the low bits, so shift them off
    // here. If it's a label, however, just put it on directly as there's
    // not enough information now to do anything.
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
    if (!MCE) {
      addExpr(Inst, getImm());
      return;
    }
    assert(MCE && "Invalid constant immediate operand!");
    Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
  }

  void addFPImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(
        AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt())));
  }

  void addBarrierOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getBarrier()));
  }

  void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    Inst.addOperand(MCOperand::createImm(SysReg.MRSReg));
  }

  void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    Inst.addOperand(MCOperand::createImm(SysReg.MSRReg));
  }

  void addSystemPStateFieldWithImm0_1Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
  }

  void addSystemPStateFieldWithImm0_15Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
  }

  void addSysCROperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getSysCR()));
  }

  void addPrefetchOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getPrefetch()));
  }

  void addPSBHintOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getPSBHint()));
  }

  void addBTIHintOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getBTIHint()));
  }

  void addShifterOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    unsigned Imm =
        AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount());
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addExtendOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW;
    unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addExtend64Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX;
    unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addMemExtendOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
    Inst.addOperand(MCOperand::createImm(IsSigned));
    Inst.addOperand(MCOperand::createImm(getShiftExtendAmount() != 0));
  }

  // For 8-bit load/store instructions with a register offset, both the
  // "DoShift" and "NoShift" variants have a shift of 0. Because of this,
  // they're disambiguated by whether the shift was explicit or implicit rather
  // than its size.
  void addMemExtend8Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    AArch64_AM::ShiftExtendType ET = getShiftExtendType();
    bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
    Inst.addOperand(MCOperand::createImm(IsSigned));
    Inst.addOperand(MCOperand::createImm(hasShiftExtendAmount()));
  }

  template<int Shift>
  void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint64_t Value = CE->getValue();
    Inst.addOperand(MCOperand::createImm((Value >> Shift) & 0xffff));
  }

  template<int Shift>
  void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint64_t Value = CE->getValue();
    Inst.addOperand(MCOperand::createImm((~Value >> Shift) & 0xffff));
  }

  void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(MCE->getValue() / 90));
  }

  void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm((MCE->getValue() - 90) / 180));
  }

  void print(raw_ostream &OS) const override;

  static std::unique_ptr<AArch64Operand>
  CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_Token, Ctx);
    Op->Tok.Data = Str.data();
    Op->Tok.Length = Str.size();
    Op->Tok.IsSuffix = IsSuffix;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateReg(unsigned RegNum, RegKind Kind, SMLoc S, SMLoc E, MCContext &Ctx,
            RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg,
            AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
            unsigned ShiftAmount = 0,
            unsigned HasExplicitAmount = false) {
    auto Op = std::make_unique<AArch64Operand>(k_Register, Ctx);
    Op->Reg.RegNum = RegNum;
    Op->Reg.Kind = Kind;
    Op->Reg.ElementWidth = 0;
    Op->Reg.EqualityTy = EqTy;
    Op->Reg.ShiftExtend.Type = ExtTy;
    Op->Reg.ShiftExtend.Amount = ShiftAmount;
    Op->Reg.ShiftExtend.HasExplicitAmount = HasExplicitAmount;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateVectorReg(unsigned RegNum, RegKind Kind, unsigned ElementWidth,
                  SMLoc S, SMLoc E, MCContext &Ctx,
                  AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
                  unsigned ShiftAmount = 0,
                  unsigned HasExplicitAmount = false) {
    assert((Kind == RegKind::NeonVector || Kind == RegKind::SVEDataVector ||
            Kind == RegKind::SVEPredicateVector) &&
           "Invalid vector kind");
    auto Op = CreateReg(RegNum, Kind, S, E, Ctx, EqualsReg, ExtTy, ShiftAmount,
                        HasExplicitAmount);
    Op->Reg.ElementWidth = ElementWidth;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements,
                   unsigned ElementWidth, RegKind RegisterKind, SMLoc S, SMLoc E,
                   MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_VectorList, Ctx);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.NumElements = NumElements;
    Op->VectorList.ElementWidth = ElementWidth;
    Op->VectorList.RegisterKind = RegisterKind;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_VectorIndex, Ctx);
    Op->VectorIndex.Val = Idx;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S,
                                                   SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_Immediate, Ctx);
    Op->Imm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val,
                                                          unsigned ShiftAmount,
                                                          SMLoc S, SMLoc E,
                                                          MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_ShiftedImm, Ctx);
    Op->ShiftedImm .Val = Val;
    Op->ShiftedImm.ShiftAmount = ShiftAmount;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_CondCode, Ctx);
    Op->CondCode.Code = Code;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateFPImm(APFloat Val, bool IsExact, SMLoc S, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_FPImm, Ctx);
    Op->FPImm.Val = Val.bitcastToAPInt().getSExtValue();
    Op->FPImm.IsExact = IsExact;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val,
                                                       StringRef Str,
                                                       SMLoc S,
                                                       MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_Barrier, Ctx);
    Op->Barrier.Val = Val;
    Op->Barrier.Data = Str.data();
    Op->Barrier.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateSysReg(StringRef Str, SMLoc S,
                                                      uint32_t MRSReg,
                                                      uint32_t MSRReg,
                                                      uint32_t PStateField,
                                                      MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_SysReg, Ctx);
    Op->SysReg.Data = Str.data();
    Op->SysReg.Length = Str.size();
    Op->SysReg.MRSReg = MRSReg;
    Op->SysReg.MSRReg = MSRReg;
    Op->SysReg.PStateField = PStateField;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S,
                                                     SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_SysCR, Ctx);
    Op->SysCRImm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val,
                                                        StringRef Str,
                                                        SMLoc S,
                                                        MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_Prefetch, Ctx);
    Op->Prefetch.Val = Val;
    Op->Barrier.Data = Str.data();
    Op->Barrier.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreatePSBHint(unsigned Val,
                                                       StringRef Str,
                                                       SMLoc S,
                                                       MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_PSBHint, Ctx);
    Op->PSBHint.Val = Val;
    Op->PSBHint.Data = Str.data();
    Op->PSBHint.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand> CreateBTIHint(unsigned Val,
                                                       StringRef Str,
                                                       SMLoc S,
                                                       MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_BTIHint, Ctx);
    Op->BTIHint.Val = Val << 1 | 32;
    Op->BTIHint.Data = Str.data();
    Op->BTIHint.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<AArch64Operand>
  CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val,
                    bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<AArch64Operand>(k_ShiftExtend, Ctx);
    Op->ShiftExtend.Type = ShOp;
    Op->ShiftExtend.Amount = Val;
    Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }
};

} // end anonymous namespace.

void AArch64Operand::print(raw_ostream &OS) const {
  switch (Kind) {
  case k_FPImm:
    OS << "<fpimm " << getFPImm().bitcastToAPInt().getZExtValue();
    if (!getFPImmIsExact())
      OS << " (inexact)";
    OS << ">";
    break;
  case k_Barrier: {
    StringRef Name = getBarrierName();
    if (!Name.empty())
      OS << "<barrier " << Name << ">";
    else
      OS << "<barrier invalid #" << getBarrier() << ">";
    break;
  }
  case k_Immediate:
    OS << *getImm();
    break;
  case k_ShiftedImm: {
    unsigned Shift = getShiftedImmShift();
    OS << "<shiftedimm ";
    OS << *getShiftedImmVal();
    OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">";
    break;
  }
  case k_CondCode:
    OS << "<condcode " << getCondCode() << ">";
    break;
  case k_VectorList: {
    OS << "<vectorlist ";
    unsigned Reg = getVectorListStart();
    for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
      OS << Reg + i << " ";
    OS << ">";
    break;
  }
  case k_VectorIndex:
    OS << "<vectorindex " << getVectorIndex() << ">";
    break;
  case k_SysReg:
    OS << "<sysreg: " << getSysReg() << '>';
    break;
  case k_Token:
    OS << "'" << getToken() << "'";
    break;
  case k_SysCR:
    OS << "c" << getSysCR();
    break;
  case k_Prefetch: {
    StringRef Name = getPrefetchName();
    if (!Name.empty())
      OS << "<prfop " << Name << ">";
    else
      OS << "<prfop invalid #" << getPrefetch() << ">";
    break;
  }
  case k_PSBHint:
    OS << getPSBHintName();
    break;
  case k_Register:
    OS << "<register " << getReg() << ">";
    if (!getShiftExtendAmount() && !hasShiftExtendAmount())
      break;
    LLVM_FALLTHROUGH;
  case k_BTIHint:
    OS << getBTIHintName();
    break;
  case k_ShiftExtend:
    OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #"
       << getShiftExtendAmount();
    if (!hasShiftExtendAmount())
      OS << "<imp>";
    OS << '>';
    break;
  }
}

/// @name Auto-generated Match Functions
/// {

static unsigned MatchRegisterName(StringRef Name);

/// }

static unsigned MatchNeonVectorRegName(StringRef Name) {
  return StringSwitch<unsigned>(Name.lower())
      .Case("v0", AArch64::Q0)
      .Case("v1", AArch64::Q1)
      .Case("v2", AArch64::Q2)
      .Case("v3", AArch64::Q3)
      .Case("v4", AArch64::Q4)
      .Case("v5", AArch64::Q5)
      .Case("v6", AArch64::Q6)
      .Case("v7", AArch64::Q7)
      .Case("v8", AArch64::Q8)
      .Case("v9", AArch64::Q9)
      .Case("v10", AArch64::Q10)
      .Case("v11", AArch64::Q11)
      .Case("v12", AArch64::Q12)
      .Case("v13", AArch64::Q13)
      .Case("v14", AArch64::Q14)
      .Case("v15", AArch64::Q15)
      .Case("v16", AArch64::Q16)
      .Case("v17", AArch64::Q17)
      .Case("v18", AArch64::Q18)
      .Case("v19", AArch64::Q19)
      .Case("v20", AArch64::Q20)
      .Case("v21", AArch64::Q21)
      .Case("v22", AArch64::Q22)
      .Case("v23", AArch64::Q23)
      .Case("v24", AArch64::Q24)
      .Case("v25", AArch64::Q25)
      .Case("v26", AArch64::Q26)
      .Case("v27", AArch64::Q27)
      .Case("v28", AArch64::Q28)
      .Case("v29", AArch64::Q29)
      .Case("v30", AArch64::Q30)
      .Case("v31", AArch64::Q31)
      .Default(0);
}

/// Returns an optional pair of (#elements, element-width) if Suffix
/// is a valid vector kind. Where the number of elements in a vector
/// or the vector width is implicit or explicitly unknown (but still a
/// valid suffix kind), 0 is used.
static Optional<std::pair<int, int>> parseVectorKind(StringRef Suffix,
                                                     RegKind VectorKind) {
  std::pair<int, int> Res = {-1, -1};

  switch (VectorKind) {
  case RegKind::NeonVector:
    Res =
        StringSwitch<std::pair<int, int>>(Suffix.lower())
            .Case("", {0, 0})
            .Case(".1d", {1, 64})
            .Case(".1q", {1, 128})
            // '.2h' needed for fp16 scalar pairwise reductions
            .Case(".2h", {2, 16})
            .Case(".2s", {2, 32})
            .Case(".2d", {2, 64})
            // '.4b' is another special case for the ARMv8.2a dot product
            // operand
            .Case(".4b", {4, 8})
            .Case(".4h", {4, 16})
            .Case(".4s", {4, 32})
            .Case(".8b", {8, 8})
            .Case(".8h", {8, 16})
            .Case(".16b", {16, 8})
            // Accept the width neutral ones, too, for verbose syntax. If those
            // aren't used in the right places, the token operand won't match so
            // all will work out.
            .Case(".b", {0, 8})
            .Case(".h", {0, 16})
            .Case(".s", {0, 32})
            .Case(".d", {0, 64})
            .Default({-1, -1});
    break;
  case RegKind::SVEPredicateVector:
  case RegKind::SVEDataVector:
    Res = StringSwitch<std::pair<int, int>>(Suffix.lower())
              .Case("", {0, 0})
              .Case(".b", {0, 8})
              .Case(".h", {0, 16})
              .Case(".s", {0, 32})
              .Case(".d", {0, 64})
              .Case(".q", {0, 128})
              .Default({-1, -1});
    break;
  default:
    llvm_unreachable("Unsupported RegKind");
  }

  if (Res == std::make_pair(-1, -1))
    return Optional<std::pair<int, int>>();

  return Optional<std::pair<int, int>>(Res);
}

static bool isValidVectorKind(StringRef Suffix, RegKind VectorKind) {
  return parseVectorKind(Suffix, VectorKind).hasValue();
}

static unsigned matchSVEDataVectorRegName(StringRef Name) {
  return StringSwitch<unsigned>(Name.lower())
      .Case("z0", AArch64::Z0)
      .Case("z1", AArch64::Z1)
      .Case("z2", AArch64::Z2)
      .Case("z3", AArch64::Z3)
      .Case("z4", AArch64::Z4)
      .Case("z5", AArch64::Z5)
      .Case("z6", AArch64::Z6)
      .Case("z7", AArch64::Z7)
      .Case("z8", AArch64::Z8)
      .Case("z9", AArch64::Z9)
      .Case("z10", AArch64::Z10)
      .Case("z11", AArch64::Z11)
      .Case("z12", AArch64::Z12)
      .Case("z13", AArch64::Z13)
      .Case("z14", AArch64::Z14)
      .Case("z15", AArch64::Z15)
      .Case("z16", AArch64::Z16)
      .Case("z17", AArch64::Z17)
      .Case("z18", AArch64::Z18)
      .Case("z19", AArch64::Z19)
      .Case("z20", AArch64::Z20)
      .Case("z21", AArch64::Z21)
      .Case("z22", AArch64::Z22)
      .Case("z23", AArch64::Z23)
      .Case("z24", AArch64::Z24)
      .Case("z25", AArch64::Z25)
      .Case("z26", AArch64::Z26)
      .Case("z27", AArch64::Z27)
      .Case("z28", AArch64::Z28)
      .Case("z29", AArch64::Z29)
      .Case("z30", AArch64::Z30)
      .Case("z31", AArch64::Z31)
      .Default(0);
}

static unsigned matchSVEPredicateVectorRegName(StringRef Name) {
  return StringSwitch<unsigned>(Name.lower())
      .Case("p0", AArch64::P0)
      .Case("p1", AArch64::P1)
      .Case("p2", AArch64::P2)
      .Case("p3", AArch64::P3)
      .Case("p4", AArch64::P4)
      .Case("p5", AArch64::P5)
      .Case("p6", AArch64::P6)
      .Case("p7", AArch64::P7)
      .Case("p8", AArch64::P8)
      .Case("p9", AArch64::P9)
      .Case("p10", AArch64::P10)
      .Case("p11", AArch64::P11)
      .Case("p12", AArch64::P12)
      .Case("p13", AArch64::P13)
      .Case("p14", AArch64::P14)
      .Case("p15", AArch64::P15)
      .Default(0);
}

bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                     SMLoc &EndLoc) {
  StartLoc = getLoc();
  auto Res = tryParseScalarRegister(RegNo);
  EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
  return Res != MatchOperand_Success;
}

// Matches a register name or register alias previously defined by '.req'
unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
                                                  RegKind Kind) {
  unsigned RegNum = 0;
  if ((RegNum = matchSVEDataVectorRegName(Name)))
    return Kind == RegKind::SVEDataVector ? RegNum : 0;

  if ((RegNum = matchSVEPredicateVectorRegName(Name)))
    return Kind == RegKind::SVEPredicateVector ? RegNum : 0;

  if ((RegNum = MatchNeonVectorRegName(Name)))
    return Kind == RegKind::NeonVector ? RegNum : 0;

  // The parsed register must be of RegKind Scalar
  if ((RegNum = MatchRegisterName(Name)))
    return Kind == RegKind::Scalar ? RegNum : 0;

  if (!RegNum) {
    // Handle a few common aliases of registers.
    if (auto RegNum = StringSwitch<unsigned>(Name.lower())
                    .Case("fp", AArch64::FP)
                    .Case("lr",  AArch64::LR)
                    .Case("x31", AArch64::XZR)
                    .Case("w31", AArch64::WZR)
                    .Default(0))
      return Kind == RegKind::Scalar ? RegNum : 0;

    // Check for aliases registered via .req. Canonicalize to lower case.
    // That's more consistent since register names are case insensitive, and
    // it's how the original entry was passed in from MC/MCParser/AsmParser.
    auto Entry = RegisterReqs.find(Name.lower());
    if (Entry == RegisterReqs.end())
      return 0;

    // set RegNum if the match is the right kind of register
    if (Kind == Entry->getValue().first)
      RegNum = Entry->getValue().second;
  }
  return RegNum;
}

/// tryParseScalarRegister - Try to parse a register name. The token must be an
/// Identifier when called, and if it is a register name the token is eaten and
/// the register is added to the operand list.
OperandMatchResultTy
AArch64AsmParser::tryParseScalarRegister(unsigned &RegNum) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  std::string lowerCase = Tok.getString().lower();
  unsigned Reg = matchRegisterNameAlias(lowerCase, RegKind::Scalar);
  if (Reg == 0)
    return MatchOperand_NoMatch;

  RegNum = Reg;
  Parser.Lex(); // Eat identifier token.
  return MatchOperand_Success;
}

/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
OperandMatchResultTy
AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();

  if (Parser.getTok().isNot(AsmToken::Identifier)) {
    Error(S, "Expected cN operand where 0 <= N <= 15");
    return MatchOperand_ParseFail;
  }

  StringRef Tok = Parser.getTok().getIdentifier();
  if (Tok[0] != 'c' && Tok[0] != 'C') {
    Error(S, "Expected cN operand where 0 <= N <= 15");
    return MatchOperand_ParseFail;
  }

  uint32_t CRNum;
  bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
  if (BadNum || CRNum > 15) {
    Error(S, "Expected cN operand where 0 <= N <= 15");
    return MatchOperand_ParseFail;
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(
      AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext()));
  return MatchOperand_Success;
}

/// tryParsePrefetch - Try to parse a prefetch operand.
template <bool IsSVEPrefetch>
OperandMatchResultTy
AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();
  const AsmToken &Tok = Parser.getTok();

  auto LookupByName = [](StringRef N) {
    if (IsSVEPrefetch) {
      if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByName(N))
        return Optional<unsigned>(Res->Encoding);
    } else if (auto Res = AArch64PRFM::lookupPRFMByName(N))
      return Optional<unsigned>(Res->Encoding);
    return Optional<unsigned>();
  };

  auto LookupByEncoding = [](unsigned E) {
    if (IsSVEPrefetch) {
      if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByEncoding(E))
        return Optional<StringRef>(Res->Name);
    } else if (auto Res = AArch64PRFM::lookupPRFMByEncoding(E))
      return Optional<StringRef>(Res->Name);
    return Optional<StringRef>();
  };
  unsigned MaxVal = IsSVEPrefetch ? 15 : 31;

  // Either an identifier for named values or a 5-bit immediate.
  // Eat optional hash.
  if (parseOptionalToken(AsmToken::Hash) ||
      Tok.is(AsmToken::Integer)) {
    const MCExpr *ImmVal;
    if (getParser().parseExpression(ImmVal))
      return MatchOperand_ParseFail;

    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE) {
      TokError("immediate value expected for prefetch operand");
      return MatchOperand_ParseFail;
    }
    unsigned prfop = MCE->getValue();
    if (prfop > MaxVal) {
      TokError("prefetch operand out of range, [0," + utostr(MaxVal) +
               "] expected");
      return MatchOperand_ParseFail;
    }

    auto PRFM = LookupByEncoding(MCE->getValue());
    Operands.push_back(AArch64Operand::CreatePrefetch(
        prfop, PRFM.getValueOr(""), S, getContext()));
    return MatchOperand_Success;
  }

  if (Tok.isNot(AsmToken::Identifier)) {
    TokError("prefetch hint expected");
    return MatchOperand_ParseFail;
  }

  auto PRFM = LookupByName(Tok.getString());
  if (!PRFM) {
    TokError("prefetch hint expected");
    return MatchOperand_ParseFail;
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(AArch64Operand::CreatePrefetch(
      *PRFM, Tok.getString(), S, getContext()));
  return MatchOperand_Success;
}

/// tryParsePSBHint - Try to parse a PSB operand, mapped to Hint command
OperandMatchResultTy
AArch64AsmParser::tryParsePSBHint(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) {
    TokError("invalid operand for instruction");
    return MatchOperand_ParseFail;
  }

  auto PSB = AArch64PSBHint::lookupPSBByName(Tok.getString());
  if (!PSB) {
    TokError("invalid operand for instruction");
    return MatchOperand_ParseFail;
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(AArch64Operand::CreatePSBHint(
      PSB->Encoding, Tok.getString(), S, getContext()));
  return MatchOperand_Success;
}

/// tryParseBTIHint - Try to parse a BTI operand, mapped to Hint command
OperandMatchResultTy
AArch64AsmParser::tryParseBTIHint(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) {
    TokError("invalid operand for instruction");
    return MatchOperand_ParseFail;
  }

  auto BTI = AArch64BTIHint::lookupBTIByName(Tok.getString());
  if (!BTI) {
    TokError("invalid operand for instruction");
    return MatchOperand_ParseFail;
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(AArch64Operand::CreateBTIHint(
      BTI->Encoding, Tok.getString(), S, getContext()));
  return MatchOperand_Success;
}

/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
/// instruction.
OperandMatchResultTy
AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();
  const MCExpr *Expr = nullptr;

  if (Parser.getTok().is(AsmToken::Hash)) {
    Parser.Lex(); // Eat hash token.
  }

  if (parseSymbolicImmVal(Expr))
    return MatchOperand_ParseFail;

  AArch64MCExpr::VariantKind ELFRefKind;
  MCSymbolRefExpr::VariantKind DarwinRefKind;
  int64_t Addend;
  if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
    if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
        ELFRefKind == AArch64MCExpr::VK_INVALID) {
      // No modifier was specified at all; this is the syntax for an ELF basic
      // ADRP relocation (unfortunately).
      Expr =
          AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext());
    } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
                DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
               Addend != 0) {
      Error(S, "gotpage label reference not allowed an addend");
      return MatchOperand_ParseFail;
    } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
               DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
               DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
               ELFRefKind != AArch64MCExpr::VK_ABS_PAGE_NC &&
               ELFRefKind != AArch64MCExpr::VK_GOT_PAGE &&
               ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE &&
               ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) {
      // The operand must be an @page or @gotpage qualified symbolref.
      Error(S, "page or gotpage label reference expected");
      return MatchOperand_ParseFail;
    }
  }

  // We have either a label reference possibly with addend or an immediate. The
  // addend is a raw value here. The linker will adjust it to only reference the
  // page.
  SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
  Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));

  return MatchOperand_Success;
}

/// tryParseAdrLabel - Parse and validate a source label for the ADR
/// instruction.
OperandMatchResultTy
AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
  SMLoc S = getLoc();
  const MCExpr *Expr = nullptr;

  // Leave anything with a bracket to the default for SVE
  if (getParser().getTok().is(AsmToken::LBrac))
    return MatchOperand_NoMatch;

  if (getParser().getTok().is(AsmToken::Hash))
    getParser().Lex(); // Eat hash token.

  if (parseSymbolicImmVal(Expr))
    return MatchOperand_ParseFail;

  AArch64MCExpr::VariantKind ELFRefKind;
  MCSymbolRefExpr::VariantKind DarwinRefKind;
  int64_t Addend;
  if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
    if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
        ELFRefKind == AArch64MCExpr::VK_INVALID) {
      // No modifier was specified at all; this is the syntax for an ELF basic
      // ADR relocation (unfortunately).
      Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, getContext());
    } else {
      Error(S, "unexpected adr label");
      return MatchOperand_ParseFail;
    }
  }

  SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
  Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
  return MatchOperand_Success;
}

/// tryParseFPImm - A floating point immediate expression operand.
template<bool AddFPZeroAsLiteral>
OperandMatchResultTy
AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();

  bool Hash = parseOptionalToken(AsmToken::Hash);

  // Handle negation, as that still comes through as a separate token.
  bool isNegative = parseOptionalToken(AsmToken::Minus);

  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Real) && !Tok.is(AsmToken::Integer)) {
    if (!Hash)
      return MatchOperand_NoMatch;
    TokError("invalid floating point immediate");
    return MatchOperand_ParseFail;
  }

  // Parse hexadecimal representation.
  if (Tok.is(AsmToken::Integer) && Tok.getString().startswith("0x")) {
    if (Tok.getIntVal() > 255 || isNegative) {
      TokError("encoded floating point value out of range");
      return MatchOperand_ParseFail;
    }

    APFloat F((double)AArch64_AM::getFPImmFloat(Tok.getIntVal()));
    Operands.push_back(
        AArch64Operand::CreateFPImm(F, true, S, getContext()));
  } else {
    // Parse FP representation.
    APFloat RealVal(APFloat::IEEEdouble());
    auto StatusOrErr =
        RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
    if (errorToBool(StatusOrErr.takeError())) {
      TokError("invalid floating point representation");
      return MatchOperand_ParseFail;
    }

    if (isNegative)
      RealVal.changeSign();

    if (AddFPZeroAsLiteral && RealVal.isPosZero()) {
      Operands.push_back(
          AArch64Operand::CreateToken("#0", false, S, getContext()));
      Operands.push_back(
          AArch64Operand::CreateToken(".0", false, S, getContext()));
    } else
      Operands.push_back(AArch64Operand::CreateFPImm(
          RealVal, *StatusOrErr == APFloat::opOK, S, getContext()));
  }

  Parser.Lex(); // Eat the token.

  return MatchOperand_Success;
}

/// tryParseImmWithOptionalShift - Parse immediate operand, optionally with
/// a shift suffix, for example '#1, lsl #12'.
OperandMatchResultTy
AArch64AsmParser::tryParseImmWithOptionalShift(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();

  if (Parser.getTok().is(AsmToken::Hash))
    Parser.Lex(); // Eat '#'
  else if (Parser.getTok().isNot(AsmToken::Integer))
    // Operand should start from # or should be integer, emit error otherwise.
    return MatchOperand_NoMatch;

  const MCExpr *Imm = nullptr;
  if (parseSymbolicImmVal(Imm))
    return MatchOperand_ParseFail;
  else if (Parser.getTok().isNot(AsmToken::Comma)) {
    SMLoc E = Parser.getTok().getLoc();
    Operands.push_back(
        AArch64Operand::CreateImm(Imm, S, E, getContext()));
    return MatchOperand_Success;
  }

  // Eat ','
  Parser.Lex();

  // The optional operand must be "lsl #N" where N is non-negative.
  if (!Parser.getTok().is(AsmToken::Identifier) ||
      !Parser.getTok().getIdentifier().equals_lower("lsl")) {
    Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
    return MatchOperand_ParseFail;
  }

  // Eat 'lsl'
  Parser.Lex();

  parseOptionalToken(AsmToken::Hash);

  if (Parser.getTok().isNot(AsmToken::Integer)) {
    Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
    return MatchOperand_ParseFail;
  }

  int64_t ShiftAmount = Parser.getTok().getIntVal();

  if (ShiftAmount < 0) {
    Error(Parser.getTok().getLoc(), "positive shift amount required");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat the number

  // Just in case the optional lsl #0 is used for immediates other than zero.
  if (ShiftAmount == 0 && Imm != nullptr) {
    SMLoc E = Parser.getTok().getLoc();
    Operands.push_back(AArch64Operand::CreateImm(Imm, S, E, getContext()));
    return MatchOperand_Success;
  }

  SMLoc E = Parser.getTok().getLoc();
  Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount,
                                                      S, E, getContext()));
  return MatchOperand_Success;
}

/// parseCondCodeString - Parse a Condition Code string.
AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
  AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
                    .Case("eq", AArch64CC::EQ)
                    .Case("ne", AArch64CC::NE)
                    .Case("cs", AArch64CC::HS)
                    .Case("hs", AArch64CC::HS)
                    .Case("cc", AArch64CC::LO)
                    .Case("lo", AArch64CC::LO)
                    .Case("mi", AArch64CC::MI)
                    .Case("pl", AArch64CC::PL)
                    .Case("vs", AArch64CC::VS)
                    .Case("vc", AArch64CC::VC)
                    .Case("hi", AArch64CC::HI)
                    .Case("ls", AArch64CC::LS)
                    .Case("ge", AArch64CC::GE)
                    .Case("lt", AArch64CC::LT)
                    .Case("gt", AArch64CC::GT)
                    .Case("le", AArch64CC::LE)
                    .Case("al", AArch64CC::AL)
                    .Case("nv", AArch64CC::NV)
                    .Default(AArch64CC::Invalid);

  if (CC == AArch64CC::Invalid &&
      getSTI().getFeatureBits()[AArch64::FeatureSVE])
    CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
                    .Case("none",  AArch64CC::EQ)
                    .Case("any",   AArch64CC::NE)
                    .Case("nlast", AArch64CC::HS)
                    .Case("last",  AArch64CC::LO)
                    .Case("first", AArch64CC::MI)
                    .Case("nfrst", AArch64CC::PL)
                    .Case("pmore", AArch64CC::HI)
                    .Case("plast", AArch64CC::LS)
                    .Case("tcont", AArch64CC::GE)
                    .Case("tstop", AArch64CC::LT)
                    .Default(AArch64CC::Invalid);

  return CC;
}

/// parseCondCode - Parse a Condition Code operand.
bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
                                     bool invertCondCode) {
  MCAsmParser &Parser = getParser();
  SMLoc S = getLoc();
  const AsmToken &Tok = Parser.getTok();
  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");

  StringRef Cond = Tok.getString();
  AArch64CC::CondCode CC = parseCondCodeString(Cond);
  if (CC == AArch64CC::Invalid)
    return TokError("invalid condition code");
  Parser.Lex(); // Eat identifier token.

  if (invertCondCode) {
    if (CC == AArch64CC::AL || CC == AArch64CC::NV)
      return TokError("condition codes AL and NV are invalid for this instruction");
    CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC));
  }

  Operands.push_back(
      AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext()));
  return false;
}

/// tryParseOptionalShift - Some operands take an optional shift argument. Parse
/// them if present.
OperandMatchResultTy
AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  std::string LowerID = Tok.getString().lower();
  AArch64_AM::ShiftExtendType ShOp =
      StringSwitch<AArch64_AM::ShiftExtendType>(LowerID)
          .Case("lsl", AArch64_AM::LSL)
          .Case("lsr", AArch64_AM::LSR)
          .Case("asr", AArch64_AM::ASR)
          .Case("ror", AArch64_AM::ROR)
          .Case("msl", AArch64_AM::MSL)
          .Case("uxtb", AArch64_AM::UXTB)
          .Case("uxth", AArch64_AM::UXTH)
          .Case("uxtw", AArch64_AM::UXTW)
          .Case("uxtx", AArch64_AM::UXTX)
          .Case("sxtb", AArch64_AM::SXTB)
          .Case("sxth", AArch64_AM::SXTH)
          .Case("sxtw", AArch64_AM::SXTW)
          .Case("sxtx", AArch64_AM::SXTX)
          .Default(AArch64_AM::InvalidShiftExtend);

  if (ShOp == AArch64_AM::InvalidShiftExtend)
    return MatchOperand_NoMatch;

  SMLoc S = Tok.getLoc();
  Parser.Lex();

  bool Hash = parseOptionalToken(AsmToken::Hash);

  if (!Hash && getLexer().isNot(AsmToken::Integer)) {
    if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR ||
        ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR ||
        ShOp == AArch64_AM::MSL) {
      // We expect a number here.
      TokError("expected #imm after shift specifier");
      return MatchOperand_ParseFail;
    }

    // "extend" type operations don't need an immediate, #0 is implicit.
    SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
    Operands.push_back(
        AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext()));
    return MatchOperand_Success;
  }

  // Make sure we do actually have a number, identifier or a parenthesized
  // expression.
  SMLoc E = Parser.getTok().getLoc();
  if (!Parser.getTok().is(AsmToken::Integer) &&
      !Parser.getTok().is(AsmToken::LParen) &&
      !Parser.getTok().is(AsmToken::Identifier)) {
    Error(E, "expected integer shift amount");
    return MatchOperand_ParseFail;
  }

  const MCExpr *ImmVal;
  if (getParser().parseExpression(ImmVal))
    return MatchOperand_ParseFail;

  const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
  if (!MCE) {
    Error(E, "expected constant '#imm' after shift specifier");
    return MatchOperand_ParseFail;
  }

  E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
  Operands.push_back(AArch64Operand::CreateShiftExtend(
      ShOp, MCE->getValue(), true, S, E, getContext()));
  return MatchOperand_Success;
}

static const struct Extension {
  const char *Name;
  const FeatureBitset Features;
} ExtensionMap[] = {
    {"crc", {AArch64::FeatureCRC}},
    {"sm4", {AArch64::FeatureSM4}},
    {"sha3", {AArch64::FeatureSHA3}},
    {"sha2", {AArch64::FeatureSHA2}},
    {"aes", {AArch64::FeatureAES}},
    {"crypto", {AArch64::FeatureCrypto}},
    {"fp", {AArch64::FeatureFPARMv8}},
    {"simd", {AArch64::FeatureNEON}},
    {"ras", {AArch64::FeatureRAS}},
    {"lse", {AArch64::FeatureLSE}},
    {"predres", {AArch64::FeaturePredRes}},
    {"ccdp", {AArch64::FeatureCacheDeepPersist}},
    {"mte", {AArch64::FeatureMTE}},
    {"tlb-rmi", {AArch64::FeatureTLB_RMI}},
    {"pan-rwv", {AArch64::FeaturePAN_RWV}},
    {"ccpp", {AArch64::FeatureCCPP}},
    {"sve", {AArch64::FeatureSVE}},
    {"sve2", {AArch64::FeatureSVE2}},
    {"sve2-aes", {AArch64::FeatureSVE2AES}},
    {"sve2-sm4", {AArch64::FeatureSVE2SM4}},
    {"sve2-sha3", {AArch64::FeatureSVE2SHA3}},
    {"sve2-bitperm", {AArch64::FeatureSVE2BitPerm}},
    // FIXME: Unsupported extensions
    {"pan", {}},
    {"lor", {}},
    {"rdma", {}},
    {"profile", {}},
};

static void setRequiredFeatureString(FeatureBitset FBS, std::string &Str) {
  if (FBS[AArch64::HasV8_1aOps])
    Str += "ARMv8.1a";
  else if (FBS[AArch64::HasV8_2aOps])
    Str += "ARMv8.2a";
  else if (FBS[AArch64::HasV8_3aOps])
    Str += "ARMv8.3a";
  else if (FBS[AArch64::HasV8_4aOps])
    Str += "ARMv8.4a";
  else if (FBS[AArch64::HasV8_5aOps])
    Str += "ARMv8.5a";
  else {
    auto ext = std::find_if(std::begin(ExtensionMap),
      std::end(ExtensionMap),
      [&](const Extension& e)
      // Use & in case multiple features are enabled
      { return (FBS & e.Features) != FeatureBitset(); }
    );

    Str += ext != std::end(ExtensionMap) ? ext->Name : "(unknown)";
  }
}

void AArch64AsmParser::createSysAlias(uint16_t Encoding, OperandVector &Operands,
                                      SMLoc S) {
  const uint16_t Op2 = Encoding & 7;
  const uint16_t Cm = (Encoding & 0x78) >> 3;
  const uint16_t Cn = (Encoding & 0x780) >> 7;
  const uint16_t Op1 = (Encoding & 0x3800) >> 11;

  const MCExpr *Expr = MCConstantExpr::create(Op1, getContext());

  Operands.push_back(
      AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
  Operands.push_back(
      AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext()));
  Operands.push_back(
      AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext()));
  Expr = MCConstantExpr::create(Op2, getContext());
  Operands.push_back(
      AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
}

/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
                                   OperandVector &Operands) {
  if (Name.find('.') != StringRef::npos)
    return TokError("invalid operand");

  Mnemonic = Name;
  Operands.push_back(
      AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));

  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  StringRef Op = Tok.getString();
  SMLoc S = Tok.getLoc();

  if (Mnemonic == "ic") {
    const AArch64IC::IC *IC = AArch64IC::lookupICByName(Op);
    if (!IC)
      return TokError("invalid operand for IC instruction");
    else if (!IC->haveFeatures(getSTI().getFeatureBits())) {
      std::string Str("IC " + std::string(IC->Name) + " requires ");
      setRequiredFeatureString(IC->getRequiredFeatures(), Str);
      return TokError(Str.c_str());
    }
    createSysAlias(IC->Encoding, Operands, S);
  } else if (Mnemonic == "dc") {
    const AArch64DC::DC *DC = AArch64DC::lookupDCByName(Op);
    if (!DC)
      return TokError("invalid operand for DC instruction");
    else if (!DC->haveFeatures(getSTI().getFeatureBits())) {
      std::string Str("DC " + std::string(DC->Name) + " requires ");
      setRequiredFeatureString(DC->getRequiredFeatures(), Str);
      return TokError(Str.c_str());
    }
    createSysAlias(DC->Encoding, Operands, S);
  } else if (Mnemonic == "at") {
    const AArch64AT::AT *AT = AArch64AT::lookupATByName(Op);
    if (!AT)
      return TokError("invalid operand for AT instruction");
    else if (!AT->haveFeatures(getSTI().getFeatureBits())) {
      std::string Str("AT " + std::string(AT->Name) + " requires ");
      setRequiredFeatureString(AT->getRequiredFeatures(), Str);
      return TokError(Str.c_str());
    }
    createSysAlias(AT->Encoding, Operands, S);
  } else if (Mnemonic == "tlbi") {
    const AArch64TLBI::TLBI *TLBI = AArch64TLBI::lookupTLBIByName(Op);
    if (!TLBI)
      return TokError("invalid operand for TLBI instruction");
    else if (!TLBI->haveFeatures(getSTI().getFeatureBits())) {
      std::string Str("TLBI " + std::string(TLBI->Name) + " requires ");
      setRequiredFeatureString(TLBI->getRequiredFeatures(), Str);
      return TokError(Str.c_str());
    }
    createSysAlias(TLBI->Encoding, Operands, S);
  } else if (Mnemonic == "cfp" || Mnemonic == "dvp" || Mnemonic == "cpp") {
    const AArch64PRCTX::PRCTX *PRCTX = AArch64PRCTX::lookupPRCTXByName(Op);
    if (!PRCTX)
      return TokError("invalid operand for prediction restriction instruction");
    else if (!PRCTX->haveFeatures(getSTI().getFeatureBits())) {
      std::string Str(
          Mnemonic.upper() + std::string(PRCTX->Name) + " requires ");
      setRequiredFeatureString(PRCTX->getRequiredFeatures(), Str);
      return TokError(Str.c_str());
    }
    uint16_t PRCTX_Op2 =
      Mnemonic == "cfp" ? 4 :
      Mnemonic == "dvp" ? 5 :
      Mnemonic == "cpp" ? 7 :
      0;
    assert(PRCTX_Op2 && "Invalid mnemonic for prediction restriction instruction");
    createSysAlias(PRCTX->Encoding << 3 | PRCTX_Op2 , Operands, S);
  }

  Parser.Lex(); // Eat operand.

  bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
  bool HasRegister = false;

  // Check for the optional register operand.
  if (parseOptionalToken(AsmToken::Comma)) {
    if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
      return TokError("expected register operand");
    HasRegister = true;
  }

  if (ExpectRegister && !HasRegister)
    return TokError("specified " + Mnemonic + " op requires a register");
  else if (!ExpectRegister && HasRegister)
    return TokError("specified " + Mnemonic + " op does not use a register");

  if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
    return true;

  return false;
}

OperandMatchResultTy
AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();

  if (Mnemonic == "tsb" && Tok.isNot(AsmToken::Identifier)) {
    TokError("'csync' operand expected");
    return MatchOperand_ParseFail;
  // Can be either a #imm style literal or an option name
  } else if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) {
    // Immediate operand.
    const MCExpr *ImmVal;
    SMLoc ExprLoc = getLoc();
    if (getParser().parseExpression(ImmVal))
      return MatchOperand_ParseFail;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE) {
      Error(ExprLoc, "immediate value expected for barrier operand");
      return MatchOperand_ParseFail;
    }
    if (MCE->getValue() < 0 || MCE->getValue() > 15) {
      Error(ExprLoc, "barrier operand out of range");
      return MatchOperand_ParseFail;
    }
    auto DB = AArch64DB::lookupDBByEncoding(MCE->getValue());
    Operands.push_back(AArch64Operand::CreateBarrier(
        MCE->getValue(), DB ? DB->Name : "", ExprLoc, getContext()));
    return MatchOperand_Success;
  }

  if (Tok.isNot(AsmToken::Identifier)) {
    TokError("invalid operand for instruction");
    return MatchOperand_ParseFail;
  }

  auto TSB = AArch64TSB::lookupTSBByName(Tok.getString());
  // The only valid named option for ISB is 'sy'
  auto DB = AArch64DB::lookupDBByName(Tok.getString());
  if (Mnemonic == "isb" && (!DB || DB->Encoding != AArch64DB::sy)) {
    TokError("'sy' or #imm operand expected");
    return MatchOperand_ParseFail;
  // The only valid named option for TSB is 'csync'
  } else if (Mnemonic == "tsb" && (!TSB || TSB->Encoding != AArch64TSB::csync)) {
    TokError("'csync' operand expected");
    return MatchOperand_ParseFail;
  } else if (!DB && !TSB) {
    TokError("invalid barrier option name");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(AArch64Operand::CreateBarrier(
      DB ? DB->Encoding : TSB->Encoding, Tok.getString(), getLoc(), getContext()));
  Parser.Lex(); // Consume the option

  return MatchOperand_Success;
}

OperandMatchResultTy
AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();

  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int MRSReg, MSRReg;
  auto SysReg = AArch64SysReg::lookupSysRegByName(Tok.getString());
  if (SysReg && SysReg->haveFeatures(getSTI().getFeatureBits())) {
    MRSReg = SysReg->Readable ? SysReg->Encoding : -1;
    MSRReg = SysReg->Writeable ? SysReg->Encoding : -1;
  } else
    MRSReg = MSRReg = AArch64SysReg::parseGenericRegister(Tok.getString());

  auto PState = AArch64PState::lookupPStateByName(Tok.getString());
  unsigned PStateImm = -1;
  if (PState && PState->haveFeatures(getSTI().getFeatureBits()))
    PStateImm = PState->Encoding;

  Operands.push_back(
      AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), MRSReg, MSRReg,
                                   PStateImm, getContext()));
  Parser.Lex(); // Eat identifier

  return MatchOperand_Success;
}

/// tryParseNeonVectorRegister - Parse a vector register operand.
bool AArch64AsmParser::tryParseNeonVectorRegister(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  if (Parser.getTok().isNot(AsmToken::Identifier))
    return true;

  SMLoc S = getLoc();
  // Check for a vector register specifier first.
  StringRef Kind;
  unsigned Reg;
  OperandMatchResultTy Res =
      tryParseVectorRegister(Reg, Kind, RegKind::NeonVector);
  if (Res != MatchOperand_Success)
    return true;

  const auto &KindRes = parseVectorKind(Kind, RegKind::NeonVector);
  if (!KindRes)
    return true;

  unsigned ElementWidth = KindRes->second;
  Operands.push_back(
      AArch64Operand::CreateVectorReg(Reg, RegKind::NeonVector, ElementWidth,
                                      S, getLoc(), getContext()));

  // If there was an explicit qualifier, that goes on as a literal text
  // operand.
  if (!Kind.empty())
    Operands.push_back(
        AArch64Operand::CreateToken(Kind, false, S, getContext()));

  return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
}

OperandMatchResultTy
AArch64AsmParser::tryParseVectorIndex(OperandVector &Operands) {
  SMLoc SIdx = getLoc();
  if (parseOptionalToken(AsmToken::LBrac)) {
    const MCExpr *ImmVal;
    if (getParser().parseExpression(ImmVal))
      return MatchOperand_NoMatch;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE) {
      TokError("immediate value expected for vector index");
      return MatchOperand_ParseFail;;
    }

    SMLoc E = getLoc();

    if (parseToken(AsmToken::RBrac, "']' expected"))
      return MatchOperand_ParseFail;;

    Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
                                                         E, getContext()));
    return MatchOperand_Success;
  }

  return MatchOperand_NoMatch;
}

// tryParseVectorRegister - Try to parse a vector register name with
// optional kind specifier. If it is a register specifier, eat the token
// and return it.
OperandMatchResultTy
AArch64AsmParser::tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
                                         RegKind MatchKind) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();

  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  StringRef Name = Tok.getString();
  // If there is a kind specifier, it's separated from the register name by
  // a '.'.
  size_t Start = 0, Next = Name.find('.');
  StringRef Head = Name.slice(Start, Next);
  unsigned RegNum = matchRegisterNameAlias(Head, MatchKind);

  if (RegNum) {
    if (Next != StringRef::npos) {
      Kind = Name.slice(Next, StringRef::npos);
      if (!isValidVectorKind(Kind, MatchKind)) {
        TokError("invalid vector kind qualifier");
        return MatchOperand_ParseFail;
      }
    }
    Parser.Lex(); // Eat the register token.

    Reg = RegNum;
    return MatchOperand_Success;
  }

  return MatchOperand_NoMatch;
}

/// tryParseSVEPredicateVector - Parse a SVE predicate register operand.
OperandMatchResultTy
AArch64AsmParser::tryParseSVEPredicateVector(OperandVector &Operands) {
  // Check for a SVE predicate register specifier first.
  const SMLoc S = getLoc();
  StringRef Kind;
  unsigned RegNum;
  auto Res = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);
  if (Res != MatchOperand_Success)
    return Res;

  const auto &KindRes = parseVectorKind(Kind, RegKind::SVEPredicateVector);
  if (!KindRes)
    return MatchOperand_NoMatch;

  unsigned ElementWidth = KindRes->second;
  Operands.push_back(AArch64Operand::CreateVectorReg(
      RegNum, RegKind::SVEPredicateVector, ElementWidth, S,
      getLoc(), getContext()));

  // Not all predicates are followed by a '/m' or '/z'.
  MCAsmParser &Parser = getParser();
  if (Parser.getTok().isNot(AsmToken::Slash))
    return MatchOperand_Success;

  // But when they do they shouldn't have an element type suffix.
  if (!Kind.empty()) {
    Error(S, "not expecting size suffix");
    return MatchOperand_ParseFail;
  }

  // Add a literal slash as operand
  Operands.push_back(
      AArch64Operand::CreateToken("/" , false, getLoc(), getContext()));

  Parser.Lex(); // Eat the slash.

  // Zeroing or merging?
  auto Pred = Parser.getTok().getString().lower();
  if (Pred != "z" && Pred != "m") {
    Error(getLoc(), "expecting 'm' or 'z' predication");
    return MatchOperand_ParseFail;
  }

  // Add zero/merge token.
  const char *ZM = Pred == "z" ? "z" : "m";
  Operands.push_back(
    AArch64Operand::CreateToken(ZM, false, getLoc(), getContext()));

  Parser.Lex(); // Eat zero/merge token.
  return MatchOperand_Success;
}

/// parseRegister - Parse a register operand.
bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
  // Try for a Neon vector register.
  if (!tryParseNeonVectorRegister(Operands))
    return false;

  // Otherwise try for a scalar register.
  if (tryParseGPROperand<false>(Operands) == MatchOperand_Success)
    return false;

  return true;
}

bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
  MCAsmParser &Parser = getParser();
  bool HasELFModifier = false;
  AArch64MCExpr::VariantKind RefKind;

  if (parseOptionalToken(AsmToken::Colon)) {
    HasELFModifier = true;

    if (Parser.getTok().isNot(AsmToken::Identifier))
      return TokError("expect relocation specifier in operand after ':'");

    std::string LowerCase = Parser.getTok().getIdentifier().lower();
    RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
                  .Case("lo12", AArch64MCExpr::VK_LO12)
                  .Case("abs_g3", AArch64MCExpr::VK_ABS_G3)
                  .Case("abs_g2", AArch64MCExpr::VK_ABS_G2)
                  .Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S)
                  .Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC)
                  .Case("abs_g1", AArch64MCExpr::VK_ABS_G1)
                  .Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S)
                  .Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC)
                  .Case("abs_g0", AArch64MCExpr::VK_ABS_G0)
                  .Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S)
                  .Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC)
                  .Case("prel_g3", AArch64MCExpr::VK_PREL_G3)
                  .Case("prel_g2", AArch64MCExpr::VK_PREL_G2)
                  .Case("prel_g2_nc", AArch64MCExpr::VK_PREL_G2_NC)
                  .Case("prel_g1", AArch64MCExpr::VK_PREL_G1)
                  .Case("prel_g1_nc", AArch64MCExpr::VK_PREL_G1_NC)
                  .Case("prel_g0", AArch64MCExpr::VK_PREL_G0)
                  .Case("prel_g0_nc", AArch64MCExpr::VK_PREL_G0_NC)
                  .Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2)
                  .Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1)
                  .Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC)
                  .Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0)
                  .Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC)
                  .Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12)
                  .Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12)
                  .Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC)
                  .Case("pg_hi21_nc", AArch64MCExpr::VK_ABS_PAGE_NC)
                  .Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2)
                  .Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1)
                  .Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC)
                  .Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0)
                  .Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC)
                  .Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12)
                  .Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12)
                  .Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC)
                  .Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12)
                  .Case("got", AArch64MCExpr::VK_GOT_PAGE)
                  .Case("got_lo12", AArch64MCExpr::VK_GOT_LO12)
                  .Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE)
                  .Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC)
                  .Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1)
                  .Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC)
                  .Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE)
                  .Case("secrel_lo12", AArch64MCExpr::VK_SECREL_LO12)
                  .Case("secrel_hi12", AArch64MCExpr::VK_SECREL_HI12)
                  .Default(AArch64MCExpr::VK_INVALID);

    if (RefKind == AArch64MCExpr::VK_INVALID)
      return TokError("expect relocation specifier in operand after ':'");

    Parser.Lex(); // Eat identifier

    if (parseToken(AsmToken::Colon, "expect ':' after relocation specifier"))
      return true;
  }

  if (getParser().parseExpression(ImmVal))
    return true;

  if (HasELFModifier)
    ImmVal = AArch64MCExpr::create(ImmVal, RefKind, getContext());

  return false;
}

template <RegKind VectorKind>
OperandMatchResultTy
AArch64AsmParser::tryParseVectorList(OperandVector &Operands,
                                     bool ExpectMatch) {
  MCAsmParser &Parser = getParser();
  if (!Parser.getTok().is(AsmToken::LCurly))
    return MatchOperand_NoMatch;

  // Wrapper around parse function
  auto ParseVector = [this, &Parser](unsigned &Reg, StringRef &Kind, SMLoc Loc,
                                     bool NoMatchIsError) {
    auto RegTok = Parser.getTok();
    auto ParseRes = tryParseVectorRegister(Reg, Kind, VectorKind);
    if (ParseRes == MatchOperand_Success) {
      if (parseVectorKind(Kind, VectorKind))
        return ParseRes;
      llvm_unreachable("Expected a valid vector kind");
    }

    if (RegTok.isNot(AsmToken::Identifier) ||
        ParseRes == MatchOperand_ParseFail ||
        (ParseRes == MatchOperand_NoMatch && NoMatchIsError)) {
      Error(Loc, "vector register expected");
      return MatchOperand_ParseFail;
    }

    return MatchOperand_NoMatch;
  };

  SMLoc S = getLoc();
  auto LCurly = Parser.getTok();
  Parser.Lex(); // Eat left bracket token.

  StringRef Kind;
  unsigned FirstReg;
  auto ParseRes = ParseVector(FirstReg, Kind, getLoc(), ExpectMatch);

  // Put back the original left bracket if there was no match, so that
  // different types of list-operands can be matched (e.g. SVE, Neon).
  if (ParseRes == MatchOperand_NoMatch)
    Parser.getLexer().UnLex(LCurly);

  if (ParseRes != MatchOperand_Success)
    return ParseRes;

  int64_t PrevReg = FirstReg;
  unsigned Count = 1;

  if (parseOptionalToken(AsmToken::Minus)) {
    SMLoc Loc = getLoc();
    StringRef NextKind;

    unsigned Reg;
    ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
    if (ParseRes != MatchOperand_Success)
      return ParseRes;

    // Any Kind suffices must match on all regs in the list.
    if (Kind != NextKind) {
      Error(Loc, "mismatched register size suffix");
      return MatchOperand_ParseFail;
    }

    unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);

    if (Space == 0 || Space > 3) {
      Error(Loc, "invalid number of vectors");
      return MatchOperand_ParseFail;
    }

    Count += Space;
  }
  else {
    while (parseOptionalToken(AsmToken::Comma)) {
      SMLoc Loc = getLoc();
      StringRef NextKind;
      unsigned Reg;
      ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
      if (ParseRes != MatchOperand_Success)
        return ParseRes;

      // Any Kind suffices must match on all regs in the list.
      if (Kind != NextKind) {
        Error(Loc, "mismatched register size suffix");
        return MatchOperand_ParseFail;
      }

      // Registers must be incremental (with wraparound at 31)
      if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
          (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) {
        Error(Loc, "registers must be sequential");
        return MatchOperand_ParseFail;
      }

      PrevReg = Reg;
      ++Count;
    }
  }

  if (parseToken(AsmToken::RCurly, "'}' expected"))
    return MatchOperand_ParseFail;

  if (Count > 4) {
    Error(S, "invalid number of vectors");
    return MatchOperand_ParseFail;
  }

  unsigned NumElements = 0;
  unsigned ElementWidth = 0;
  if (!Kind.empty()) {
    if (const auto &VK = parseVectorKind(Kind, VectorKind))
      std::tie(NumElements, ElementWidth) = *VK;
  }

  Operands.push_back(AArch64Operand::CreateVectorList(
      FirstReg, Count, NumElements, ElementWidth, VectorKind, S, getLoc(),
      getContext()));

  return MatchOperand_Success;
}

/// parseNeonVectorList - Parse a vector list operand for AdvSIMD instructions.
bool AArch64AsmParser::parseNeonVectorList(OperandVector &Operands) {
  auto ParseRes = tryParseVectorList<RegKind::NeonVector>(Operands, true);
  if (ParseRes != MatchOperand_Success)
    return true;

  return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
}

OperandMatchResultTy
AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
  SMLoc StartLoc = getLoc();

  unsigned RegNum;
  OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
  if (Res != MatchOperand_Success)
    return Res;

  if (!parseOptionalToken(AsmToken::Comma)) {
    Operands.push_back(AArch64Operand::CreateReg(
        RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
    return MatchOperand_Success;
  }

  parseOptionalToken(AsmToken::Hash);

  if (getParser().getTok().isNot(AsmToken::Integer)) {
    Error(getLoc(), "index must be absent or #0");
    return MatchOperand_ParseFail;
  }

  const MCExpr *ImmVal;
  if (getParser().parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) ||
      cast<MCConstantExpr>(ImmVal)->getValue() != 0) {
    Error(getLoc(), "index must be absent or #0");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(AArch64Operand::CreateReg(
      RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
  return MatchOperand_Success;
}

template <bool ParseShiftExtend, RegConstraintEqualityTy EqTy>
OperandMatchResultTy
AArch64AsmParser::tryParseGPROperand(OperandVector &Operands) {
  SMLoc StartLoc = getLoc();

  unsigned RegNum;
  OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
  if (Res != MatchOperand_Success)
    return Res;

  // No shift/extend is the default.
  if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
    Operands.push_back(AArch64Operand::CreateReg(
        RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext(), EqTy));
    return MatchOperand_Success;
  }

  // Eat the comma
  getParser().Lex();

  // Match the shift
  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
  Res = tryParseOptionalShiftExtend(ExtOpnd);
  if (Res != MatchOperand_Success)
    return Res;

  auto Ext = static_cast<AArch64Operand*>(ExtOpnd.back().get());
  Operands.push_back(AArch64Operand::CreateReg(
      RegNum, RegKind::Scalar, StartLoc, Ext->getEndLoc(), getContext(), EqTy,
      Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
      Ext->hasShiftExtendAmount()));

  return MatchOperand_Success;
}

bool AArch64AsmParser::parseOptionalMulOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();

  // Some SVE instructions have a decoration after the immediate, i.e.
  // "mul vl". We parse them here and add tokens, which must be present in the
  // asm string in the tablegen instruction.
  bool NextIsVL = Parser.getLexer().peekTok().getString().equals_lower("vl");
  bool NextIsHash = Parser.getLexer().peekTok().is(AsmToken::Hash);
  if (!Parser.getTok().getString().equals_lower("mul") ||
      !(NextIsVL || NextIsHash))
    return true;

  Operands.push_back(
    AArch64Operand::CreateToken("mul", false, getLoc(), getContext()));
  Parser.Lex(); // Eat the "mul"

  if (NextIsVL) {
    Operands.push_back(
        AArch64Operand::CreateToken("vl", false, getLoc(), getContext()));
    Parser.Lex(); // Eat the "vl"
    return false;
  }

  if (NextIsHash) {
    Parser.Lex(); // Eat the #
    SMLoc S = getLoc();

    // Parse immediate operand.
    const MCExpr *ImmVal;
    if (!Parser.parseExpression(ImmVal))
      if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal)) {
        Operands.push_back(AArch64Operand::CreateImm(
            MCConstantExpr::create(MCE->getValue(), getContext()), S, getLoc(),
            getContext()));
        return MatchOperand_Success;
      }
  }

  return Error(getLoc(), "expected 'vl' or '#<imm>'");
}

/// parseOperand - Parse a arm instruction operand.  For now this parses the
/// operand regardless of the mnemonic.
bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
                                  bool invertCondCode) {
  MCAsmParser &Parser = getParser();

  OperandMatchResultTy ResTy =
      MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/ true);

  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.
  if (ResTy == MatchOperand_Success)
    return false;
  // If there wasn't a custom match, try the generic matcher below. Otherwise,
  // there was a match, but an error occurred, in which case, just return that
  // the operand parsing failed.
  if (ResTy == MatchOperand_ParseFail)
    return true;

  // Nothing custom, so do general case parsing.
  SMLoc S, E;
  switch (getLexer().getKind()) {
  default: {
    SMLoc S = getLoc();
    const MCExpr *Expr;
    if (parseSymbolicImmVal(Expr))
      return Error(S, "invalid operand");

    SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
    Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
    return false;
  }
  case AsmToken::LBrac: {
    SMLoc Loc = Parser.getTok().getLoc();
    Operands.push_back(AArch64Operand::CreateToken("[", false, Loc,
                                                   getContext()));
    Parser.Lex(); // Eat '['

    // There's no comma after a '[', so we can parse the next operand
    // immediately.
    return parseOperand(Operands, false, false);
  }
  case AsmToken::LCurly:
    return parseNeonVectorList(Operands);
  case AsmToken::Identifier: {
    // If we're expecting a Condition Code operand, then just parse that.
    if (isCondCode)
      return parseCondCode(Operands, invertCondCode);

    // If it's a register name, parse it.
    if (!parseRegister(Operands))
      return false;

    // See if this is a "mul vl" decoration or "mul #<int>" operand used
    // by SVE instructions.
    if (!parseOptionalMulOperand(Operands))
      return false;

    // This could be an optional "shift" or "extend" operand.
    OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands);
    // We can only continue if no tokens were eaten.
    if (GotShift != MatchOperand_NoMatch)
      return GotShift;

    // This was not a register so parse other operands that start with an
    // identifier (like labels) as expressions and create them as immediates.
    const MCExpr *IdVal;
    S = getLoc();
    if (getParser().parseExpression(IdVal))
      return true;
    E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
    Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext()));
    return false;
  }
  case AsmToken::Integer:
  case AsmToken::Real:
  case AsmToken::Hash: {
    // #42 -> immediate.
    S = getLoc();

    parseOptionalToken(AsmToken::Hash);

    // Parse a negative sign
    bool isNegative = false;
    if (Parser.getTok().is(AsmToken::Minus)) {
      isNegative = true;
      // We need to consume this token only when we have a Real, otherwise
      // we let parseSymbolicImmVal take care of it
      if (Parser.getLexer().peekTok().is(AsmToken::Real))
        Parser.Lex();
    }

    // The only Real that should come through here is a literal #0.0 for
    // the fcmp[e] r, #0.0 instructions. They expect raw token operands,
    // so convert the value.
    const AsmToken &Tok = Parser.getTok();
    if (Tok.is(AsmToken::Real)) {
      APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
      uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
      if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
          Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
          Mnemonic != "fcmlt" && Mnemonic != "fcmne")
        return TokError("unexpected floating point literal");
      else if (IntVal != 0 || isNegative)
        return TokError("expected floating-point constant #0.0");
      Parser.Lex(); // Eat the token.

      Operands.push_back(
          AArch64Operand::CreateToken("#0", false, S, getContext()));
      Operands.push_back(
          AArch64Operand::CreateToken(".0", false, S, getContext()));
      return false;
    }

    const MCExpr *ImmVal;
    if (parseSymbolicImmVal(ImmVal))
      return true;

    E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
    Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext()));
    return false;
  }
  case AsmToken::Equal: {
    SMLoc Loc = getLoc();
    if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
      return TokError("unexpected token in operand");
    Parser.Lex(); // Eat '='
    const MCExpr *SubExprVal;
    if (getParser().parseExpression(SubExprVal))
      return true;

    if (Operands.size() < 2 ||
        !static_cast<AArch64Operand &>(*Operands[1]).isScalarReg())
      return Error(Loc, "Only valid when first operand is register");

    bool IsXReg =
        AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
            Operands[1]->getReg());

    MCContext& Ctx = getContext();
    E = SMLoc::getFromPointer(Loc.getPointer() - 1);
    // If the op is an imm and can be fit into a mov, then replace ldr with mov.
    if (isa<MCConstantExpr>(SubExprVal)) {
      uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue();
      uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16;
      while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) {
        ShiftAmt += 16;
        Imm >>= 16;
      }
      if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) {
          Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx);
          Operands.push_back(AArch64Operand::CreateImm(
                     MCConstantExpr::create(Imm, Ctx), S, E, Ctx));
        if (ShiftAmt)
          Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL,
                     ShiftAmt, true, S, E, Ctx));
        return false;
      }
      APInt Simm = APInt(64, Imm << ShiftAmt);
      // check if the immediate is an unsigned or signed 32-bit int for W regs
      if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32)))
        return Error(Loc, "Immediate too large for register");
    }
    // If it is a label or an imm that cannot fit in a movz, put it into CP.
    const MCExpr *CPLoc =
        getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4, Loc);
    Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx));
    return false;
  }
  }
}

bool AArch64AsmParser::regsEqual(const MCParsedAsmOperand &Op1,
                                 const MCParsedAsmOperand &Op2) const {
  auto &AOp1 = static_cast<const AArch64Operand&>(Op1);
  auto &AOp2 = static_cast<const AArch64Operand&>(Op2);
  if (AOp1.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg &&
      AOp2.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg)
    return MCTargetAsmParser::regsEqual(Op1, Op2);

  assert(AOp1.isScalarReg() && AOp2.isScalarReg() &&
         "Testing equality of non-scalar registers not supported");

  // Check if a registers match their sub/super register classes.
  if (AOp1.getRegEqualityTy() == EqualsSuperReg)
    return getXRegFromWReg(Op1.getReg()) == Op2.getReg();
  if (AOp1.getRegEqualityTy() == EqualsSubReg)
    return getWRegFromXReg(Op1.getReg()) == Op2.getReg();
  if (AOp2.getRegEqualityTy() == EqualsSuperReg)
    return getXRegFromWReg(Op2.getReg()) == Op1.getReg();
  if (AOp2.getRegEqualityTy() == EqualsSubReg)
    return getWRegFromXReg(Op2.getReg()) == Op1.getReg();

  return false;
}

/// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its
/// operands.
bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
                                        StringRef Name, SMLoc NameLoc,
                                        OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  Name = StringSwitch<StringRef>(Name.lower())
             .Case("beq", "b.eq")
             .Case("bne", "b.ne")
             .Case("bhs", "b.hs")
             .Case("bcs", "b.cs")
             .Case("blo", "b.lo")
             .Case("bcc", "b.cc")
             .Case("bmi", "b.mi")
             .Case("bpl", "b.pl")
             .Case("bvs", "b.vs")
             .Case("bvc", "b.vc")
             .Case("bhi", "b.hi")
             .Case("bls", "b.ls")
             .Case("bge", "b.ge")
             .Case("blt", "b.lt")
             .Case("bgt", "b.gt")
             .Case("ble", "b.le")
             .Case("bal", "b.al")
             .Case("bnv", "b.nv")
             .Default(Name);

  // First check for the AArch64-specific .req directive.
  if (Parser.getTok().is(AsmToken::Identifier) &&
      Parser.getTok().getIdentifier() == ".req") {
    parseDirectiveReq(Name, NameLoc);
    // We always return 'error' for this, as we're done with this
    // statement and don't need to match the 'instruction."
    return true;
  }

  // Create the leading tokens for the mnemonic, split by '.' characters.
  size_t Start = 0, Next = Name.find('.');
  StringRef Head = Name.slice(Start, Next);

  // IC, DC, AT, TLBI and Prediction invalidation instructions are aliases for
  // the SYS instruction.
  if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi" ||
      Head == "cfp" || Head == "dvp" || Head == "cpp")
    return parseSysAlias(Head, NameLoc, Operands);

  Operands.push_back(
      AArch64Operand::CreateToken(Head, false, NameLoc, getContext()));
  Mnemonic = Head;

  // Handle condition codes for a branch mnemonic
  if (Head == "b" && Next != StringRef::npos) {
    Start = Next;
    Next = Name.find('.', Start + 1);
    Head = Name.slice(Start + 1, Next);

    SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
                                            (Head.data() - Name.data()));
    AArch64CC::CondCode CC = parseCondCodeString(Head);
    if (CC == AArch64CC::Invalid)
      return Error(SuffixLoc, "invalid condition code");
    Operands.push_back(
        AArch64Operand::CreateToken(".", true, SuffixLoc, getContext()));
    Operands.push_back(
        AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext()));
  }

  // Add the remaining tokens in the mnemonic.
  while (Next != StringRef::npos) {
    Start = Next;
    Next = Name.find('.', Start + 1);
    Head = Name.slice(Start, Next);
    SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
                                            (Head.data() - Name.data()) + 1);
    Operands.push_back(
        AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
  }

  // Conditional compare instructions have a Condition Code operand, which needs
  // to be parsed and an immediate operand created.
  bool condCodeFourthOperand =
      (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
       Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
       Head == "csinc" || Head == "csinv" || Head == "csneg");

  // These instructions are aliases to some of the conditional select
  // instructions. However, the condition code is inverted in the aliased
  // instruction.
  //
  // FIXME: Is this the correct way to handle these? Or should the parser
  //        generate the aliased instructions directly?
  bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
  bool condCodeThirdOperand =
      (Head == "cinc" || Head == "cinv" || Head == "cneg");

  // Read the remaining operands.
  if (getLexer().isNot(AsmToken::EndOfStatement)) {

    unsigned N = 1;
    do {
      // Parse and remember the operand.
      if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
                                     (N == 3 && condCodeThirdOperand) ||
                                     (N == 2 && condCodeSecondOperand),
                       condCodeSecondOperand || condCodeThirdOperand)) {
        return true;
      }

      // After successfully parsing some operands there are two special cases to
      // consider (i.e. notional operands not separated by commas). Both are due
      // to memory specifiers:
      //  + An RBrac will end an address for load/store/prefetch
      //  + An '!' will indicate a pre-indexed operation.
      //
      // It's someone else's responsibility to make sure these tokens are sane
      // in the given context!

      SMLoc RLoc = Parser.getTok().getLoc();
      if (parseOptionalToken(AsmToken::RBrac))
        Operands.push_back(
            AArch64Operand::CreateToken("]", false, RLoc, getContext()));
      SMLoc ELoc = Parser.getTok().getLoc();
      if (parseOptionalToken(AsmToken::Exclaim))
        Operands.push_back(
            AArch64Operand::CreateToken("!", false, ELoc, getContext()));

      ++N;
    } while (parseOptionalToken(AsmToken::Comma));
  }

  if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
    return true;

  return false;
}

static inline bool isMatchingOrAlias(unsigned ZReg, unsigned Reg) {
  assert((ZReg >= AArch64::Z0) && (ZReg <= AArch64::Z31));
  return (ZReg == ((Reg - AArch64::B0) + AArch64::Z0)) ||
         (ZReg == ((Reg - AArch64::H0) + AArch64::Z0)) ||
         (ZReg == ((Reg - AArch64::S0) + AArch64::Z0)) ||
         (ZReg == ((Reg - AArch64::D0) + AArch64::Z0)) ||
         (ZReg == ((Reg - AArch64::Q0) + AArch64::Z0)) ||
         (ZReg == ((Reg - AArch64::Z0) + AArch64::Z0));
}

// FIXME: This entire function is a giant hack to provide us with decent
// operand range validation/diagnostics until TableGen/MC can be extended
// to support autogeneration of this kind of validation.
bool AArch64AsmParser::validateInstruction(MCInst &Inst, SMLoc &IDLoc,
                                           SmallVectorImpl<SMLoc> &Loc) {
  const MCRegisterInfo *RI = getContext().getRegisterInfo();
  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());

  // A prefix only applies to the instruction following it.  Here we extract
  // prefix information for the next instruction before validating the current
  // one so that in the case of failure we don't erronously continue using the
  // current prefix.
  PrefixInfo Prefix = NextPrefix;
  NextPrefix = PrefixInfo::CreateFromInst(Inst, MCID.TSFlags);

  // Before validating the instruction in isolation we run through the rules
  // applicable when it follows a prefix instruction.
  // NOTE: brk & hlt can be prefixed but require no additional validation.
  if (Prefix.isActive() &&
      (Inst.getOpcode() != AArch64::BRK) &&
      (Inst.getOpcode() != AArch64::HLT)) {

    // Prefixed intructions must have a destructive operand.
    if ((MCID.TSFlags & AArch64::DestructiveInstTypeMask) ==
        AArch64::NotDestructive)
      return Error(IDLoc, "instruction is unpredictable when following a"
                   " movprfx, suggest replacing movprfx with mov");

    // Destination operands must match.
    if (Inst.getOperand(0).getReg() != Prefix.getDstReg())
      return Error(Loc[0], "instruction is unpredictable when following a"
                   " movprfx writing to a different destination");

    // Destination operand must not be used in any other location.
    for (unsigned i = 1; i < Inst.getNumOperands(); ++i) {
      if (Inst.getOperand(i).isReg() &&
          (MCID.getOperandConstraint(i, MCOI::TIED_TO) == -1) &&
          isMatchingOrAlias(Prefix.getDstReg(), Inst.getOperand(i).getReg()))
        return Error(Loc[0], "instruction is unpredictable when following a"
                     " movprfx and destination also used as non-destructive"
                     " source");
    }

    auto PPRRegClass = AArch64MCRegisterClasses[AArch64::PPRRegClassID];
    if (Prefix.isPredicated()) {
      int PgIdx = -1;

      // Find the instructions general predicate.
      for (unsigned i = 1; i < Inst.getNumOperands(); ++i)
        if (Inst.getOperand(i).isReg() &&
            PPRRegClass.contains(Inst.getOperand(i).getReg())) {
          PgIdx = i;
          break;
        }

      // Instruction must be predicated if the movprfx is predicated.
      if (PgIdx == -1 ||
          (MCID.TSFlags & AArch64::ElementSizeMask) == AArch64::ElementSizeNone)
        return Error(IDLoc, "instruction is unpredictable when following a"
                     " predicated movprfx, suggest using unpredicated movprfx");

      // Instruction must use same general predicate as the movprfx.
      if (Inst.getOperand(PgIdx).getReg() != Prefix.getPgReg())
        return Error(IDLoc, "instruction is unpredictable when following a"
                     " predicated movprfx using a different general predicate");

      // Instruction element type must match the movprfx.
      if ((MCID.TSFlags & AArch64::ElementSizeMask) != Prefix.getElementSize())
        return Error(IDLoc, "instruction is unpredictable when following a"
                     " predicated movprfx with a different element size");
    }
  }

  // Check for indexed addressing modes w/ the base register being the
  // same as a destination/source register or pair load where
  // the Rt == Rt2. All of those are undefined behaviour.
  switch (Inst.getOpcode()) {
  case AArch64::LDPSWpre:
  case AArch64::LDPWpost:
  case AArch64::LDPWpre:
  case AArch64::LDPXpost:
  case AArch64::LDPXpre: {
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rt2 = Inst.getOperand(2).getReg();
    unsigned Rn = Inst.getOperand(3).getReg();
    if (RI->isSubRegisterEq(Rn, Rt))
      return Error(Loc[0], "unpredictable LDP instruction, writeback base "
                           "is also a destination");
    if (RI->isSubRegisterEq(Rn, Rt2))
      return Error(Loc[1], "unpredictable LDP instruction, writeback base "
                           "is also a destination");
    LLVM_FALLTHROUGH;
  }
  case AArch64::LDPDi:
  case AArch64::LDPQi:
  case AArch64::LDPSi:
  case AArch64::LDPSWi:
  case AArch64::LDPWi:
  case AArch64::LDPXi: {
    unsigned Rt = Inst.getOperand(0).getReg();
    unsigned Rt2 = Inst.getOperand(1).getReg();
    if (Rt == Rt2)
      return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
    break;
  }
  case AArch64::LDPDpost:
  case AArch64::LDPDpre:
  case AArch64::LDPQpost:
  case AArch64::LDPQpre:
  case AArch64::LDPSpost:
  case AArch64::LDPSpre:
  case AArch64::LDPSWpost: {
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rt2 = Inst.getOperand(2).getReg();
    if (Rt == Rt2)
      return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
    break;
  }
  case AArch64::STPDpost:
  case AArch64::STPDpre:
  case AArch64::STPQpost:
  case AArch64::STPQpre:
  case AArch64::STPSpost:
  case AArch64::STPSpre:
  case AArch64::STPWpost:
  case AArch64::STPWpre:
  case AArch64::STPXpost:
  case AArch64::STPXpre: {
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rt2 = Inst.getOperand(2).getReg();
    unsigned Rn = Inst.getOperand(3).getReg();
    if (RI->isSubRegisterEq(Rn, Rt))
      return Error(Loc[0], "unpredictable STP instruction, writeback base "
                           "is also a source");
    if (RI->isSubRegisterEq(Rn, Rt2))
      return Error(Loc[1], "unpredictable STP instruction, writeback base "
                           "is also a source");
    break;
  }
  case AArch64::LDRBBpre:
  case AArch64::LDRBpre:
  case AArch64::LDRHHpre:
  case AArch64::LDRHpre:
  case AArch64::LDRSBWpre:
  case AArch64::LDRSBXpre:
  case AArch64::LDRSHWpre:
  case AArch64::LDRSHXpre:
  case AArch64::LDRSWpre:
  case AArch64::LDRWpre:
  case AArch64::LDRXpre:
  case AArch64::LDRBBpost:
  case AArch64::LDRBpost:
  case AArch64::LDRHHpost:
  case AArch64::LDRHpost:
  case AArch64::LDRSBWpost:
  case AArch64::LDRSBXpost:
  case AArch64::LDRSHWpost:
  case AArch64::LDRSHXpost:
  case AArch64::LDRSWpost:
  case AArch64::LDRWpost:
  case AArch64::LDRXpost: {
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rn = Inst.getOperand(2).getReg();
    if (RI->isSubRegisterEq(Rn, Rt))
      return Error(Loc[0], "unpredictable LDR instruction, writeback base "
                           "is also a source");
    break;
  }
  case AArch64::STRBBpost:
  case AArch64::STRBpost:
  case AArch64::STRHHpost:
  case AArch64::STRHpost:
  case AArch64::STRWpost:
  case AArch64::STRXpost:
  case AArch64::STRBBpre:
  case AArch64::STRBpre:
  case AArch64::STRHHpre:
  case AArch64::STRHpre:
  case AArch64::STRWpre:
  case AArch64::STRXpre: {
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rn = Inst.getOperand(2).getReg();
    if (RI->isSubRegisterEq(Rn, Rt))
      return Error(Loc[0], "unpredictable STR instruction, writeback base "
                           "is also a source");
    break;
  }
  case AArch64::STXRB:
  case AArch64::STXRH:
  case AArch64::STXRW:
  case AArch64::STXRX:
  case AArch64::STLXRB:
  case AArch64::STLXRH:
  case AArch64::STLXRW:
  case AArch64::STLXRX: {
    unsigned Rs = Inst.getOperand(0).getReg();
    unsigned Rt = Inst.getOperand(1).getReg();
    unsigned Rn = Inst.getOperand(2).getReg();
    if (RI->isSubRegisterEq(Rt, Rs) ||
        (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
      return Error(Loc[0],
                   "unpredictable STXR instruction, status is also a source");
    break;
  }
  case AArch64::STXPW:
  case AArch64::STXPX:
  case AArch64::STLXPW:
  case AArch64::STLXPX: {
    unsigned Rs = Inst.getOperand(0).getReg();
    unsigned Rt1 = Inst.getOperand(1).getReg();
    unsigned Rt2 = Inst.getOperand(2).getReg();
    unsigned Rn = Inst.getOperand(3).getReg();
    if (RI->isSubRegisterEq(Rt1, Rs) || RI->isSubRegisterEq(Rt2, Rs) ||
        (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
      return Error(Loc[0],
                   "unpredictable STXP instruction, status is also a source");
    break;
  }
  }


  // Now check immediate ranges. Separate from the above as there is overlap
  // in the instructions being checked and this keeps the nested conditionals
  // to a minimum.
  switch (Inst.getOpcode()) {
  case AArch64::ADDSWri:
  case AArch64::ADDSXri:
  case AArch64::ADDWri:
  case AArch64::ADDXri:
  case AArch64::SUBSWri:
  case AArch64::SUBSXri:
  case AArch64::SUBWri:
  case AArch64::SUBXri: {
    // Annoyingly we can't do this in the isAddSubImm predicate, so there is
    // some slight duplication here.
    if (Inst.getOperand(2).isExpr()) {
      const MCExpr *Expr = Inst.getOperand(2).getExpr();
      AArch64MCExpr::VariantKind ELFRefKind;
      MCSymbolRefExpr::VariantKind DarwinRefKind;
      int64_t Addend;
      if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {

        // Only allow these with ADDXri.
        if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
             DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
            Inst.getOpcode() == AArch64::ADDXri)
          return false;

        // Only allow these with ADDXri/ADDWri
        if ((ELFRefKind == AArch64MCExpr::VK_LO12 ||
             ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 ||
             ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
             ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
             ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 ||
             ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
             ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
             ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
             ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
             ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) &&
            (Inst.getOpcode() == AArch64::ADDXri ||
             Inst.getOpcode() == AArch64::ADDWri))
          return false;

        // Don't allow symbol refs in the immediate field otherwise
        // Note: Loc.back() may be Loc[1] or Loc[2] depending on the number of
        // operands of the original instruction (i.e. 'add w0, w1, borked' vs
        // 'cmp w0, 'borked')
        return Error(Loc.back(), "invalid immediate expression");
      }
      // We don't validate more complex expressions here
    }
    return false;
  }
  default:
    return false;
  }
}

static std::string AArch64MnemonicSpellCheck(StringRef S,
                                             const FeatureBitset &FBS,
                                             unsigned VariantID = 0);

bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode,
                                      uint64_t ErrorInfo,
                                      OperandVector &Operands) {
  switch (ErrCode) {
  case Match_InvalidTiedOperand: {
    RegConstraintEqualityTy EqTy =
        static_cast<const AArch64Operand &>(*Operands[ErrorInfo])
            .getRegEqualityTy();
    switch (EqTy) {
    case RegConstraintEqualityTy::EqualsSubReg:
      return Error(Loc, "operand must be 64-bit form of destination register");
    case RegConstraintEqualityTy::EqualsSuperReg:
      return Error(Loc, "operand must be 32-bit form of destination register");
    case RegConstraintEqualityTy::EqualsReg:
      return Error(Loc, "operand must match destination register");
    }
    llvm_unreachable("Unknown RegConstraintEqualityTy");
  }
  case Match_MissingFeature:
    return Error(Loc,
                 "instruction requires a CPU feature not currently enabled");
  case Match_InvalidOperand:
    return Error(Loc, "invalid operand for instruction");
  case Match_InvalidSuffix:
    return Error(Loc, "invalid type suffix for instruction");
  case Match_InvalidCondCode:
    return Error(Loc, "expected AArch64 condition code");
  case Match_AddSubRegExtendSmall:
    return Error(Loc,
      "expected '[su]xt[bhw]' with optional integer in range [0, 4]");
  case Match_AddSubRegExtendLarge:
    return Error(Loc,
      "expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
  case Match_AddSubSecondSource:
    return Error(Loc,
      "expected compatible register, symbol or integer in range [0, 4095]");
  case Match_LogicalSecondSource:
    return Error(Loc, "expected compatible register or logical immediate");
  case Match_InvalidMovImm32Shift:
    return Error(Loc, "expected 'lsl' with optional integer 0 or 16");
  case Match_InvalidMovImm64Shift:
    return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48");
  case Match_AddSubRegShift32:
    return Error(Loc,
       "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
  case Match_AddSubRegShift64:
    return Error(Loc,
       "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
  case Match_InvalidFPImm:
    return Error(Loc,
                 "expected compatible register or floating-point constant");
  case Match_InvalidMemoryIndexedSImm6:
    return Error(Loc, "index must be an integer in range [-32, 31].");
  case Match_InvalidMemoryIndexedSImm5:
    return Error(Loc, "index must be an integer in range [-16, 15].");
  case Match_InvalidMemoryIndexed1SImm4:
    return Error(Loc, "index must be an integer in range [-8, 7].");
  case Match_InvalidMemoryIndexed2SImm4:
    return Error(Loc, "index must be a multiple of 2 in range [-16, 14].");
  case Match_InvalidMemoryIndexed3SImm4:
    return Error(Loc, "index must be a multiple of 3 in range [-24, 21].");
  case Match_InvalidMemoryIndexed4SImm4:
    return Error(Loc, "index must be a multiple of 4 in range [-32, 28].");
  case Match_InvalidMemoryIndexed16SImm4:
    return Error(Loc, "index must be a multiple of 16 in range [-128, 112].");
  case Match_InvalidMemoryIndexed1SImm6:
    return Error(Loc, "index must be an integer in range [-32, 31].");
  case Match_InvalidMemoryIndexedSImm8:
    return Error(Loc, "index must be an integer in range [-128, 127].");
  case Match_InvalidMemoryIndexedSImm9:
    return Error(Loc, "index must be an integer in range [-256, 255].");
  case Match_InvalidMemoryIndexed16SImm9:
    return Error(Loc, "index must be a multiple of 16 in range [-4096, 4080].");
  case Match_InvalidMemoryIndexed8SImm10:
    return Error(Loc, "index must be a multiple of 8 in range [-4096, 4088].");
  case Match_InvalidMemoryIndexed4SImm7:
    return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
  case Match_InvalidMemoryIndexed8SImm7:
    return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
  case Match_InvalidMemoryIndexed16SImm7:
    return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
  case Match_InvalidMemoryIndexed8UImm5:
    return Error(Loc, "index must be a multiple of 8 in range [0, 248].");
  case Match_InvalidMemoryIndexed4UImm5:
    return Error(Loc, "index must be a multiple of 4 in range [0, 124].");
  case Match_InvalidMemoryIndexed2UImm5:
    return Error(Loc, "index must be a multiple of 2 in range [0, 62].");
  case Match_InvalidMemoryIndexed8UImm6:
    return Error(Loc, "index must be a multiple of 8 in range [0, 504].");
  case Match_InvalidMemoryIndexed16UImm6:
    return Error(Loc, "index must be a multiple of 16 in range [0, 1008].");
  case Match_InvalidMemoryIndexed4UImm6:
    return Error(Loc, "index must be a multiple of 4 in range [0, 252].");
  case Match_InvalidMemoryIndexed2UImm6:
    return Error(Loc, "index must be a multiple of 2 in range [0, 126].");
  case Match_InvalidMemoryIndexed1UImm6:
    return Error(Loc, "index must be in range [0, 63].");
  case Match_InvalidMemoryWExtend8:
    return Error(Loc,
                 "expected 'uxtw' or 'sxtw' with optional shift of #0");
  case Match_InvalidMemoryWExtend16:
    return Error(Loc,
                 "expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
  case Match_InvalidMemoryWExtend32:
    return Error(Loc,
                 "expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
  case Match_InvalidMemoryWExtend64:
    return Error(Loc,
                 "expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
  case Match_InvalidMemoryWExtend128:
    return Error(Loc,
                 "expected 'uxtw' or 'sxtw' with optional shift of #0 or #4");
  case Match_InvalidMemoryXExtend8:
    return Error(Loc,
                 "expected 'lsl' or 'sxtx' with optional shift of #0");
  case Match_InvalidMemoryXExtend16:
    return Error(Loc,
                 "expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
  case Match_InvalidMemoryXExtend32:
    return Error(Loc,
                 "expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
  case Match_InvalidMemoryXExtend64:
    return Error(Loc,
                 "expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
  case Match_InvalidMemoryXExtend128:
    return Error(Loc,
                 "expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
  case Match_InvalidMemoryIndexed1:
    return Error(Loc, "index must be an integer in range [0, 4095].");
  case Match_InvalidMemoryIndexed2:
    return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
  case Match_InvalidMemoryIndexed4:
    return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
  case Match_InvalidMemoryIndexed8:
    return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
  case Match_InvalidMemoryIndexed16:
    return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
  case Match_InvalidImm0_1:
    return Error(Loc, "immediate must be an integer in range [0, 1].");
  case Match_InvalidImm0_7:
    return Error(Loc, "immediate must be an integer in range [0, 7].");
  case Match_InvalidImm0_15:
    return Error(Loc, "immediate must be an integer in range [0, 15].");
  case Match_InvalidImm0_31:
    return Error(Loc, "immediate must be an integer in range [0, 31].");
  case Match_InvalidImm0_63:
    return Error(Loc, "immediate must be an integer in range [0, 63].");
  case Match_InvalidImm0_127:
    return Error(Loc, "immediate must be an integer in range [0, 127].");
  case Match_InvalidImm0_255:
    return Error(Loc, "immediate must be an integer in range [0, 255].");
  case Match_InvalidImm0_65535:
    return Error(Loc, "immediate must be an integer in range [0, 65535].");
  case Match_InvalidImm1_8:
    return Error(Loc, "immediate must be an integer in range [1, 8].");
  case Match_InvalidImm1_16:
    return Error(Loc, "immediate must be an integer in range [1, 16].");
  case Match_InvalidImm1_32:
    return Error(Loc, "immediate must be an integer in range [1, 32].");
  case Match_InvalidImm1_64:
    return Error(Loc, "immediate must be an integer in range [1, 64].");
  case Match_InvalidSVEAddSubImm8:
    return Error(Loc, "immediate must be an integer in range [0, 255]"
                      " with a shift amount of 0");
  case Match_InvalidSVEAddSubImm16:
  case Match_InvalidSVEAddSubImm32:
  case Match_InvalidSVEAddSubImm64:
    return Error(Loc, "immediate must be an integer in range [0, 255] or a "
                      "multiple of 256 in range [256, 65280]");
  case Match_InvalidSVECpyImm8:
    return Error(Loc, "immediate must be an integer in range [-128, 255]"
                      " with a shift amount of 0");
  case Match_InvalidSVECpyImm16:
    return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
                      "multiple of 256 in range [-32768, 65280]");
  case Match_InvalidSVECpyImm32:
  case Match_InvalidSVECpyImm64:
    return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
                      "multiple of 256 in range [-32768, 32512]");
  case Match_InvalidIndexRange1_1:
    return Error(Loc, "expected lane specifier '[1]'");
  case Match_InvalidIndexRange0_15:
    return Error(Loc, "vector lane must be an integer in range [0, 15].");
  case Match_InvalidIndexRange0_7:
    return Error(Loc, "vector lane must be an integer in range [0, 7].");
  case Match_InvalidIndexRange0_3:
    return Error(Loc, "vector lane must be an integer in range [0, 3].");
  case Match_InvalidIndexRange0_1:
    return Error(Loc, "vector lane must be an integer in range [0, 1].");
  case Match_InvalidSVEIndexRange0_63:
    return Error(Loc, "vector lane must be an integer in range [0, 63].");
  case Match_InvalidSVEIndexRange0_31:
    return Error(Loc, "vector lane must be an integer in range [0, 31].");
  case Match_InvalidSVEIndexRange0_15:
    return Error(Loc, "vector lane must be an integer in range [0, 15].");
  case Match_InvalidSVEIndexRange0_7:
    return Error(Loc, "vector lane must be an integer in range [0, 7].");
  case Match_InvalidSVEIndexRange0_3:
    return Error(Loc, "vector lane must be an integer in range [0, 3].");
  case Match_InvalidLabel:
    return Error(Loc, "expected label or encodable integer pc offset");
  case Match_MRS:
    return Error(Loc, "expected readable system register");
  case Match_MSR:
    return Error(Loc, "expected writable system register or pstate");
  case Match_InvalidComplexRotationEven:
    return Error(Loc, "complex rotation must be 0, 90, 180 or 270.");
  case Match_InvalidComplexRotationOdd:
    return Error(Loc, "complex rotation must be 90 or 270.");
  case Match_MnemonicFail: {
    std::string Suggestion = AArch64MnemonicSpellCheck(
        ((AArch64Operand &)*Operands[0]).getToken(),
        ComputeAvailableFeatures(STI->getFeatureBits()));
    return Error(Loc, "unrecognized instruction mnemonic" + Suggestion);
  }
  case Match_InvalidGPR64shifted8:
    return Error(Loc, "register must be x0..x30 or xzr, without shift");
  case Match_InvalidGPR64shifted16:
    return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #1'");
  case Match_InvalidGPR64shifted32:
    return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #2'");
  case Match_InvalidGPR64shifted64:
    return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #3'");
  case Match_InvalidGPR64NoXZRshifted8:
    return Error(Loc, "register must be x0..x30 without shift");
  case Match_InvalidGPR64NoXZRshifted16:
    return Error(Loc, "register must be x0..x30 with required shift 'lsl #1'");
  case Match_InvalidGPR64NoXZRshifted32:
    return Error(Loc, "register must be x0..x30 with required shift 'lsl #2'");
  case Match_InvalidGPR64NoXZRshifted64:
    return Error(Loc, "register must be x0..x30 with required shift 'lsl #3'");
  case Match_InvalidZPR32UXTW8:
  case Match_InvalidZPR32SXTW8:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'");
  case Match_InvalidZPR32UXTW16:
  case Match_InvalidZPR32SXTW16:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #1'");
  case Match_InvalidZPR32UXTW32:
  case Match_InvalidZPR32SXTW32:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'");
  case Match_InvalidZPR32UXTW64:
  case Match_InvalidZPR32SXTW64:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #3'");
  case Match_InvalidZPR64UXTW8:
  case Match_InvalidZPR64SXTW8:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (uxtw|sxtw)'");
  case Match_InvalidZPR64UXTW16:
  case Match_InvalidZPR64SXTW16:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #1'");
  case Match_InvalidZPR64UXTW32:
  case Match_InvalidZPR64SXTW32:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'");
  case Match_InvalidZPR64UXTW64:
  case Match_InvalidZPR64SXTW64:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #3'");
  case Match_InvalidZPR32LSL8:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s'");
  case Match_InvalidZPR32LSL16:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #1'");
  case Match_InvalidZPR32LSL32:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #2'");
  case Match_InvalidZPR32LSL64:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #3'");
  case Match_InvalidZPR64LSL8:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d'");
  case Match_InvalidZPR64LSL16:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #1'");
  case Match_InvalidZPR64LSL32:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #2'");
  case Match_InvalidZPR64LSL64:
    return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #3'");
  case Match_InvalidZPR0:
    return Error(Loc, "expected register without element width suffix");
  case Match_InvalidZPR8:
  case Match_InvalidZPR16:
  case Match_InvalidZPR32:
  case Match_InvalidZPR64:
  case Match_InvalidZPR128:
    return Error(Loc, "invalid element width");
  case Match_InvalidZPR_3b8:
    return Error(Loc, "Invalid restricted vector register, expected z0.b..z7.b");
  case Match_InvalidZPR_3b16:
    return Error(Loc, "Invalid restricted vector register, expected z0.h..z7.h");
  case Match_InvalidZPR_3b32:
    return Error(Loc, "Invalid restricted vector register, expected z0.s..z7.s");
  case Match_InvalidZPR_4b16:
    return Error(Loc, "Invalid restricted vector register, expected z0.h..z15.h");
  case Match_InvalidZPR_4b32:
    return Error(Loc, "Invalid restricted vector register, expected z0.s..z15.s");
  case Match_InvalidZPR_4b64:
    return Error(Loc, "Invalid restricted vector register, expected z0.d..z15.d");
  case Match_InvalidSVEPattern:
    return Error(Loc, "invalid predicate pattern");
  case Match_InvalidSVEPredicateAnyReg:
  case Match_InvalidSVEPredicateBReg:
  case Match_InvalidSVEPredicateHReg:
  case Match_InvalidSVEPredicateSReg:
  case Match_InvalidSVEPredicateDReg:
    return Error(Loc, "invalid predicate register.");
  case Match_InvalidSVEPredicate3bAnyReg:
    return Error(Loc, "invalid restricted predicate register, expected p0..p7 (without element suffix)");
  case Match_InvalidSVEPredicate3bBReg:
    return Error(Loc, "invalid restricted predicate register, expected p0.b..p7.b");
  case Match_InvalidSVEPredicate3bHReg:
    return Error(Loc, "invalid restricted predicate register, expected p0.h..p7.h");
  case Match_InvalidSVEPredicate3bSReg:
    return Error(Loc, "invalid restricted predicate register, expected p0.s..p7.s");
  case Match_InvalidSVEPredicate3bDReg:
    return Error(Loc, "invalid restricted predicate register, expected p0.d..p7.d");
  case Match_InvalidSVEExactFPImmOperandHalfOne:
    return Error(Loc, "Invalid floating point constant, expected 0.5 or 1.0.");
  case Match_InvalidSVEExactFPImmOperandHalfTwo:
    return Error(Loc, "Invalid floating point constant, expected 0.5 or 2.0.");
  case Match_InvalidSVEExactFPImmOperandZeroOne:
    return Error(Loc, "Invalid floating point constant, expected 0.0 or 1.0.");
  default:
    llvm_unreachable("unexpected error code!");
  }
}

static const char *getSubtargetFeatureName(uint64_t Val);

bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                               OperandVector &Operands,
                                               MCStreamer &Out,
                                               uint64_t &ErrorInfo,
                                               bool MatchingInlineAsm) {
  assert(!Operands.empty() && "Unexpect empty operand list!");
  AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");

  StringRef Tok = Op.getToken();
  unsigned NumOperands = Operands.size();

  if (NumOperands == 4 && Tok == "lsl") {
    AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
    AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
    if (Op2.isScalarReg() && Op3.isImm()) {
      const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
      if (Op3CE) {
        uint64_t Op3Val = Op3CE->getValue();
        uint64_t NewOp3Val = 0;
        uint64_t NewOp4Val = 0;
        if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
                Op2.getReg())) {
          NewOp3Val = (32 - Op3Val) & 0x1f;
          NewOp4Val = 31 - Op3Val;
        } else {
          NewOp3Val = (64 - Op3Val) & 0x3f;
          NewOp4Val = 63 - Op3Val;
        }

        const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext());
        const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext());

        Operands[0] = AArch64Operand::CreateToken(
            "ubfm", false, Op.getStartLoc(), getContext());
        Operands.push_back(AArch64Operand::CreateImm(
            NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext()));
        Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(),
                                                Op3.getEndLoc(), getContext());
      }
    }
  } else if (NumOperands == 4 && Tok == "bfc") {
    // FIXME: Horrible hack to handle BFC->BFM alias.
    AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
    AArch64Operand LSBOp = static_cast<AArch64Operand &>(*Operands[2]);
    AArch64Operand WidthOp = static_cast<AArch64Operand &>(*Operands[3]);

    if (Op1.isScalarReg() && LSBOp.isImm() && WidthOp.isImm()) {
      const MCConstantExpr *LSBCE = dyn_cast<MCConstantExpr>(LSBOp.getImm());
      const MCConstantExpr *WidthCE = dyn_cast<MCConstantExpr>(WidthOp.getImm());

      if (LSBCE && WidthCE) {
        uint64_t LSB = LSBCE->getValue();
        uint64_t Width = WidthCE->getValue();

        uint64_t RegWidth = 0;
        if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
                Op1.getReg()))
          RegWidth = 64;
        else
          RegWidth = 32;

        if (LSB >= RegWidth)
          return Error(LSBOp.getStartLoc(),
                       "expected integer in range [0, 31]");
        if (Width < 1 || Width > RegWidth)
          return Error(WidthOp.getStartLoc(),
                       "expected integer in range [1, 32]");

        uint64_t ImmR = 0;
        if (RegWidth == 32)
          ImmR = (32 - LSB) & 0x1f;
        else
          ImmR = (64 - LSB) & 0x3f;

        uint64_t ImmS = Width - 1;

        if (ImmR != 0 && ImmS >= ImmR)
          return Error(WidthOp.getStartLoc(),
                       "requested insert overflows register");

        const MCExpr *ImmRExpr = MCConstantExpr::create(ImmR, getContext());
        const MCExpr *ImmSExpr = MCConstantExpr::create(ImmS, getContext());
        Operands[0] = AArch64Operand::CreateToken(
              "bfm", false, Op.getStartLoc(), getContext());
        Operands[2] = AArch64Operand::CreateReg(
            RegWidth == 32 ? AArch64::WZR : AArch64::XZR, RegKind::Scalar,
            SMLoc(), SMLoc(), getContext());
        Operands[3] = AArch64Operand::CreateImm(
            ImmRExpr, LSBOp.getStartLoc(), LSBOp.getEndLoc(), getContext());
        Operands.emplace_back(
            AArch64Operand::CreateImm(ImmSExpr, WidthOp.getStartLoc(),
                                      WidthOp.getEndLoc(), getContext()));
      }
    }
  } else if (NumOperands == 5) {
    // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
    // UBFIZ -> UBFM aliases.
    if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
      AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
      AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
      AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);

      if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
        const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
        const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());

        if (Op3CE && Op4CE) {
          uint64_t Op3Val = Op3CE->getValue();
          uint64_t Op4Val = Op4CE->getValue();

          uint64_t RegWidth = 0;
          if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
                  Op1.getReg()))
            RegWidth = 64;
          else
            RegWidth = 32;

          if (Op3Val >= RegWidth)
            return Error(Op3.getStartLoc(),
                         "expected integer in range [0, 31]");
          if (Op4Val < 1 || Op4Val > RegWidth)
            return Error(Op4.getStartLoc(),
                         "expected integer in range [1, 32]");

          uint64_t NewOp3Val = 0;
          if (RegWidth == 32)
            NewOp3Val = (32 - Op3Val) & 0x1f;
          else
            NewOp3Val = (64 - Op3Val) & 0x3f;

          uint64_t NewOp4Val = Op4Val - 1;

          if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val)
            return Error(Op4.getStartLoc(),
                         "requested insert overflows register");

          const MCExpr *NewOp3 =
              MCConstantExpr::create(NewOp3Val, getContext());
          const MCExpr *NewOp4 =
              MCConstantExpr::create(NewOp4Val, getContext());
          Operands[3] = AArch64Operand::CreateImm(
              NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext());
          Operands[4] = AArch64Operand::CreateImm(
              NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
          if (Tok == "bfi")
            Operands[0] = AArch64Operand::CreateToken(
                "bfm", false, Op.getStartLoc(), getContext());
          else if (Tok == "sbfiz")
            Operands[0] = AArch64Operand::CreateToken(
                "sbfm", false, Op.getStartLoc(), getContext());
          else if (Tok == "ubfiz")
            Operands[0] = AArch64Operand::CreateToken(
                "ubfm", false, Op.getStartLoc(), getContext());
          else
            llvm_unreachable("No valid mnemonic for alias?");
        }
      }

      // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
      // UBFX -> UBFM aliases.
    } else if (NumOperands == 5 &&
               (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
      AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
      AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
      AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);

      if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
        const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
        const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());

        if (Op3CE && Op4CE) {
          uint64_t Op3Val = Op3CE->getValue();
          uint64_t Op4Val = Op4CE->getValue();

          uint64_t RegWidth = 0;
          if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
                  Op1.getReg()))
            RegWidth = 64;
          else
            RegWidth = 32;

          if (Op3Val >= RegWidth)
            return Error(Op3.getStartLoc(),
                         "expected integer in range [0, 31]");
          if (Op4Val < 1 || Op4Val > RegWidth)
            return Error(Op4.getStartLoc(),
                         "expected integer in range [1, 32]");

          uint64_t NewOp4Val = Op3Val + Op4Val - 1;

          if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val)
            return Error(Op4.getStartLoc(),
                         "requested extract overflows register");

          const MCExpr *NewOp4 =
              MCConstantExpr::create(NewOp4Val, getContext());
          Operands[4] = AArch64Operand::CreateImm(
              NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
          if (Tok == "bfxil")
            Operands[0] = AArch64Operand::CreateToken(
                "bfm", false, Op.getStartLoc(), getContext());
          else if (Tok == "sbfx")
            Operands[0] = AArch64Operand::CreateToken(
                "sbfm", false, Op.getStartLoc(), getContext());
          else if (Tok == "ubfx")
            Operands[0] = AArch64Operand::CreateToken(
                "ubfm", false, Op.getStartLoc(), getContext());
          else
            llvm_unreachable("No valid mnemonic for alias?");
        }
      }
    }
  }

  // The Cyclone CPU and early successors didn't execute the zero-cycle zeroing
  // instruction for FP registers correctly in some rare circumstances. Convert
  // it to a safe instruction and warn (because silently changing someone's
  // assembly is rude).
  if (getSTI().getFeatureBits()[AArch64::FeatureZCZeroingFPWorkaround] &&
      NumOperands == 4 && Tok == "movi") {
    AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
    AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
    AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
    if ((Op1.isToken() && Op2.isNeonVectorReg() && Op3.isImm()) ||
        (Op1.isNeonVectorReg() && Op2.isToken() && Op3.isImm())) {
      StringRef Suffix = Op1.isToken() ? Op1.getToken() : Op2.getToken();
      if (Suffix.lower() == ".2d" &&
          cast<MCConstantExpr>(Op3.getImm())->getValue() == 0) {
        Warning(IDLoc, "instruction movi.2d with immediate #0 may not function"
                " correctly on this CPU, converting to equivalent movi.16b");
        // Switch the suffix to .16b.
        unsigned Idx = Op1.isToken() ? 1 : 2;
        Operands[Idx] = AArch64Operand::CreateToken(".16b", false, IDLoc,
                                                  getContext());
      }
    }
  }

  // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
  //        InstAlias can't quite handle this since the reg classes aren't
  //        subclasses.
  if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
    // The source register can be Wn here, but the matcher expects a
    // GPR64. Twiddle it here if necessary.
    AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
    if (Op.isScalarReg()) {
      unsigned Reg = getXRegFromWReg(Op.getReg());
      Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
                                              Op.getStartLoc(), Op.getEndLoc(),
                                              getContext());
    }
  }
  // FIXME: Likewise for sxt[bh] with a Xd dst operand
  else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
    AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
    if (Op.isScalarReg() &&
        AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
            Op.getReg())) {
      // The source register can be Wn here, but the matcher expects a
      // GPR64. Twiddle it here if necessary.
      AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
      if (Op.isScalarReg()) {
        unsigned Reg = getXRegFromWReg(Op.getReg());
        Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
                                                Op.getStartLoc(),
                                                Op.getEndLoc(), getContext());
      }
    }
  }
  // FIXME: Likewise for uxt[bh] with a Xd dst operand
  else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
    AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
    if (Op.isScalarReg() &&
        AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
            Op.getReg())) {
      // The source register can be Wn here, but the matcher expects a
      // GPR32. Twiddle it here if necessary.
      AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
      if (Op.isScalarReg()) {
        unsigned Reg = getWRegFromXReg(Op.getReg());
        Operands[1] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
                                                Op.getStartLoc(),
                                                Op.getEndLoc(), getContext());
      }
    }
  }

  MCInst Inst;
  FeatureBitset MissingFeatures;
  // First try to match against the secondary set of tables containing the
  // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
  unsigned MatchResult =
      MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
                           MatchingInlineAsm, 1);

  // If that fails, try against the alternate table containing long-form NEON:
  // "fadd v0.2s, v1.2s, v2.2s"
  if (MatchResult != Match_Success) {
    // But first, save the short-form match result: we can use it in case the
    // long-form match also fails.
    auto ShortFormNEONErrorInfo = ErrorInfo;
    auto ShortFormNEONMatchResult = MatchResult;
    auto ShortFormNEONMissingFeatures = MissingFeatures;

    MatchResult =
        MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
                             MatchingInlineAsm, 0);

    // Now, both matches failed, and the long-form match failed on the mnemonic
    // suffix token operand.  The short-form match failure is probably more
    // relevant: use it instead.
    if (MatchResult == Match_InvalidOperand && ErrorInfo == 1 &&
        Operands.size() > 1 && ((AArch64Operand &)*Operands[1]).isToken() &&
        ((AArch64Operand &)*Operands[1]).isTokenSuffix()) {
      MatchResult = ShortFormNEONMatchResult;
      ErrorInfo = ShortFormNEONErrorInfo;
      MissingFeatures = ShortFormNEONMissingFeatures;
    }
  }

  switch (MatchResult) {
  case Match_Success: {
    // Perform range checking and other semantic validations
    SmallVector<SMLoc, 8> OperandLocs;
    NumOperands = Operands.size();
    for (unsigned i = 1; i < NumOperands; ++i)
      OperandLocs.push_back(Operands[i]->getStartLoc());
    if (validateInstruction(Inst, IDLoc, OperandLocs))
      return true;

    Inst.setLoc(IDLoc);
    Out.EmitInstruction(Inst, getSTI());
    return false;
  }
  case Match_MissingFeature: {
    assert(MissingFeatures.any() && "Unknown missing feature!");
    // Special case the error message for the very common case where only
    // a single subtarget feature is missing (neon, e.g.).
    std::string Msg = "instruction requires:";
    for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
      if (MissingFeatures[i]) {
        Msg += " ";
        Msg += getSubtargetFeatureName(i);
      }
    }
    return Error(IDLoc, Msg);
  }
  case Match_MnemonicFail:
    return showMatchError(IDLoc, MatchResult, ErrorInfo, Operands);
  case Match_InvalidOperand: {
    SMLoc ErrorLoc = IDLoc;

    if (ErrorInfo != ~0ULL) {
      if (ErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction",
                     SMRange(IDLoc, getTok().getLoc()));

      ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
      if (ErrorLoc == SMLoc())
        ErrorLoc = IDLoc;
    }
    // If the match failed on a suffix token operand, tweak the diagnostic
    // accordingly.
    if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() &&
        ((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix())
      MatchResult = Match_InvalidSuffix;

    return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
  }
  case Match_InvalidTiedOperand:
  case Match_InvalidMemoryIndexed1:
  case Match_InvalidMemoryIndexed2:
  case Match_InvalidMemoryIndexed4:
  case Match_InvalidMemoryIndexed8:
  case Match_InvalidMemoryIndexed16:
  case Match_InvalidCondCode:
  case Match_AddSubRegExtendSmall:
  case Match_AddSubRegExtendLarge:
  case Match_AddSubSecondSource:
  case Match_LogicalSecondSource:
  case Match_AddSubRegShift32:
  case Match_AddSubRegShift64:
  case Match_InvalidMovImm32Shift:
  case Match_InvalidMovImm64Shift:
  case Match_InvalidFPImm:
  case Match_InvalidMemoryWExtend8:
  case Match_InvalidMemoryWExtend16:
  case Match_InvalidMemoryWExtend32:
  case Match_InvalidMemoryWExtend64:
  case Match_InvalidMemoryWExtend128:
  case Match_InvalidMemoryXExtend8:
  case Match_InvalidMemoryXExtend16:
  case Match_InvalidMemoryXExtend32:
  case Match_InvalidMemoryXExtend64:
  case Match_InvalidMemoryXExtend128:
  case Match_InvalidMemoryIndexed1SImm4:
  case Match_InvalidMemoryIndexed2SImm4:
  case Match_InvalidMemoryIndexed3SImm4:
  case Match_InvalidMemoryIndexed4SImm4:
  case Match_InvalidMemoryIndexed1SImm6:
  case Match_InvalidMemoryIndexed16SImm4:
  case Match_InvalidMemoryIndexed4SImm7:
  case Match_InvalidMemoryIndexed8SImm7:
  case Match_InvalidMemoryIndexed16SImm7:
  case Match_InvalidMemoryIndexed8UImm5:
  case Match_InvalidMemoryIndexed4UImm5:
  case Match_InvalidMemoryIndexed2UImm5:
  case Match_InvalidMemoryIndexed1UImm6:
  case Match_InvalidMemoryIndexed2UImm6:
  case Match_InvalidMemoryIndexed4UImm6:
  case Match_InvalidMemoryIndexed8UImm6:
  case Match_InvalidMemoryIndexed16UImm6:
  case Match_InvalidMemoryIndexedSImm6:
  case Match_InvalidMemoryIndexedSImm5:
  case Match_InvalidMemoryIndexedSImm8:
  case Match_InvalidMemoryIndexedSImm9:
  case Match_InvalidMemoryIndexed16SImm9:
  case Match_InvalidMemoryIndexed8SImm10:
  case Match_InvalidImm0_1:
  case Match_InvalidImm0_7:
  case Match_InvalidImm0_15:
  case Match_InvalidImm0_31:
  case Match_InvalidImm0_63:
  case Match_InvalidImm0_127:
  case Match_InvalidImm0_255:
  case Match_InvalidImm0_65535:
  case Match_InvalidImm1_8:
  case Match_InvalidImm1_16:
  case Match_InvalidImm1_32:
  case Match_InvalidImm1_64:
  case Match_InvalidSVEAddSubImm8:
  case Match_InvalidSVEAddSubImm16:
  case Match_InvalidSVEAddSubImm32:
  case Match_InvalidSVEAddSubImm64:
  case Match_InvalidSVECpyImm8:
  case Match_InvalidSVECpyImm16:
  case Match_InvalidSVECpyImm32:
  case Match_InvalidSVECpyImm64:
  case Match_InvalidIndexRange1_1:
  case Match_InvalidIndexRange0_15:
  case Match_InvalidIndexRange0_7:
  case Match_InvalidIndexRange0_3:
  case Match_InvalidIndexRange0_1:
  case Match_InvalidSVEIndexRange0_63:
  case Match_InvalidSVEIndexRange0_31:
  case Match_InvalidSVEIndexRange0_15:
  case Match_InvalidSVEIndexRange0_7:
  case Match_InvalidSVEIndexRange0_3:
  case Match_InvalidLabel:
  case Match_InvalidComplexRotationEven:
  case Match_InvalidComplexRotationOdd:
  case Match_InvalidGPR64shifted8:
  case Match_InvalidGPR64shifted16:
  case Match_InvalidGPR64shifted32:
  case Match_InvalidGPR64shifted64:
  case Match_InvalidGPR64NoXZRshifted8:
  case Match_InvalidGPR64NoXZRshifted16:
  case Match_InvalidGPR64NoXZRshifted32:
  case Match_InvalidGPR64NoXZRshifted64:
  case Match_InvalidZPR32UXTW8:
  case Match_InvalidZPR32UXTW16:
  case Match_InvalidZPR32UXTW32:
  case Match_InvalidZPR32UXTW64:
  case Match_InvalidZPR32SXTW8:
  case Match_InvalidZPR32SXTW16:
  case Match_InvalidZPR32SXTW32:
  case Match_InvalidZPR32SXTW64:
  case Match_InvalidZPR64UXTW8:
  case Match_InvalidZPR64SXTW8:
  case Match_InvalidZPR64UXTW16:
  case Match_InvalidZPR64SXTW16:
  case Match_InvalidZPR64UXTW32:
  case Match_InvalidZPR64SXTW32:
  case Match_InvalidZPR64UXTW64:
  case Match_InvalidZPR64SXTW64:
  case Match_InvalidZPR32LSL8:
  case Match_InvalidZPR32LSL16:
  case Match_InvalidZPR32LSL32:
  case Match_InvalidZPR32LSL64:
  case Match_InvalidZPR64LSL8:
  case Match_InvalidZPR64LSL16:
  case Match_InvalidZPR64LSL32:
  case Match_InvalidZPR64LSL64:
  case Match_InvalidZPR0:
  case Match_InvalidZPR8:
  case Match_InvalidZPR16:
  case Match_InvalidZPR32:
  case Match_InvalidZPR64:
  case Match_InvalidZPR128:
  case Match_InvalidZPR_3b8:
  case Match_InvalidZPR_3b16:
  case Match_InvalidZPR_3b32:
  case Match_InvalidZPR_4b16:
  case Match_InvalidZPR_4b32:
  case Match_InvalidZPR_4b64:
  case Match_InvalidSVEPredicateAnyReg:
  case Match_InvalidSVEPattern:
  case Match_InvalidSVEPredicateBReg:
  case Match_InvalidSVEPredicateHReg:
  case Match_InvalidSVEPredicateSReg:
  case Match_InvalidSVEPredicateDReg:
  case Match_InvalidSVEPredicate3bAnyReg:
  case Match_InvalidSVEPredicate3bBReg:
  case Match_InvalidSVEPredicate3bHReg:
  case Match_InvalidSVEPredicate3bSReg:
  case Match_InvalidSVEPredicate3bDReg:
  case Match_InvalidSVEExactFPImmOperandHalfOne:
  case Match_InvalidSVEExactFPImmOperandHalfTwo:
  case Match_InvalidSVEExactFPImmOperandZeroOne:
  case Match_MSR:
  case Match_MRS: {
    if (ErrorInfo >= Operands.size())
      return Error(IDLoc, "too few operands for instruction", SMRange(IDLoc, (*Operands.back()).getEndLoc()));
    // Any time we get here, there's nothing fancy to do. Just get the
    // operand SMLoc and display the diagnostic.
    SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
    if (ErrorLoc == SMLoc())
      ErrorLoc = IDLoc;
    return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
  }
  }

  llvm_unreachable("Implement any new match types added!");
}

/// ParseDirective parses the arm specific directives
bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
  const MCObjectFileInfo::Environment Format =
    getContext().getObjectFileInfo()->getObjectFileType();
  bool IsMachO = Format == MCObjectFileInfo::IsMachO;

  StringRef IDVal = DirectiveID.getIdentifier();
  SMLoc Loc = DirectiveID.getLoc();
  if (IDVal == ".arch")
    parseDirectiveArch(Loc);
  else if (IDVal == ".cpu")
    parseDirectiveCPU(Loc);
  else if (IDVal == ".tlsdesccall")
    parseDirectiveTLSDescCall(Loc);
  else if (IDVal == ".ltorg" || IDVal == ".pool")
    parseDirectiveLtorg(Loc);
  else if (IDVal == ".unreq")
    parseDirectiveUnreq(Loc);
  else if (IDVal == ".inst")
    parseDirectiveInst(Loc);
  else if (IDVal == ".cfi_negate_ra_state")
    parseDirectiveCFINegateRAState();
  else if (IDVal == ".cfi_b_key_frame")
    parseDirectiveCFIBKeyFrame();
  else if (IDVal == ".arch_extension")
    parseDirectiveArchExtension(Loc);
  else if (IsMachO) {
    if (IDVal == MCLOHDirectiveName())
      parseDirectiveLOH(IDVal, Loc);
    else
      return true;
  } else
    return true;
  return false;
}

static void ExpandCryptoAEK(AArch64::ArchKind ArchKind,
                            SmallVector<StringRef, 4> &RequestedExtensions) {
  const bool NoCrypto =
      (std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
                 "nocrypto") != std::end(RequestedExtensions));
  const bool Crypto =
      (std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
                 "crypto") != std::end(RequestedExtensions));

  if (!NoCrypto && Crypto) {
    switch (ArchKind) {
    default:
      // Map 'generic' (and others) to sha2 and aes, because
      // that was the traditional meaning of crypto.
    case AArch64::ArchKind::ARMV8_1A:
    case AArch64::ArchKind::ARMV8_2A:
    case AArch64::ArchKind::ARMV8_3A:
      RequestedExtensions.push_back("sha2");
      RequestedExtensions.push_back("aes");
      break;
    case AArch64::ArchKind::ARMV8_4A:
    case AArch64::ArchKind::ARMV8_5A:
      RequestedExtensions.push_back("sm4");
      RequestedExtensions.push_back("sha3");
      RequestedExtensions.push_back("sha2");
      RequestedExtensions.push_back("aes");
      break;
    }
  } else if (NoCrypto) {
    switch (ArchKind) {
    default:
      // Map 'generic' (and others) to sha2 and aes, because
      // that was the traditional meaning of crypto.
    case AArch64::ArchKind::ARMV8_1A:
    case AArch64::ArchKind::ARMV8_2A:
    case AArch64::ArchKind::ARMV8_3A:
      RequestedExtensions.push_back("nosha2");
      RequestedExtensions.push_back("noaes");
      break;
    case AArch64::ArchKind::ARMV8_4A:
    case AArch64::ArchKind::ARMV8_5A:
      RequestedExtensions.push_back("nosm4");
      RequestedExtensions.push_back("nosha3");
      RequestedExtensions.push_back("nosha2");
      RequestedExtensions.push_back("noaes");
      break;
    }
  }
}

/// parseDirectiveArch
///   ::= .arch token
bool AArch64AsmParser::parseDirectiveArch(SMLoc L) {
  SMLoc ArchLoc = getLoc();

  StringRef Arch, ExtensionString;
  std::tie(Arch, ExtensionString) =
      getParser().parseStringToEndOfStatement().trim().split('+');

  AArch64::ArchKind ID = AArch64::parseArch(Arch);
  if (ID == AArch64::ArchKind::INVALID)
    return Error(ArchLoc, "unknown arch name");

  if (parseToken(AsmToken::EndOfStatement))
    return true;

  // Get the architecture and extension features.
  std::vector<StringRef> AArch64Features;
  AArch64::getArchFeatures(ID, AArch64Features);
  AArch64::getExtensionFeatures(AArch64::getDefaultExtensions("generic", ID),
                                AArch64Features);

  MCSubtargetInfo &STI = copySTI();
  std::vector<std::string> ArchFeatures(AArch64Features.begin(), AArch64Features.end());
  STI.setDefaultFeatures("generic", join(ArchFeatures.begin(), ArchFeatures.end(), ","));

  SmallVector<StringRef, 4> RequestedExtensions;
  if (!ExtensionString.empty())
    ExtensionString.split(RequestedExtensions, '+');

  ExpandCryptoAEK(ID, RequestedExtensions);

  FeatureBitset Features = STI.getFeatureBits();
  for (auto Name : RequestedExtensions) {
    bool EnableFeature = true;

    if (Name.startswith_lower("no")) {
      EnableFeature = false;
      Name = Name.substr(2);
    }

    for (const auto &Extension : ExtensionMap) {
      if (Extension.Name != Name)
        continue;

      if (Extension.Features.none())
        report_fatal_error("unsupported architectural extension: " + Name);

      FeatureBitset ToggleFeatures = EnableFeature
                                         ? (~Features & Extension.Features)
                                         : ( Features & Extension.Features);
      FeatureBitset Features =
          ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
      setAvailableFeatures(Features);
      break;
    }
  }
  return false;
}

/// parseDirectiveArchExtension
///   ::= .arch_extension [no]feature
bool AArch64AsmParser::parseDirectiveArchExtension(SMLoc L) {
  SMLoc ExtLoc = getLoc();

  StringRef Name = getParser().parseStringToEndOfStatement().trim();

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.arch_extension' directive"))
    return true;

  bool EnableFeature = true;
  if (Name.startswith_lower("no")) {
    EnableFeature = false;
    Name = Name.substr(2);
  }

  MCSubtargetInfo &STI = copySTI();
  FeatureBitset Features = STI.getFeatureBits();
  for (const auto &Extension : ExtensionMap) {
    if (Extension.Name != Name)
      continue;

    if (Extension.Features.none())
      return Error(ExtLoc, "unsupported architectural extension: " + Name);

    FeatureBitset ToggleFeatures = EnableFeature
                                       ? (~Features & Extension.Features)
                                       : (Features & Extension.Features);
    FeatureBitset Features =
        ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
    setAvailableFeatures(Features);
    return false;
  }

  return Error(ExtLoc, "unknown architectural extension: " + Name);
}

static SMLoc incrementLoc(SMLoc L, int Offset) {
  return SMLoc::getFromPointer(L.getPointer() + Offset);
}

/// parseDirectiveCPU
///   ::= .cpu id
bool AArch64AsmParser::parseDirectiveCPU(SMLoc L) {
  SMLoc CurLoc = getLoc();

  StringRef CPU, ExtensionString;
  std::tie(CPU, ExtensionString) =
      getParser().parseStringToEndOfStatement().trim().split('+');

  if (parseToken(AsmToken::EndOfStatement))
    return true;

  SmallVector<StringRef, 4> RequestedExtensions;
  if (!ExtensionString.empty())
    ExtensionString.split(RequestedExtensions, '+');

  // FIXME This is using tablegen data, but should be moved to ARMTargetParser
  // once that is tablegen'ed
  if (!getSTI().isCPUStringValid(CPU)) {
    Error(CurLoc, "unknown CPU name");
    return false;
  }

  MCSubtargetInfo &STI = copySTI();
  STI.setDefaultFeatures(CPU, "");
  CurLoc = incrementLoc(CurLoc, CPU.size());

  ExpandCryptoAEK(llvm::AArch64::getCPUArchKind(CPU), RequestedExtensions);

  FeatureBitset Features = STI.getFeatureBits();
  for (auto Name : RequestedExtensions) {
    // Advance source location past '+'.
    CurLoc = incrementLoc(CurLoc, 1);

    bool EnableFeature = true;

    if (Name.startswith_lower("no")) {
      EnableFeature = false;
      Name = Name.substr(2);
    }

    bool FoundExtension = false;
    for (const auto &Extension : ExtensionMap) {
      if (Extension.Name != Name)
        continue;

      if (Extension.Features.none())
        report_fatal_error("unsupported architectural extension: " + Name);

      FeatureBitset ToggleFeatures = EnableFeature
                                         ? (~Features & Extension.Features)
                                         : ( Features & Extension.Features);
      FeatureBitset Features =
          ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
      setAvailableFeatures(Features);
      FoundExtension = true;

      break;
    }

    if (!FoundExtension)
      Error(CurLoc, "unsupported architectural extension");

    CurLoc = incrementLoc(CurLoc, Name.size());
  }
  return false;
}

/// parseDirectiveInst
///  ::= .inst opcode [, ...]
bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) {
  if (getLexer().is(AsmToken::EndOfStatement))
    return Error(Loc, "expected expression following '.inst' directive");

  auto parseOp = [&]() -> bool {
    SMLoc L = getLoc();
    const MCExpr *Expr = nullptr;
    if (check(getParser().parseExpression(Expr), L, "expected expression"))
      return true;
    const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
    if (check(!Value, L, "expected constant expression"))
      return true;
    getTargetStreamer().emitInst(Value->getValue());
    return false;
  };

  if (parseMany(parseOp))
    return addErrorSuffix(" in '.inst' directive");
  return false;
}

// parseDirectiveTLSDescCall:
//   ::= .tlsdesccall symbol
bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
  StringRef Name;
  if (check(getParser().parseIdentifier(Name), L,
            "expected symbol after directive") ||
      parseToken(AsmToken::EndOfStatement))
    return true;

  MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
  const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
  Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_TLSDESC, getContext());

  MCInst Inst;
  Inst.setOpcode(AArch64::TLSDESCCALL);
  Inst.addOperand(MCOperand::createExpr(Expr));

  getParser().getStreamer().EmitInstruction(Inst, getSTI());
  return false;
}

/// ::= .loh <lohName | lohId> label1, ..., labelN
/// The number of arguments depends on the loh identifier.
bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
  MCLOHType Kind;
  if (getParser().getTok().isNot(AsmToken::Identifier)) {
    if (getParser().getTok().isNot(AsmToken::Integer))
      return TokError("expected an identifier or a number in directive");
    // We successfully get a numeric value for the identifier.
    // Check if it is valid.
    int64_t Id = getParser().getTok().getIntVal();
    if (Id <= -1U && !isValidMCLOHType(Id))
      return TokError("invalid numeric identifier in directive");
    Kind = (MCLOHType)Id;
  } else {
    StringRef Name = getTok().getIdentifier();
    // We successfully parse an identifier.
    // Check if it is a recognized one.
    int Id = MCLOHNameToId(Name);

    if (Id == -1)
      return TokError("invalid identifier in directive");
    Kind = (MCLOHType)Id;
  }
  // Consume the identifier.
  Lex();
  // Get the number of arguments of this LOH.
  int NbArgs = MCLOHIdToNbArgs(Kind);

  assert(NbArgs != -1 && "Invalid number of arguments");

  SmallVector<MCSymbol *, 3> Args;
  for (int Idx = 0; Idx < NbArgs; ++Idx) {
    StringRef Name;
    if (getParser().parseIdentifier(Name))
      return TokError("expected identifier in directive");
    Args.push_back(getContext().getOrCreateSymbol(Name));

    if (Idx + 1 == NbArgs)
      break;
    if (parseToken(AsmToken::Comma,
                   "unexpected token in '" + Twine(IDVal) + "' directive"))
      return true;
  }
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '" + Twine(IDVal) + "' directive"))
    return true;

  getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
  return false;
}

/// parseDirectiveLtorg
///  ::= .ltorg | .pool
bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;
  getTargetStreamer().emitCurrentConstantPool();
  return false;
}

/// parseDirectiveReq
///  ::= name .req registername
bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
  MCAsmParser &Parser = getParser();
  Parser.Lex(); // Eat the '.req' token.
  SMLoc SRegLoc = getLoc();
  RegKind RegisterKind = RegKind::Scalar;
  unsigned RegNum;
  OperandMatchResultTy ParseRes = tryParseScalarRegister(RegNum);

  if (ParseRes != MatchOperand_Success) {
    StringRef Kind;
    RegisterKind = RegKind::NeonVector;
    ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::NeonVector);

    if (ParseRes == MatchOperand_ParseFail)
      return true;

    if (ParseRes == MatchOperand_Success && !Kind.empty())
      return Error(SRegLoc, "vector register without type specifier expected");
  }

  if (ParseRes != MatchOperand_Success) {
    StringRef Kind;
    RegisterKind = RegKind::SVEDataVector;
    ParseRes =
        tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);

    if (ParseRes == MatchOperand_ParseFail)
      return true;

    if (ParseRes == MatchOperand_Success && !Kind.empty())
      return Error(SRegLoc,
                   "sve vector register without type specifier expected");
  }

  if (ParseRes != MatchOperand_Success) {
    StringRef Kind;
    RegisterKind = RegKind::SVEPredicateVector;
    ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);

    if (ParseRes == MatchOperand_ParseFail)
      return true;

    if (ParseRes == MatchOperand_Success && !Kind.empty())
      return Error(SRegLoc,
                   "sve predicate register without type specifier expected");
  }

  if (ParseRes != MatchOperand_Success)
    return Error(SRegLoc, "register name or alias expected");

  // Shouldn't be anything else.
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected input in .req directive"))
    return true;

  auto pair = std::make_pair(RegisterKind, (unsigned) RegNum);
  if (RegisterReqs.insert(std::make_pair(Name, pair)).first->second != pair)
    Warning(L, "ignoring redefinition of register alias '" + Name + "'");

  return false;
}

/// parseDirectiveUneq
///  ::= .unreq registername
bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (getTok().isNot(AsmToken::Identifier))
    return TokError("unexpected input in .unreq directive.");
  RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
  Parser.Lex(); // Eat the identifier.
  if (parseToken(AsmToken::EndOfStatement))
    return addErrorSuffix("in '.unreq' directive");
  return false;
}

bool AArch64AsmParser::parseDirectiveCFINegateRAState() {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;
  getStreamer().EmitCFINegateRAState();
  return false;
}

/// parseDirectiveCFIBKeyFrame
/// ::= .cfi_b_key
bool AArch64AsmParser::parseDirectiveCFIBKeyFrame() {
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.cfi_b_key_frame'"))
    return true;
  getStreamer().EmitCFIBKeyFrame();
  return false;
}

bool
AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
                                    AArch64MCExpr::VariantKind &ELFRefKind,
                                    MCSymbolRefExpr::VariantKind &DarwinRefKind,
                                    int64_t &Addend) {
  ELFRefKind = AArch64MCExpr::VK_INVALID;
  DarwinRefKind = MCSymbolRefExpr::VK_None;
  Addend = 0;

  if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) {
    ELFRefKind = AE->getKind();
    Expr = AE->getSubExpr();
  }

  const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
  if (SE) {
    // It's a simple symbol reference with no addend.
    DarwinRefKind = SE->getKind();
    return true;
  }

  // Check that it looks like a symbol + an addend
  MCValue Res;
  bool Relocatable = Expr->evaluateAsRelocatable(Res, nullptr, nullptr);
  if (!Relocatable || Res.getSymB())
    return false;

  // Treat expressions with an ELFRefKind (like ":abs_g1:3", or
  // ":abs_g1:x" where x is constant) as symbolic even if there is no symbol.
  if (!Res.getSymA() && ELFRefKind == AArch64MCExpr::VK_INVALID)
    return false;

  if (Res.getSymA())
    DarwinRefKind = Res.getSymA()->getKind();
  Addend = Res.getConstant();

  // It's some symbol reference + a constant addend, but really
  // shouldn't use both Darwin and ELF syntax.
  return ELFRefKind == AArch64MCExpr::VK_INVALID ||
         DarwinRefKind == MCSymbolRefExpr::VK_None;
}

/// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmParser() {
  RegisterMCAsmParser<AArch64AsmParser> X(getTheAArch64leTarget());
  RegisterMCAsmParser<AArch64AsmParser> Y(getTheAArch64beTarget());
  RegisterMCAsmParser<AArch64AsmParser> Z(getTheARM64Target());
  RegisterMCAsmParser<AArch64AsmParser> W(getTheARM64_32Target());
  RegisterMCAsmParser<AArch64AsmParser> V(getTheAArch64_32Target());
}

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "AArch64GenAsmMatcher.inc"

// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
                                                      unsigned Kind) {
  AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp);
  // If the kind is a token for a literal immediate, check if our asm
  // operand matches. This is for InstAliases which have a fixed-value
  // immediate in the syntax.
  int64_t ExpectedVal;
  switch (Kind) {
  default:
    return Match_InvalidOperand;
  case MCK__HASH_0:
    ExpectedVal = 0;
    break;
  case MCK__HASH_1:
    ExpectedVal = 1;
    break;
  case MCK__HASH_12:
    ExpectedVal = 12;
    break;
  case MCK__HASH_16:
    ExpectedVal = 16;
    break;
  case MCK__HASH_2:
    ExpectedVal = 2;
    break;
  case MCK__HASH_24:
    ExpectedVal = 24;
    break;
  case MCK__HASH_3:
    ExpectedVal = 3;
    break;
  case MCK__HASH_32:
    ExpectedVal = 32;
    break;
  case MCK__HASH_4:
    ExpectedVal = 4;
    break;
  case MCK__HASH_48:
    ExpectedVal = 48;
    break;
  case MCK__HASH_6:
    ExpectedVal = 6;
    break;
  case MCK__HASH_64:
    ExpectedVal = 64;
    break;
  case MCK__HASH_8:
    ExpectedVal = 8;
    break;
  }
  if (!Op.isImm())
    return Match_InvalidOperand;
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
  if (!CE)
    return Match_InvalidOperand;
  if (CE->getValue() == ExpectedVal)
    return Match_Success;
  return Match_InvalidOperand;
}

OperandMatchResultTy
AArch64AsmParser::tryParseGPRSeqPair(OperandVector &Operands) {

  SMLoc S = getLoc();

  if (getParser().getTok().isNot(AsmToken::Identifier)) {
    Error(S, "expected register");
    return MatchOperand_ParseFail;
  }

  unsigned FirstReg;
  OperandMatchResultTy Res = tryParseScalarRegister(FirstReg);
  if (Res != MatchOperand_Success)
    return MatchOperand_ParseFail;

  const MCRegisterClass &WRegClass =
      AArch64MCRegisterClasses[AArch64::GPR32RegClassID];
  const MCRegisterClass &XRegClass =
      AArch64MCRegisterClasses[AArch64::GPR64RegClassID];

  bool isXReg = XRegClass.contains(FirstReg),
       isWReg = WRegClass.contains(FirstReg);
  if (!isXReg && !isWReg) {
    Error(S, "expected first even register of a "
             "consecutive same-size even/odd register pair");
    return MatchOperand_ParseFail;
  }

  const MCRegisterInfo *RI = getContext().getRegisterInfo();
  unsigned FirstEncoding = RI->getEncodingValue(FirstReg);

  if (FirstEncoding & 0x1) {
    Error(S, "expected first even register of a "
             "consecutive same-size even/odd register pair");
    return MatchOperand_ParseFail;
  }

  if (getParser().getTok().isNot(AsmToken::Comma)) {
    Error(getLoc(), "expected comma");
    return MatchOperand_ParseFail;
  }
  // Eat the comma
  getParser().Lex();

  SMLoc E = getLoc();
  unsigned SecondReg;
  Res = tryParseScalarRegister(SecondReg);
  if (Res != MatchOperand_Success)
    return MatchOperand_ParseFail;

  if (RI->getEncodingValue(SecondReg) != FirstEncoding + 1 ||
      (isXReg && !XRegClass.contains(SecondReg)) ||
      (isWReg && !WRegClass.contains(SecondReg))) {
    Error(E,"expected second odd register of a "
             "consecutive same-size even/odd register pair");
    return MatchOperand_ParseFail;
  }

  unsigned Pair = 0;
  if (isXReg) {
    Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube64,
           &AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID]);
  } else {
    Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube32,
           &AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID]);
  }

  Operands.push_back(AArch64Operand::CreateReg(Pair, RegKind::Scalar, S,
      getLoc(), getContext()));

  return MatchOperand_Success;
}

template <bool ParseShiftExtend, bool ParseSuffix>
OperandMatchResultTy
AArch64AsmParser::tryParseSVEDataVector(OperandVector &Operands) {
  const SMLoc S = getLoc();
  // Check for a SVE vector register specifier first.
  unsigned RegNum;
  StringRef Kind;

  OperandMatchResultTy Res =
      tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);

  if (Res != MatchOperand_Success)
    return Res;

  if (ParseSuffix && Kind.empty())
    return MatchOperand_NoMatch;

  const auto &KindRes = parseVectorKind(Kind, RegKind::SVEDataVector);
  if (!KindRes)
    return MatchOperand_NoMatch;

  unsigned ElementWidth = KindRes->second;

  // No shift/extend is the default.
  if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
    Operands.push_back(AArch64Operand::CreateVectorReg(
        RegNum, RegKind::SVEDataVector, ElementWidth, S, S, getContext()));

    OperandMatchResultTy Res = tryParseVectorIndex(Operands);
    if (Res == MatchOperand_ParseFail)
      return MatchOperand_ParseFail;
    return MatchOperand_Success;
  }

  // Eat the comma
  getParser().Lex();

  // Match the shift
  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
  Res = tryParseOptionalShiftExtend(ExtOpnd);
  if (Res != MatchOperand_Success)
    return Res;

  auto Ext = static_cast<AArch64Operand *>(ExtOpnd.back().get());
  Operands.push_back(AArch64Operand::CreateVectorReg(
      RegNum, RegKind::SVEDataVector, ElementWidth, S, Ext->getEndLoc(),
      getContext(), Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
      Ext->hasShiftExtendAmount()));

  return MatchOperand_Success;
}

OperandMatchResultTy
AArch64AsmParser::tryParseSVEPattern(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();

  SMLoc SS = getLoc();
  const AsmToken &TokE = Parser.getTok();
  bool IsHash = TokE.is(AsmToken::Hash);

  if (!IsHash && TokE.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int64_t Pattern;
  if (IsHash) {
    Parser.Lex(); // Eat hash

    // Parse the immediate operand.
    const MCExpr *ImmVal;
    SS = getLoc();
    if (Parser.parseExpression(ImmVal))
      return MatchOperand_ParseFail;

    auto *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE)
      return MatchOperand_ParseFail;

    Pattern = MCE->getValue();
  } else {
    // Parse the pattern
    auto Pat = AArch64SVEPredPattern::lookupSVEPREDPATByName(TokE.getString());
    if (!Pat)
      return MatchOperand_NoMatch;

    Parser.Lex();
    Pattern = Pat->Encoding;
    assert(Pattern >= 0 && Pattern < 32);
  }

  Operands.push_back(
      AArch64Operand::CreateImm(MCConstantExpr::create(Pattern, getContext()),
                                SS, getLoc(), getContext()));

  return MatchOperand_Success;
}