AArch64RedundantCopyElimination.cpp 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// This pass removes unnecessary copies/moves in BBs based on a dominating
// condition.
//
// We handle three cases:
// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
//    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
//    instance, the copy instruction in the code below can be removed because
//    the CBZW jumps to %bb.2 when w0 is zero.
//
//  %bb.1:
//    cbz w0, .LBB0_2
//  .LBB0_2:
//    mov w0, wzr  ; <-- redundant
//
// 2. If the flag setting instruction defines a register other than WZR/XZR, we
//    can remove a zero copy in some cases.
//
//  %bb.0:
//    subs w0, w1, w2
//    str w0, [x1]
//    b.ne .LBB0_2
//  %bb.1:
//    mov w0, wzr  ; <-- redundant
//    str w0, [x2]
//  .LBB0_2
//
// 3. Finally, if the flag setting instruction is a comparison against a
//    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
//    in some cases.
//
//  %bb.0:
//    subs xzr, x0, #1
//    b.eq .LBB0_1
//  .LBB0_1:
//    orr x0, xzr, #0x1  ; <-- redundant
//
// This pass should be run after register allocation.
//
// FIXME: This could also be extended to check the whole dominance subtree below
// the comparison if the compile time regression is acceptable.
//
// FIXME: Add support for handling CCMP instructions.
// FIXME: If the known register value is zero, we should be able to rewrite uses
//        to use WZR/XZR directly in some cases.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-copyelim"

STATISTIC(NumCopiesRemoved, "Number of copies removed.");

namespace {
class AArch64RedundantCopyElimination : public MachineFunctionPass {
  const MachineRegisterInfo *MRI;
  const TargetRegisterInfo *TRI;

  // DomBBClobberedRegs is used when computing known values in the dominating
  // BB.
  LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;

  // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
  LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;

public:
  static char ID;
  AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
    initializeAArch64RedundantCopyEliminationPass(
        *PassRegistry::getPassRegistry());
  }

  struct RegImm {
    MCPhysReg Reg;
    int32_t Imm;
    RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
  };

  bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
                          SmallVectorImpl<RegImm> &KnownRegs,
                          MachineBasicBlock::iterator &FirstUse);
  bool optimizeBlock(MachineBasicBlock *MBB);
  bool runOnMachineFunction(MachineFunction &MF) override;
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
  StringRef getPassName() const override {
    return "AArch64 Redundant Copy Elimination";
  }
};
char AArch64RedundantCopyElimination::ID = 0;
}

INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
                "AArch64 redundant copy elimination pass", false, false)

/// It's possible to determine the value of a register based on a dominating
/// condition.  To do so, this function checks to see if the basic block \p MBB
/// is the target of a conditional branch \p CondBr with an equality comparison.
/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
/// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
/// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
/// other than WZR/XZR, we know the value of the destination register is zero in
/// \p MMB for some cases.  In addition, if the NZCV setting instruction is
/// comparing against a constant we know the other source register is equal to
/// the constant in \p MBB for some cases.  If we find any constant values, push
/// a physical register and constant value pair onto the KnownRegs vector and
/// return true.  Otherwise, return false if no known values were found.
bool AArch64RedundantCopyElimination::knownRegValInBlock(
    MachineInstr &CondBr, MachineBasicBlock *MBB,
    SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
  unsigned Opc = CondBr.getOpcode();

  // Check if the current basic block is the target block to which the
  // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
  if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
       MBB == CondBr.getOperand(1).getMBB()) ||
      ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
       MBB != CondBr.getOperand(1).getMBB())) {
    FirstUse = CondBr;
    KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
    return true;
  }

  // Otherwise, must be a conditional branch.
  if (Opc != AArch64::Bcc)
    return false;

  // Must be an equality check (i.e., == or !=).
  AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
    return false;

  MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
  if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
      (CC == AArch64CC::NE && BrTarget == MBB))
    return false;

  // Stop if we get to the beginning of PredMBB.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  assert(PredMBB == CondBr.getParent() &&
         "Conditional branch not in predecessor block!");
  if (CondBr == PredMBB->begin())
    return false;

  // Registers clobbered in PredMBB between CondBr instruction and current
  // instruction being checked in loop.
  DomBBClobberedRegs.clear();
  DomBBUsedRegs.clear();

  // Find compare instruction that sets NZCV used by CondBr.
  MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
  for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {

    bool IsCMN = false;
    switch (PredI.getOpcode()) {
    default:
      break;

    // CMN is an alias for ADDS with a dead destination register.
    case AArch64::ADDSWri:
    case AArch64::ADDSXri:
      IsCMN = true;
      LLVM_FALLTHROUGH;
    // CMP is an alias for SUBS with a dead destination register.
    case AArch64::SUBSWri:
    case AArch64::SUBSXri: {
      // Sometimes the first operand is a FrameIndex. Bail if tht happens.
      if (!PredI.getOperand(1).isReg())
        return false;
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      MCPhysReg SrcReg = PredI.getOperand(1).getReg();

      bool Res = false;
      // If we're comparing against a non-symbolic immediate and the source
      // register of the compare is not modified (including a self-clobbering
      // compare) between the compare and conditional branch we known the value
      // of the 1st source operand.
      if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
          SrcReg != DstReg) {
        // We've found the instruction that sets NZCV.
        int32_t KnownImm = PredI.getOperand(2).getImm();
        int32_t Shift = PredI.getOperand(3).getImm();
        KnownImm <<= Shift;
        if (IsCMN)
          KnownImm = -KnownImm;
        FirstUse = PredI;
        KnownRegs.push_back(RegImm(SrcReg, KnownImm));
        Res = true;
      }

      // If this instructions defines something other than WZR/XZR, we know it's
      // result is zero in some cases.
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return Res;

      // The destination register must not be modified between the NZCV setting
      // instruction and the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return Res;

      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }

    // Look for NZCV setting instructions that define something other than
    // WZR/XZR.
    case AArch64::ADCSWr:
    case AArch64::ADCSXr:
    case AArch64::ADDSWrr:
    case AArch64::ADDSWrs:
    case AArch64::ADDSWrx:
    case AArch64::ADDSXrr:
    case AArch64::ADDSXrs:
    case AArch64::ADDSXrx:
    case AArch64::ADDSXrx64:
    case AArch64::ANDSWri:
    case AArch64::ANDSWrr:
    case AArch64::ANDSWrs:
    case AArch64::ANDSXri:
    case AArch64::ANDSXrr:
    case AArch64::ANDSXrs:
    case AArch64::BICSWrr:
    case AArch64::BICSWrs:
    case AArch64::BICSXrs:
    case AArch64::BICSXrr:
    case AArch64::SBCSWr:
    case AArch64::SBCSXr:
    case AArch64::SUBSWrr:
    case AArch64::SUBSWrs:
    case AArch64::SUBSWrx:
    case AArch64::SUBSXrr:
    case AArch64::SUBSXrs:
    case AArch64::SUBSXrx:
    case AArch64::SUBSXrx64: {
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return false;

      // The destination register of the NZCV setting instruction must not be
      // modified before the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return false;

      // We've found the instruction that sets NZCV whose DstReg == 0.
      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }
    }

    // Bail if we see an instruction that defines NZCV that we don't handle.
    if (PredI.definesRegister(AArch64::NZCV))
      return false;

    // Track clobbered and used registers.
    LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
                                      TRI);
  }
  return false;
}

bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
  // Check if the current basic block has a single predecessor.
  if (MBB->pred_size() != 1)
    return false;

  // Check if the predecessor has two successors, implying the block ends in a
  // conditional branch.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  if (PredMBB->succ_size() != 2)
    return false;

  MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
  if (CondBr == PredMBB->end())
    return false;

  // Keep track of the earliest point in the PredMBB block where kill markers
  // need to be removed if a COPY is removed.
  MachineBasicBlock::iterator FirstUse;
  // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
  // or a compare (i.e., SUBS).  In the latter case, we must take care when
  // updating FirstUse when scanning for COPY instructions.  In particular, if
  // there's a COPY in between the compare and branch the COPY should not
  // update FirstUse.
  bool SeenFirstUse = false;
  // Registers that contain a known value at the start of MBB.
  SmallVector<RegImm, 4> KnownRegs;

  MachineBasicBlock::iterator Itr = std::next(CondBr);
  do {
    --Itr;

    if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
      continue;

    // Reset the clobbered and used register units.
    OptBBClobberedRegs.clear();
    OptBBUsedRegs.clear();

    // Look backward in PredMBB for COPYs from the known reg to find other
    // registers that are known to be a constant value.
    for (auto PredI = Itr;; --PredI) {
      if (FirstUse == PredI)
        SeenFirstUse = true;

      if (PredI->isCopy()) {
        MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
        MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
        for (auto &KnownReg : KnownRegs) {
          if (!OptBBClobberedRegs.available(KnownReg.Reg))
            continue;
          // If we have X = COPY Y, and Y is known to be zero, then now X is
          // known to be zero.
          if (CopySrcReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopyDstReg)) {
            KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
          // If we have X = COPY Y, and X is known to be zero, then now Y is
          // known to be zero.
          if (CopyDstReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopySrcReg)) {
            KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
        }
      }

      // Stop if we get to the beginning of PredMBB.
      if (PredI == PredMBB->begin())
        break;

      LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
                                        OptBBUsedRegs, TRI);
      // Stop if all of the known-zero regs have been clobbered.
      if (all_of(KnownRegs, [&](RegImm KnownReg) {
            return !OptBBClobberedRegs.available(KnownReg.Reg);
          }))
        break;
    }
    break;

  } while (Itr != PredMBB->begin() && Itr->isTerminator());

  // We've not found a registers with a known value, time to bail out.
  if (KnownRegs.empty())
    return false;

  bool Changed = false;
  // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
  SmallSetVector<unsigned, 4> UsedKnownRegs;
  MachineBasicBlock::iterator LastChange = MBB->begin();
  // Remove redundant copy/move instructions unless KnownReg is modified.
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr *MI = &*I;
    ++I;
    bool RemovedMI = false;
    bool IsCopy = MI->isCopy();
    bool IsMoveImm = MI->isMoveImmediate();
    if (IsCopy || IsMoveImm) {
      Register DefReg = MI->getOperand(0).getReg();
      Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
      int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
      if (!MRI->isReserved(DefReg) &&
          ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
           IsMoveImm)) {
        for (RegImm &KnownReg : KnownRegs) {
          if (KnownReg.Reg != DefReg &&
              !TRI->isSuperRegister(DefReg, KnownReg.Reg))
            continue;

          // For a copy, the known value must be a zero.
          if (IsCopy && KnownReg.Imm != 0)
            continue;

          if (IsMoveImm) {
            // For a move immediate, the known immediate must match the source
            // immediate.
            if (KnownReg.Imm != SrcImm)
              continue;

            // Don't remove a move immediate that implicitly defines the upper
            // bits when only the lower 32 bits are known.
            MCPhysReg CmpReg = KnownReg.Reg;
            if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
                  return !O.isDead() && O.isReg() && O.isDef() &&
                         O.getReg() != CmpReg;
                }))
              continue;
          }

          if (IsCopy)
            LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
          else
            LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);

          MI->eraseFromParent();
          Changed = true;
          LastChange = I;
          NumCopiesRemoved++;
          UsedKnownRegs.insert(KnownReg.Reg);
          RemovedMI = true;
          break;
        }
      }
    }

    // Skip to the next instruction if we removed the COPY/MovImm.
    if (RemovedMI)
      continue;

    // Remove any regs the MI clobbers from the KnownConstRegs set.
    for (unsigned RI = 0; RI < KnownRegs.size();)
      if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
        std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
        KnownRegs.pop_back();
        // Don't increment RI since we need to now check the swapped-in
        // KnownRegs[RI].
      } else {
        ++RI;
      }

    // Continue until the KnownRegs set is empty.
    if (KnownRegs.empty())
      break;
  }

  if (!Changed)
    return false;

  // Add newly used regs to the block's live-in list if they aren't there
  // already.
  for (MCPhysReg KnownReg : UsedKnownRegs)
    if (!MBB->isLiveIn(KnownReg))
      MBB->addLiveIn(KnownReg);

  // Clear kills in the range where changes were made.  This is conservative,
  // but should be okay since kill markers are being phased out.
  LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
                    << "\tLastChange: " << *LastChange);
  for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
    MMI.clearKillInfo();
  for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
    MMI.clearKillInfo();

  return true;
}

bool AArch64RedundantCopyElimination::runOnMachineFunction(
    MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  // Resize the clobbered and used register unit trackers.  We do this once per
  // function.
  DomBBClobberedRegs.init(*TRI);
  DomBBUsedRegs.init(*TRI);
  OptBBClobberedRegs.init(*TRI);
  OptBBUsedRegs.init(*TRI);

  bool Changed = false;
  for (MachineBasicBlock &MBB : MF)
    Changed |= optimizeBlock(&MBB);
  return Changed;
}

FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
  return new AArch64RedundantCopyElimination();
}