AArch64RegisterInfo.cpp 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//

#include "AArch64RegisterInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64StackOffset.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "AArch64GenRegisterInfo.inc"

AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
    : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
  AArch64_MC::initLLVMToCVRegMapping(this);
}

const MCPhysReg *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows())
    return CSR_Win_AArch64_AAPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::GHC)
    // GHC set of callee saved regs is empty as all those regs are
    // used for passing STG regs around
    return CSR_AArch64_NoRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
    return CSR_AArch64_AllRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
    return CSR_AArch64_AAVPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
    return CSR_AArch64_SVE_AAPCS_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
    return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR() ?
           CSR_AArch64_CXX_TLS_Darwin_PE_SaveList :
           CSR_AArch64_CXX_TLS_Darwin_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_AArch64_AAPCS_SwiftError_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
    return CSR_AArch64_RT_MostRegs_SaveList;
  if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
    return CSR_Darwin_AArch64_AAPCS_SaveList;
  return CSR_AArch64_AAPCS_SaveList;
}

const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
    return CSR_AArch64_CXX_TLS_Darwin_ViaCopy_SaveList;
  return nullptr;
}

void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
    MachineFunction &MF) const {
  const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
  SmallVector<MCPhysReg, 32> UpdatedCSRs;
  for (const MCPhysReg *I = CSRs; *I; ++I)
    UpdatedCSRs.push_back(*I);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
    }
  }
  // Register lists are zero-terminated.
  UpdatedCSRs.push_back(0);
  MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
}

const TargetRegisterClass *
AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
                                       unsigned Idx) const {
  // edge case for GPR/FPR register classes
  if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR32RegClass;
  else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
    return &AArch64::FPR64RegClass;

  // Forward to TableGen's default version.
  return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
}

const uint32_t *
AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
  if (CC == CallingConv::AnyReg)
    return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
  if (CC == CallingConv::CXX_FAST_TLS)
    return SCS ? CSR_AArch64_CXX_TLS_Darwin_SCS_RegMask
               : CSR_AArch64_CXX_TLS_Darwin_RegMask;
  if (CC == CallingConv::AArch64_VectorCall)
    return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
  if (CC == CallingConv::AArch64_SVE_VectorCall)
    return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
               : CSR_AArch64_SVE_AAPCS_RegMask;
  if (CC == CallingConv::CFGuard_Check)
    return CSR_Win_AArch64_CFGuard_Check_RegMask;
  if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
          ->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
               : CSR_AArch64_AAPCS_SwiftError_RegMask;
  if (CC == CallingConv::PreserveMost)
    return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
               : CSR_AArch64_RT_MostRegs_RegMask;
  else
    return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
}

const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
  if (TT.isOSDarwin())
    return CSR_AArch64_TLS_Darwin_RegMask;

  assert(TT.isOSBinFormatELF() && "Invalid target");
  return CSR_AArch64_TLS_ELF_RegMask;
}

void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
                                                 const uint32_t **Mask) const {
  uint32_t *UpdatedMask = MF.allocateRegMask();
  unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
  memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);

  for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
      for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i),
                                   this, true);
           SubReg.isValid(); ++SubReg) {
        // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
        // register mask.
        UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32);
      }
    }
  }
  *Mask = UpdatedMask;
}

const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
  return CSR_AArch64_NoRegs_RegMask;
}

const uint32_t *
AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  // This should return a register mask that is the same as that returned by
  // getCallPreservedMask but that additionally preserves the register used for
  // the first i64 argument (which must also be the register used to return a
  // single i64 return value)
  //
  // In case that the calling convention does not use the same register for
  // both, the function should return NULL (does not currently apply)
  assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
  return CSR_AArch64_AAPCS_ThisReturn_RegMask;
}

const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
  return CSR_AArch64_StackProbe_Windows_RegMask;
}

BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  // FIXME: avoid re-calculating this every time.
  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, AArch64::WSP);
  markSuperRegs(Reserved, AArch64::WZR);

  if (TFI->hasFP(MF) || TT.isOSDarwin())
    markSuperRegs(Reserved, AArch64::W29);

  for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
    if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
      markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
  }

  if (hasBasePointer(MF))
    markSuperRegs(Reserved, AArch64::W19);

  // SLH uses register W16/X16 as the taint register.
  if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    markSuperRegs(Reserved, AArch64::W16);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
                                      unsigned Reg) const {
  return getReservedRegs(MF)[Reg];
}

bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
  return std::any_of(std::begin(*AArch64::GPR64argRegClass.MC),
                     std::end(*AArch64::GPR64argRegClass.MC),
                     [this, &MF](MCPhysReg r){return isReservedReg(MF, r);});
}

void AArch64RegisterInfo::emitReservedArgRegCallError(
    const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  F.getContext().diagnose(DiagnosticInfoUnsupported{F, "AArch64 doesn't support"
    " function calls if any of the argument registers is reserved."});
}

bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
                                          unsigned PhysReg) const {
  return !isReservedReg(MF, PhysReg);
}

bool AArch64RegisterInfo::isConstantPhysReg(unsigned PhysReg) const {
  return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR;
}

const TargetRegisterClass *
AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
                                      unsigned Kind) const {
  return &AArch64::GPR64spRegClass;
}

const TargetRegisterClass *
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &AArch64::CCRRegClass)
    return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
  return RC;
}

unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }

bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // In the presence of variable sized objects or funclets, if the fixed stack
  // size is large enough that referencing from the FP won't result in things
  // being in range relatively often, we can use a base pointer to allow access
  // from the other direction like the SP normally works.
  //
  // Furthermore, if both variable sized objects are present, and the
  // stack needs to be dynamically re-aligned, the base pointer is the only
  // reliable way to reference the locals.
  if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
    if (needsStackRealignment(MF))
      return true;
    // Conservatively estimate whether the negative offset from the frame
    // pointer will be sufficient to reach. If a function has a smallish
    // frame, it's less likely to have lots of spills and callee saved
    // space, so it's all more likely to be within range of the frame pointer.
    // If it's wrong, we'll materialize the constant and still get to the
    // object; it's just suboptimal. Negative offsets use the unscaled
    // load/store instructions, which have a 9-bit signed immediate.
    return MFI.getLocalFrameSize() >= 256;
  }

  return false;
}

Register
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
}

bool AArch64RegisterInfo::requiresRegisterScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
  // This function indicates whether the emergency spillslot should be placed
  // close to the beginning of the stackframe (closer to FP) or the end
  // (closer to SP).
  //
  // The beginning works most reliably if we have a frame pointer.
  const AArch64FrameLowering &TFI = *getFrameLowering(MF);
  return TFI.hasFP(MF);
}

bool AArch64RegisterInfo::requiresFrameIndexScavenging(
    const MachineFunction &MF) const {
  return true;
}

bool
AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
    return true;
  return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
}

/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
                                            int64_t Offset) const {
  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
    assert(i < MI->getNumOperands() &&
           "Instr doesn't have FrameIndex operand!");

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  if (!MI->mayLoad() && !MI->mayStore())
    return false;

  // Without a virtual base register, if the function has variable sized
  // objects, all fixed-size local references will be via the frame pointer,
  // Approximate the offset and see if it's legal for the instruction.
  // Note that the incoming offset is based on the SP value at function entry,
  // so it'll be negative.
  MachineFunction &MF = *MI->getParent()->getParent();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // Estimate an offset from the frame pointer.
  // Conservatively assume all GPR callee-saved registers get pushed.
  // FP, LR, X19-X28, D8-D15. 64-bits each.
  int64_t FPOffset = Offset - 16 * 20;
  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += MFI.getLocalFrameSize();
  // Assume that we'll have at least some spill slots allocated.
  // FIXME: This is a total SWAG number. We should run some statistics
  //        and pick a real one.
  Offset += 128; // 128 bytes of spill slots

  // If there is a frame pointer, try using it.
  // The FP is only available if there is no dynamic realignment. We
  // don't know for sure yet whether we'll need that, so we guess based
  // on whether there are any local variables that would trigger it.
  if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
    return false;

  // If we can reference via the stack pointer or base pointer, try that.
  // FIXME: This (and the code that resolves the references) can be improved
  //        to only disallow SP relative references in the live range of
  //        the VLA(s). In practice, it's unclear how much difference that
  //        would make, but it may be worth doing.
  if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
    return false;

  // The offset likely isn't legal; we want to allocate a virtual base register.
  return true;
}

bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
                                             unsigned BaseReg,
                                             int64_t Offset) const {
  assert(MI && "Unable to get the legal offset for nil instruction.");
  StackOffset SaveOffset(Offset, MVT::i8);
  return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
}

/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
/// at the beginning of the basic block.
void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                                       unsigned BaseReg,
                                                       int FrameIdx,
                                                       int64_t Offset) const {
  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL; // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();
  const MachineFunction &MF = *MBB->getParent();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
  unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);

  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
      .addFrameIndex(FrameIdx)
      .addImm(Offset)
      .addImm(Shifter);
}

void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
                                            int64_t Offset) const {
  // ARM doesn't need the general 64-bit offsets
  StackOffset Off(Offset, MVT::i8);

  unsigned i = 0;

  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  const MachineFunction *MF = MI.getParent()->getParent();
  const AArch64InstrInfo *TII =
      MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
  bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
  assert(Done && "Unable to resolve frame index!");
  (void)Done;
}

void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                              int SPAdj, unsigned FIOperandNum,
                                              RegScavenger *RS) const {
  assert(SPAdj == 0 && "Unexpected");

  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AArch64InstrInfo *TII =
      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  bool Tagged =
      MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
  unsigned FrameReg;

  // Special handling of dbg_value, stackmap and patchpoint instructions.
  if (MI.isDebugValue() || MI.getOpcode() == TargetOpcode::STACKMAP ||
      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
    StackOffset Offset =
        TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
                                        /*PreferFP=*/true,
                                        /*ForSimm=*/false);
    Offset += StackOffset(MI.getOperand(FIOperandNum + 1).getImm(), MVT::i8);
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
    MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getBytes());
    return;
  }

  if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
    MachineOperand &FI = MI.getOperand(FIOperandNum);
    int Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
    FI.ChangeToImmediate(Offset);
    return;
  }

  StackOffset Offset;
  if (MI.getOpcode() == AArch64::TAGPstack) {
    // TAGPstack must use the virtual frame register in its 3rd operand.
    const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
    FrameReg = MI.getOperand(3).getReg();
    Offset = {MFI.getObjectOffset(FrameIndex) +
                  AFI->getTaggedBasePointerOffset(),
              MVT::i8};
  } else if (Tagged) {
    StackOffset SPOffset = {
        MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize(), MVT::i8};
    if (MFI.hasVarSizedObjects() ||
        isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
            (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
      // Can't update to SP + offset in place. Precalculate the tagged pointer
      // in a scratch register.
      Offset = TFI->resolveFrameIndexReference(
          MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
      Register ScratchReg =
          MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
      emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
                      TII);
      BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
          .addReg(ScratchReg)
          .addReg(ScratchReg)
          .addImm(0);
      MI.getOperand(FIOperandNum)
          .ChangeToRegister(ScratchReg, false, false, true);
      return;
    }
    FrameReg = AArch64::SP;
    Offset = {MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize(),
              MVT::i8};
  } else {
    Offset = TFI->resolveFrameIndexReference(
        MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
  }

  // Modify MI as necessary to handle as much of 'Offset' as possible
  if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
    return;

  assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
         "Emergency spill slot is out of reach");

  // If we get here, the immediate doesn't fit into the instruction.  We folded
  // as much as possible above.  Handle the rest, providing a register that is
  // SP+LargeImm.
  Register ScratchReg =
      MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
  emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
  MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
}

unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                                  MachineFunction &MF) const {
  const AArch64FrameLowering *TFI = getFrameLowering(MF);

  switch (RC->getID()) {
  default:
    return 0;
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR64commonRegClassID:
    return 32 - 1                                   // XZR/SP
              - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
              - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
              - hasBasePointer(MF);  // X19
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR128RegClassID:
    return 32;

  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return 32;

  case AArch64::FPR128_loRegClassID:
    return 16;
  }
}

unsigned AArch64RegisterInfo::getLocalAddressRegister(
  const MachineFunction &MF) const {
  const auto &MFI = MF.getFrameInfo();
  if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
    return AArch64::SP;
  else if (needsStackRealignment(MF))
    return getBaseRegister();
  return getFrameRegister(MF);
}