AArch64ISelLowering.cpp 513 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64TargetLowering class.
//
//===----------------------------------------------------------------------===//

#include "AArch64ISelLowering.h"
#include "AArch64CallingConvention.h"
#include "AArch64ExpandImm.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "aarch64-lower"

STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");

static cl::opt<bool>
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
                           cl::desc("Allow AArch64 SLI/SRI formation"),
                           cl::init(false));

// FIXME: The necessary dtprel relocations don't seem to be supported
// well in the GNU bfd and gold linkers at the moment. Therefore, by
// default, for now, fall back to GeneralDynamic code generation.
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
    "aarch64-elf-ldtls-generation", cl::Hidden,
    cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
    cl::init(false));

static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
                         cl::desc("Enable AArch64 logical imm instruction "
                                  "optimization"),
                         cl::init(true));

/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;

AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
                                             const AArch64Subtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
  // we have to make something up. Arbitrarily, choose ZeroOrOne.
  setBooleanContents(ZeroOrOneBooleanContent);
  // When comparing vectors the result sets the different elements in the
  // vector to all-one or all-zero.
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  // Set up the register classes.
  addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
  addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);

  if (Subtarget->hasFPARMv8()) {
    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
  }

  if (Subtarget->hasNEON()) {
    addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
    addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
    // Someone set us up the NEON.
    addDRTypeForNEON(MVT::v2f32);
    addDRTypeForNEON(MVT::v8i8);
    addDRTypeForNEON(MVT::v4i16);
    addDRTypeForNEON(MVT::v2i32);
    addDRTypeForNEON(MVT::v1i64);
    addDRTypeForNEON(MVT::v1f64);
    addDRTypeForNEON(MVT::v4f16);

    addQRTypeForNEON(MVT::v4f32);
    addQRTypeForNEON(MVT::v2f64);
    addQRTypeForNEON(MVT::v16i8);
    addQRTypeForNEON(MVT::v8i16);
    addQRTypeForNEON(MVT::v4i32);
    addQRTypeForNEON(MVT::v2i64);
    addQRTypeForNEON(MVT::v8f16);
  }

  if (Subtarget->hasSVE()) {
    // Add legal sve predicate types
    addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
    addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);

    // Add legal sve data types
    addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);

    addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
    addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);

    for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) {
      setOperationAction(ISD::SADDSAT, VT, Legal);
      setOperationAction(ISD::UADDSAT, VT, Legal);
      setOperationAction(ISD::SSUBSAT, VT, Legal);
      setOperationAction(ISD::USUBSAT, VT, Legal);
      setOperationAction(ISD::SMAX, VT, Legal);
      setOperationAction(ISD::UMAX, VT, Legal);
      setOperationAction(ISD::SMIN, VT, Legal);
      setOperationAction(ISD::UMIN, VT, Legal);
    }

    for (auto VT :
         { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
           MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
  }

  // Compute derived properties from the register classes
  computeRegisterProperties(Subtarget->getRegisterInfo());

  // Provide all sorts of operation actions
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
  setOperationAction(ISD::SETCC, MVT::i64, Custom);
  setOperationAction(ISD::SETCC, MVT::f16, Custom);
  setOperationAction(ISD::SETCC, MVT::f32, Custom);
  setOperationAction(ISD::SETCC, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BR_CC, MVT::f16, Custom);
  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
  setOperationAction(ISD::SELECT, MVT::i32, Custom);
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::f16, Custom);
  setOperationAction(ISD::SELECT, MVT::f32, Custom);
  setOperationAction(ISD::SELECT, MVT::f64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
  setOperationAction(ISD::JumpTable, MVT::i64, Custom);

  setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);

  setOperationAction(ISD::FREM, MVT::f32, Expand);
  setOperationAction(ISD::FREM, MVT::f64, Expand);
  setOperationAction(ISD::FREM, MVT::f80, Expand);

  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);

  // Custom lowering hooks are needed for XOR
  // to fold it into CSINC/CSINV.
  setOperationAction(ISD::XOR, MVT::i32, Custom);
  setOperationAction(ISD::XOR, MVT::i64, Custom);

  // Virtually no operation on f128 is legal, but LLVM can't expand them when
  // there's a valid register class, so we need custom operations in most cases.
  setOperationAction(ISD::FABS, MVT::f128, Expand);
  setOperationAction(ISD::FADD, MVT::f128, Custom);
  setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
  setOperationAction(ISD::FCOS, MVT::f128, Expand);
  setOperationAction(ISD::FDIV, MVT::f128, Custom);
  setOperationAction(ISD::FMA, MVT::f128, Expand);
  setOperationAction(ISD::FMUL, MVT::f128, Custom);
  setOperationAction(ISD::FNEG, MVT::f128, Expand);
  setOperationAction(ISD::FPOW, MVT::f128, Expand);
  setOperationAction(ISD::FREM, MVT::f128, Expand);
  setOperationAction(ISD::FRINT, MVT::f128, Expand);
  setOperationAction(ISD::FSIN, MVT::f128, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
  setOperationAction(ISD::FSQRT, MVT::f128, Expand);
  setOperationAction(ISD::FSUB, MVT::f128, Custom);
  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
  setOperationAction(ISD::SETCC, MVT::f128, Custom);
  setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
  setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
  setOperationAction(ISD::BR_CC, MVT::f128, Custom);
  setOperationAction(ISD::SELECT, MVT::f128, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
  setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);

  // Lowering for many of the conversions is actually specified by the non-f128
  // type. The LowerXXX function will be trivial when f128 isn't involved.
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
  setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);

  // Variable arguments.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAARG, MVT::Other, Custom);
  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);

  // Variable-sized objects.
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);

  if (Subtarget->isTargetWindows())
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  else
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);

  // Constant pool entries
  setOperationAction(ISD::ConstantPool, MVT::i64, Custom);

  // BlockAddress
  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);

  // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
  setOperationAction(ISD::ADDC, MVT::i32, Custom);
  setOperationAction(ISD::ADDE, MVT::i32, Custom);
  setOperationAction(ISD::SUBC, MVT::i32, Custom);
  setOperationAction(ISD::SUBE, MVT::i32, Custom);
  setOperationAction(ISD::ADDC, MVT::i64, Custom);
  setOperationAction(ISD::ADDE, MVT::i64, Custom);
  setOperationAction(ISD::SUBC, MVT::i64, Custom);
  setOperationAction(ISD::SUBE, MVT::i64, Custom);

  // AArch64 lacks both left-rotate and popcount instructions.
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
  setOperationAction(ISD::ROTL, MVT::i64, Expand);
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    setOperationAction(ISD::ROTL, VT, Expand);
    setOperationAction(ISD::ROTR, VT, Expand);
  }

  // AArch64 doesn't have {U|S}MUL_LOHI.
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);

  setOperationAction(ISD::CTPOP, MVT::i32, Custom);
  setOperationAction(ISD::CTPOP, MVT::i64, Custom);

  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
    setOperationAction(ISD::SDIVREM, VT, Expand);
    setOperationAction(ISD::UDIVREM, VT, Expand);
  }
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i64, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);

  // Custom lower Add/Sub/Mul with overflow.
  setOperationAction(ISD::SADDO, MVT::i32, Custom);
  setOperationAction(ISD::SADDO, MVT::i64, Custom);
  setOperationAction(ISD::UADDO, MVT::i32, Custom);
  setOperationAction(ISD::UADDO, MVT::i64, Custom);
  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
  setOperationAction(ISD::USUBO, MVT::i32, Custom);
  setOperationAction(ISD::USUBO, MVT::i64, Custom);
  setOperationAction(ISD::SMULO, MVT::i32, Custom);
  setOperationAction(ISD::SMULO, MVT::i64, Custom);
  setOperationAction(ISD::UMULO, MVT::i32, Custom);
  setOperationAction(ISD::UMULO, MVT::i64, Custom);

  setOperationAction(ISD::FSIN, MVT::f32, Expand);
  setOperationAction(ISD::FSIN, MVT::f64, Expand);
  setOperationAction(ISD::FCOS, MVT::f32, Expand);
  setOperationAction(ISD::FCOS, MVT::f64, Expand);
  setOperationAction(ISD::FPOW, MVT::f32, Expand);
  setOperationAction(ISD::FPOW, MVT::f64, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
  if (Subtarget->hasFullFP16())
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
  else
    setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);

  setOperationAction(ISD::FREM,    MVT::f16,   Promote);
  setOperationAction(ISD::FREM,    MVT::v4f16, Expand);
  setOperationAction(ISD::FREM,    MVT::v8f16, Expand);
  setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
  setOperationAction(ISD::FPOW,    MVT::v4f16, Expand);
  setOperationAction(ISD::FPOW,    MVT::v8f16, Expand);
  setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
  setOperationAction(ISD::FPOWI,   MVT::v4f16, Expand);
  setOperationAction(ISD::FPOWI,   MVT::v8f16, Expand);
  setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
  setOperationAction(ISD::FCOS,    MVT::v4f16, Expand);
  setOperationAction(ISD::FCOS,    MVT::v8f16, Expand);
  setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
  setOperationAction(ISD::FSIN,    MVT::v4f16, Expand);
  setOperationAction(ISD::FSIN,    MVT::v8f16, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
  setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
  setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
  setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
  setOperationAction(ISD::FEXP,    MVT::v4f16, Expand);
  setOperationAction(ISD::FEXP,    MVT::v8f16, Expand);
  setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
  setOperationAction(ISD::FEXP2,   MVT::v4f16, Expand);
  setOperationAction(ISD::FEXP2,   MVT::v8f16, Expand);
  setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
  setOperationAction(ISD::FLOG,    MVT::v4f16, Expand);
  setOperationAction(ISD::FLOG,    MVT::v8f16, Expand);
  setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
  setOperationAction(ISD::FLOG2,   MVT::v4f16, Expand);
  setOperationAction(ISD::FLOG2,   MVT::v8f16, Expand);
  setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
  setOperationAction(ISD::FLOG10,  MVT::v4f16, Expand);
  setOperationAction(ISD::FLOG10,  MVT::v8f16, Expand);

  if (!Subtarget->hasFullFP16()) {
    setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
    setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
    setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
    setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
    setOperationAction(ISD::FADD,        MVT::f16,  Promote);
    setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
    setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
    setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
    setOperationAction(ISD::FMA,         MVT::f16,  Promote);
    setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
    setOperationAction(ISD::FABS,        MVT::f16,  Promote);
    setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
    setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
    setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
    setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
    setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
    setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
    setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
    setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
    setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
    setOperationAction(ISD::FMINIMUM,    MVT::f16,  Promote);
    setOperationAction(ISD::FMAXIMUM,    MVT::f16,  Promote);

    // promote v4f16 to v4f32 when that is known to be safe.
    setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
    setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
    setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
    setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
    AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
    AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);

    setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
    setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
    setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
    setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
    setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
    setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
    setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
    setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
    setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
    setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
    setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
    setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
    setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
    setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
    setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);

    setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
    setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
    setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
    setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
    setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
    setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
    setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
    setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
    setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
    setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
    setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
    setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
    setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
    setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
    setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
    setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
    setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
    setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
    setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
    setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
  }

  // AArch64 has implementations of a lot of rounding-like FP operations.
  for (MVT Ty : {MVT::f32, MVT::f64}) {
    setOperationAction(ISD::FFLOOR, Ty, Legal);
    setOperationAction(ISD::FNEARBYINT, Ty, Legal);
    setOperationAction(ISD::FCEIL, Ty, Legal);
    setOperationAction(ISD::FRINT, Ty, Legal);
    setOperationAction(ISD::FTRUNC, Ty, Legal);
    setOperationAction(ISD::FROUND, Ty, Legal);
    setOperationAction(ISD::FMINNUM, Ty, Legal);
    setOperationAction(ISD::FMAXNUM, Ty, Legal);
    setOperationAction(ISD::FMINIMUM, Ty, Legal);
    setOperationAction(ISD::FMAXIMUM, Ty, Legal);
    setOperationAction(ISD::LROUND, Ty, Legal);
    setOperationAction(ISD::LLROUND, Ty, Legal);
    setOperationAction(ISD::LRINT, Ty, Legal);
    setOperationAction(ISD::LLRINT, Ty, Legal);
  }

  if (Subtarget->hasFullFP16()) {
    setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
    setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
    setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
    setOperationAction(ISD::FRINT,   MVT::f16, Legal);
    setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
    setOperationAction(ISD::FROUND,  MVT::f16, Legal);
    setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
    setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
    setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
  }

  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);

  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);

  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);

  // 128-bit loads and stores can be done without expanding
  setOperationAction(ISD::LOAD, MVT::i128, Custom);
  setOperationAction(ISD::STORE, MVT::i128, Custom);

  // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
  // This requires the Performance Monitors extension.
  if (Subtarget->hasPerfMon())
    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);

  if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
      getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
    // Issue __sincos_stret if available.
    setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
  } else {
    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
  }

  if (Subtarget->getTargetTriple().isOSMSVCRT()) {
    // MSVCRT doesn't have powi; fall back to pow
    setLibcallName(RTLIB::POWI_F32, nullptr);
    setLibcallName(RTLIB::POWI_F64, nullptr);
  }

  // Make floating-point constants legal for the large code model, so they don't
  // become loads from the constant pool.
  if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
  }

  // AArch64 does not have floating-point extending loads, i1 sign-extending
  // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
  for (MVT VT : MVT::fp_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
  }
  for (MVT VT : MVT::integer_valuetypes())
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);

  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
  setTruncStoreAction(MVT::f128, MVT::f80, Expand);
  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
  setTruncStoreAction(MVT::f128, MVT::f16, Expand);

  setOperationAction(ISD::BITCAST, MVT::i16, Custom);
  setOperationAction(ISD::BITCAST, MVT::f16, Custom);

  // Indexed loads and stores are supported.
  for (unsigned im = (unsigned)ISD::PRE_INC;
       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    setIndexedLoadAction(im, MVT::i8, Legal);
    setIndexedLoadAction(im, MVT::i16, Legal);
    setIndexedLoadAction(im, MVT::i32, Legal);
    setIndexedLoadAction(im, MVT::i64, Legal);
    setIndexedLoadAction(im, MVT::f64, Legal);
    setIndexedLoadAction(im, MVT::f32, Legal);
    setIndexedLoadAction(im, MVT::f16, Legal);
    setIndexedStoreAction(im, MVT::i8, Legal);
    setIndexedStoreAction(im, MVT::i16, Legal);
    setIndexedStoreAction(im, MVT::i32, Legal);
    setIndexedStoreAction(im, MVT::i64, Legal);
    setIndexedStoreAction(im, MVT::f64, Legal);
    setIndexedStoreAction(im, MVT::f32, Legal);
    setIndexedStoreAction(im, MVT::f16, Legal);
  }

  // Trap.
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
  if (Subtarget->isTargetWindows())
    setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);

  // We combine OR nodes for bitfield operations.
  setTargetDAGCombine(ISD::OR);
  // Try to create BICs for vector ANDs.
  setTargetDAGCombine(ISD::AND);

  // Vector add and sub nodes may conceal a high-half opportunity.
  // Also, try to fold ADD into CSINC/CSINV..
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::SUB);
  setTargetDAGCombine(ISD::SRL);
  setTargetDAGCombine(ISD::XOR);
  setTargetDAGCombine(ISD::SINT_TO_FP);
  setTargetDAGCombine(ISD::UINT_TO_FP);

  setTargetDAGCombine(ISD::FP_TO_SINT);
  setTargetDAGCombine(ISD::FP_TO_UINT);
  setTargetDAGCombine(ISD::FDIV);

  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);

  setTargetDAGCombine(ISD::ANY_EXTEND);
  setTargetDAGCombine(ISD::ZERO_EXTEND);
  setTargetDAGCombine(ISD::SIGN_EXTEND);
  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
  setTargetDAGCombine(ISD::CONCAT_VECTORS);
  setTargetDAGCombine(ISD::STORE);
  if (Subtarget->supportsAddressTopByteIgnored())
    setTargetDAGCombine(ISD::LOAD);

  setTargetDAGCombine(ISD::MUL);

  setTargetDAGCombine(ISD::SELECT);
  setTargetDAGCombine(ISD::VSELECT);

  setTargetDAGCombine(ISD::INTRINSIC_VOID);
  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);

  setTargetDAGCombine(ISD::GlobalAddress);

  // In case of strict alignment, avoid an excessive number of byte wide stores.
  MaxStoresPerMemsetOptSize = 8;
  MaxStoresPerMemset = Subtarget->requiresStrictAlign()
                       ? MaxStoresPerMemsetOptSize : 32;

  MaxGluedStoresPerMemcpy = 4;
  MaxStoresPerMemcpyOptSize = 4;
  MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
                       ? MaxStoresPerMemcpyOptSize : 16;

  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;

  MaxLoadsPerMemcmpOptSize = 4;
  MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
                      ? MaxLoadsPerMemcmpOptSize : 8;

  setStackPointerRegisterToSaveRestore(AArch64::SP);

  setSchedulingPreference(Sched::Hybrid);

  EnableExtLdPromotion = true;

  // Set required alignment.
  setMinFunctionAlignment(Align(4));
  // Set preferred alignments.
  setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
  setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));

  // Only change the limit for entries in a jump table if specified by
  // the sub target, but not at the command line.
  unsigned MaxJT = STI.getMaximumJumpTableSize();
  if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
    setMaximumJumpTableSize(MaxJT);

  setHasExtractBitsInsn(true);

  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  if (Subtarget->hasNEON()) {
    // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
    // silliness like this:
    setOperationAction(ISD::FABS, MVT::v1f64, Expand);
    setOperationAction(ISD::FADD, MVT::v1f64, Expand);
    setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
    setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
    setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
    setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
    setOperationAction(ISD::FMA, MVT::v1f64, Expand);
    setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
    setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
    setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
    setOperationAction(ISD::FREM, MVT::v1f64, Expand);
    setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
    setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
    setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
    setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
    setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
    setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
    setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
    setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
    setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
    setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
    setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
    setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);

    setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
    setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
    setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
    setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
    setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);

    setOperationAction(ISD::MUL, MVT::v1i64, Expand);

    // AArch64 doesn't have a direct vector ->f32 conversion instructions for
    // elements smaller than i32, so promote the input to i32 first.
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
    // i8 vector elements also need promotion to i32 for v8i8
    setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
    setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
    // Similarly, there is no direct i32 -> f64 vector conversion instruction.
    setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
    setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
    // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
    // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);

    if (Subtarget->hasFullFP16()) {
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
    } else {
      // when AArch64 doesn't have fullfp16 support, promote the input
      // to i32 first.
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
      setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
      setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
    }

    setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);

    // AArch64 doesn't have MUL.2d:
    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
    // Custom handling for some quad-vector types to detect MULL.
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);

    for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
                    MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
      // Vector reductions
      setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);

      // Saturates
      setOperationAction(ISD::SADDSAT, VT, Legal);
      setOperationAction(ISD::UADDSAT, VT, Legal);
      setOperationAction(ISD::SSUBSAT, VT, Legal);
      setOperationAction(ISD::USUBSAT, VT, Legal);
    }
    for (MVT VT : { MVT::v4f16, MVT::v2f32,
                    MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
      setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
      setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
    }

    setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
    setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
    // Likewise, narrowing and extending vector loads/stores aren't handled
    // directly.
    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);

      if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
        setOperationAction(ISD::MULHS, VT, Legal);
        setOperationAction(ISD::MULHU, VT, Legal);
      } else {
        setOperationAction(ISD::MULHS, VT, Expand);
        setOperationAction(ISD::MULHU, VT, Expand);
      }
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);

      setOperationAction(ISD::BSWAP, VT, Expand);
      setOperationAction(ISD::CTTZ, VT, Expand);

      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
        setTruncStoreAction(VT, InnerVT, Expand);
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
      }
    }

    // AArch64 has implementations of a lot of rounding-like FP operations.
    for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
      setOperationAction(ISD::FFLOOR, Ty, Legal);
      setOperationAction(ISD::FNEARBYINT, Ty, Legal);
      setOperationAction(ISD::FCEIL, Ty, Legal);
      setOperationAction(ISD::FRINT, Ty, Legal);
      setOperationAction(ISD::FTRUNC, Ty, Legal);
      setOperationAction(ISD::FROUND, Ty, Legal);
    }

    if (Subtarget->hasFullFP16()) {
      for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
        setOperationAction(ISD::FFLOOR, Ty, Legal);
        setOperationAction(ISD::FNEARBYINT, Ty, Legal);
        setOperationAction(ISD::FCEIL, Ty, Legal);
        setOperationAction(ISD::FRINT, Ty, Legal);
        setOperationAction(ISD::FTRUNC, Ty, Legal);
        setOperationAction(ISD::FROUND, Ty, Legal);
      }
    }

    setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
  }

  if (Subtarget->hasSVE()) {
    // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a
    // splat of 0 or undef) once vector selects supported in SVE codegen. See
    // D68877 for more details.
    for (MVT VT : MVT::integer_scalable_vector_valuetypes()) {
      if (isTypeLegal(VT))
        setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
    }
    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
    setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
  }

  PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
}

void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
  assert(VT.isVector() && "VT should be a vector type");

  if (VT.isFloatingPoint()) {
    MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
    setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
    setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
  }

  // Mark vector float intrinsics as expand.
  if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
    setOperationAction(ISD::FSIN, VT, Expand);
    setOperationAction(ISD::FCOS, VT, Expand);
    setOperationAction(ISD::FPOW, VT, Expand);
    setOperationAction(ISD::FLOG, VT, Expand);
    setOperationAction(ISD::FLOG2, VT, Expand);
    setOperationAction(ISD::FLOG10, VT, Expand);
    setOperationAction(ISD::FEXP, VT, Expand);
    setOperationAction(ISD::FEXP2, VT, Expand);

    // But we do support custom-lowering for FCOPYSIGN.
    setOperationAction(ISD::FCOPYSIGN, VT, Custom);
  }

  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
  setOperationAction(ISD::SRA, VT, Custom);
  setOperationAction(ISD::SRL, VT, Custom);
  setOperationAction(ISD::SHL, VT, Custom);
  setOperationAction(ISD::OR, VT, Custom);
  setOperationAction(ISD::SETCC, VT, Custom);
  setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);

  setOperationAction(ISD::SELECT, VT, Expand);
  setOperationAction(ISD::SELECT_CC, VT, Expand);
  setOperationAction(ISD::VSELECT, VT, Expand);
  for (MVT InnerVT : MVT::all_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);

  // CNT supports only B element sizes, then use UADDLP to widen.
  if (VT != MVT::v8i8 && VT != MVT::v16i8)
    setOperationAction(ISD::CTPOP, VT, Custom);

  setOperationAction(ISD::UDIV, VT, Expand);
  setOperationAction(ISD::SDIV, VT, Expand);
  setOperationAction(ISD::UREM, VT, Expand);
  setOperationAction(ISD::SREM, VT, Expand);
  setOperationAction(ISD::FREM, VT, Expand);

  setOperationAction(ISD::FP_TO_SINT, VT, Custom);
  setOperationAction(ISD::FP_TO_UINT, VT, Custom);

  if (!VT.isFloatingPoint())
    setOperationAction(ISD::ABS, VT, Legal);

  // [SU][MIN|MAX] are available for all NEON types apart from i64.
  if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
    for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
      setOperationAction(Opcode, VT, Legal);

  // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
  if (VT.isFloatingPoint() &&
      (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
    for (unsigned Opcode :
         {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
      setOperationAction(Opcode, VT, Legal);

  if (Subtarget->isLittleEndian()) {
    for (unsigned im = (unsigned)ISD::PRE_INC;
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
      setIndexedLoadAction(im, VT, Legal);
      setIndexedStoreAction(im, VT, Legal);
    }
  }
}

void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &AArch64::FPR64RegClass);
  addTypeForNEON(VT, MVT::v2i32);
}

void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
  addRegisterClass(VT, &AArch64::FPR128RegClass);
  addTypeForNEON(VT, MVT::v4i32);
}

EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                              EVT VT) const {
  if (!VT.isVector())
    return MVT::i32;
  return VT.changeVectorElementTypeToInteger();
}

static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
                               const APInt &Demanded,
                               TargetLowering::TargetLoweringOpt &TLO,
                               unsigned NewOpc) {
  uint64_t OldImm = Imm, NewImm, Enc;
  uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;

  // Return if the immediate is already all zeros, all ones, a bimm32 or a
  // bimm64.
  if (Imm == 0 || Imm == Mask ||
      AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
    return false;

  unsigned EltSize = Size;
  uint64_t DemandedBits = Demanded.getZExtValue();

  // Clear bits that are not demanded.
  Imm &= DemandedBits;

  while (true) {
    // The goal here is to set the non-demanded bits in a way that minimizes
    // the number of switching between 0 and 1. In order to achieve this goal,
    // we set the non-demanded bits to the value of the preceding demanded bits.
    // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
    // non-demanded bit), we copy bit0 (1) to the least significant 'x',
    // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
    // The final result is 0b11000011.
    uint64_t NonDemandedBits = ~DemandedBits;
    uint64_t InvertedImm = ~Imm & DemandedBits;
    uint64_t RotatedImm =
        ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
        NonDemandedBits;
    uint64_t Sum = RotatedImm + NonDemandedBits;
    bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
    uint64_t Ones = (Sum + Carry) & NonDemandedBits;
    NewImm = (Imm | Ones) & Mask;

    // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
    // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
    // we halve the element size and continue the search.
    if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
      break;

    // We cannot shrink the element size any further if it is 2-bits.
    if (EltSize == 2)
      return false;

    EltSize /= 2;
    Mask >>= EltSize;
    uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;

    // Return if there is mismatch in any of the demanded bits of Imm and Hi.
    if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
      return false;

    // Merge the upper and lower halves of Imm and DemandedBits.
    Imm |= Hi;
    DemandedBits |= DemandedBitsHi;
  }

  ++NumOptimizedImms;

  // Replicate the element across the register width.
  while (EltSize < Size) {
    NewImm |= NewImm << EltSize;
    EltSize *= 2;
  }

  (void)OldImm;
  assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
         "demanded bits should never be altered");
  assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");

  // Create the new constant immediate node.
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue New;

  // If the new constant immediate is all-zeros or all-ones, let the target
  // independent DAG combine optimize this node.
  if (NewImm == 0 || NewImm == OrigMask) {
    New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
                          TLO.DAG.getConstant(NewImm, DL, VT));
  // Otherwise, create a machine node so that target independent DAG combine
  // doesn't undo this optimization.
  } else {
    Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
    SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
    New = SDValue(
        TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
  }

  return TLO.CombineTo(Op, New);
}

bool AArch64TargetLowering::targetShrinkDemandedConstant(
    SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
  // Delay this optimization to as late as possible.
  if (!TLO.LegalOps)
    return false;

  if (!EnableOptimizeLogicalImm)
    return false;

  EVT VT = Op.getValueType();
  if (VT.isVector())
    return false;

  unsigned Size = VT.getSizeInBits();
  assert((Size == 32 || Size == 64) &&
         "i32 or i64 is expected after legalization.");

  // Exit early if we demand all bits.
  if (Demanded.countPopulation() == Size)
    return false;

  unsigned NewOpc;
  switch (Op.getOpcode()) {
  default:
    return false;
  case ISD::AND:
    NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
    break;
  case ISD::OR:
    NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
    break;
  case ISD::XOR:
    NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
    break;
  }
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!C)
    return false;
  uint64_t Imm = C->getZExtValue();
  return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
}

/// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them Known.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
    const SDValue Op, KnownBits &Known,
    const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
  switch (Op.getOpcode()) {
  default:
    break;
  case AArch64ISD::CSEL: {
    KnownBits Known2;
    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
    Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
    Known.Zero &= Known2.Zero;
    Known.One &= Known2.One;
    break;
  }
  case AArch64ISD::LOADgot:
  case AArch64ISD::ADDlow: {
    if (!Subtarget->isTargetILP32())
      break;
    // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
    Known.Zero = APInt::getHighBitsSet(64, 32);
    break;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
    switch (IntID) {
    default: return;
    case Intrinsic::aarch64_ldaxr:
    case Intrinsic::aarch64_ldxr: {
      unsigned BitWidth = Known.getBitWidth();
      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
      unsigned MemBits = VT.getScalarSizeInBits();
      Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
      return;
    }
    }
    break;
  }
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_VOID: {
    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    switch (IntNo) {
    default:
      break;
    case Intrinsic::aarch64_neon_umaxv:
    case Intrinsic::aarch64_neon_uminv: {
      // Figure out the datatype of the vector operand. The UMINV instruction
      // will zero extend the result, so we can mark as known zero all the
      // bits larger than the element datatype. 32-bit or larget doesn't need
      // this as those are legal types and will be handled by isel directly.
      MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
      unsigned BitWidth = Known.getBitWidth();
      if (VT == MVT::v8i8 || VT == MVT::v16i8) {
        assert(BitWidth >= 8 && "Unexpected width!");
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
        Known.Zero |= Mask;
      } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
        assert(BitWidth >= 16 && "Unexpected width!");
        APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
        Known.Zero |= Mask;
      }
      break;
    } break;
    }
  }
  }
}

MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
                                                  EVT) const {
  return MVT::i64;
}

bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
    EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
    bool *Fast) const {
  if (Subtarget->requiresStrictAlign())
    return false;

  if (Fast) {
    // Some CPUs are fine with unaligned stores except for 128-bit ones.
    *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
            // See comments in performSTORECombine() for more details about
            // these conditions.

            // Code that uses clang vector extensions can mark that it
            // wants unaligned accesses to be treated as fast by
            // underspecifying alignment to be 1 or 2.
            Align <= 2 ||

            // Disregard v2i64. Memcpy lowering produces those and splitting
            // them regresses performance on micro-benchmarks and olden/bh.
            VT == MVT::v2i64;
  }
  return true;
}

// Same as above but handling LLTs instead.
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
    LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
    bool *Fast) const {
  if (Subtarget->requiresStrictAlign())
    return false;

  if (Fast) {
    // Some CPUs are fine with unaligned stores except for 128-bit ones.
    *Fast = !Subtarget->isMisaligned128StoreSlow() ||
            Ty.getSizeInBytes() != 16 ||
            // See comments in performSTORECombine() for more details about
            // these conditions.

            // Code that uses clang vector extensions can mark that it
            // wants unaligned accesses to be treated as fast by
            // underspecifying alignment to be 1 or 2.
            Align <= 2 ||

            // Disregard v2i64. Memcpy lowering produces those and splitting
            // them regresses performance on micro-benchmarks and olden/bh.
            Ty == LLT::vector(2, 64);
  }
  return true;
}

FastISel *
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
                                      const TargetLibraryInfo *libInfo) const {
  return AArch64::createFastISel(funcInfo, libInfo);
}

const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((AArch64ISD::NodeType)Opcode) {
  case AArch64ISD::FIRST_NUMBER:      break;
  case AArch64ISD::CALL:              return "AArch64ISD::CALL";
  case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
  case AArch64ISD::ADR:               return "AArch64ISD::ADR";
  case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
  case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
  case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
  case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
  case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
  case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
  case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
  case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
  case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
  case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
  case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
  case AArch64ISD::ADC:               return "AArch64ISD::ADC";
  case AArch64ISD::SBC:               return "AArch64ISD::SBC";
  case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
  case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
  case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
  case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
  case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
  case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
  case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
  case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
  case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
  case AArch64ISD::STRICT_FCMP:       return "AArch64ISD::STRICT_FCMP";
  case AArch64ISD::STRICT_FCMPE:      return "AArch64ISD::STRICT_FCMPE";
  case AArch64ISD::DUP:               return "AArch64ISD::DUP";
  case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
  case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
  case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
  case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
  case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
  case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
  case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
  case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
  case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
  case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
  case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
  case AArch64ISD::BICi:              return "AArch64ISD::BICi";
  case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
  case AArch64ISD::BSL:               return "AArch64ISD::BSL";
  case AArch64ISD::NEG:               return "AArch64ISD::NEG";
  case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
  case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
  case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
  case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
  case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
  case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
  case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
  case AArch64ISD::REV16:             return "AArch64ISD::REV16";
  case AArch64ISD::REV32:             return "AArch64ISD::REV32";
  case AArch64ISD::REV64:             return "AArch64ISD::REV64";
  case AArch64ISD::EXT:               return "AArch64ISD::EXT";
  case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
  case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
  case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
  case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
  case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
  case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
  case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
  case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
  case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
  case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
  case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
  case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
  case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
  case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
  case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
  case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
  case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
  case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
  case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
  case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
  case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
  case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
  case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
  case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
  case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
  case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
  case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
  case AArch64ISD::SMAXV_PRED:        return "AArch64ISD::SMAXV_PRED";
  case AArch64ISD::UMAXV_PRED:        return "AArch64ISD::UMAXV_PRED";
  case AArch64ISD::SMINV_PRED:        return "AArch64ISD::SMINV_PRED";
  case AArch64ISD::UMINV_PRED:        return "AArch64ISD::UMINV_PRED";
  case AArch64ISD::ORV_PRED:          return "AArch64ISD::ORV_PRED";
  case AArch64ISD::EORV_PRED:         return "AArch64ISD::EORV_PRED";
  case AArch64ISD::ANDV_PRED:         return "AArch64ISD::ANDV_PRED";
  case AArch64ISD::CLASTA_N:          return "AArch64ISD::CLASTA_N";
  case AArch64ISD::CLASTB_N:          return "AArch64ISD::CLASTB_N";
  case AArch64ISD::LASTA:             return "AArch64ISD::LASTA";
  case AArch64ISD::LASTB:             return "AArch64ISD::LASTB";
  case AArch64ISD::REV:               return "AArch64ISD::REV";
  case AArch64ISD::TBL:               return "AArch64ISD::TBL";
  case AArch64ISD::NOT:               return "AArch64ISD::NOT";
  case AArch64ISD::BIT:               return "AArch64ISD::BIT";
  case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
  case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
  case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
  case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
  case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
  case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
  case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
  case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
  case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
  case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
  case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
  case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
  case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
  case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
  case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
  case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
  case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
  case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
  case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
  case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
  case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
  case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
  case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
  case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
  case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
  case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
  case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
  case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
  case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
  case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
  case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
  case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
  case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
  case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
  case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
  case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
  case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
  case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
  case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
  case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
  case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
  case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
  case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
  case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
  case AArch64ISD::STG:               return "AArch64ISD::STG";
  case AArch64ISD::STZG:              return "AArch64ISD::STZG";
  case AArch64ISD::ST2G:              return "AArch64ISD::ST2G";
  case AArch64ISD::STZ2G:             return "AArch64ISD::STZ2G";
  case AArch64ISD::SUNPKHI:           return "AArch64ISD::SUNPKHI";
  case AArch64ISD::SUNPKLO:           return "AArch64ISD::SUNPKLO";
  case AArch64ISD::UUNPKHI:           return "AArch64ISD::UUNPKHI";
  case AArch64ISD::UUNPKLO:           return "AArch64ISD::UUNPKLO";
  case AArch64ISD::INSR:              return "AArch64ISD::INSR";
  case AArch64ISD::PTEST:             return "AArch64ISD::PTEST";
  case AArch64ISD::PTRUE:             return "AArch64ISD::PTRUE";
  case AArch64ISD::GLD1:              return "AArch64ISD::GLD1";
  case AArch64ISD::GLD1_SCALED:       return "AArch64ISD::GLD1_SCALED";
  case AArch64ISD::GLD1_SXTW:         return "AArch64ISD::GLD1_SXTW";
  case AArch64ISD::GLD1_UXTW:         return "AArch64ISD::GLD1_UXTW";
  case AArch64ISD::GLD1_SXTW_SCALED:  return "AArch64ISD::GLD1_SXTW_SCALED";
  case AArch64ISD::GLD1_UXTW_SCALED:  return "AArch64ISD::GLD1_UXTW_SCALED";
  case AArch64ISD::GLD1_IMM:          return "AArch64ISD::GLD1_IMM";
  case AArch64ISD::GLD1S:             return "AArch64ISD::GLD1S";
  case AArch64ISD::GLD1S_SCALED:      return "AArch64ISD::GLD1S_SCALED";
  case AArch64ISD::GLD1S_SXTW:        return "AArch64ISD::GLD1S_SXTW";
  case AArch64ISD::GLD1S_UXTW:        return "AArch64ISD::GLD1S_UXTW";
  case AArch64ISD::GLD1S_SXTW_SCALED: return "AArch64ISD::GLD1S_SXTW_SCALED";
  case AArch64ISD::GLD1S_UXTW_SCALED: return "AArch64ISD::GLD1S_UXTW_SCALED";
  case AArch64ISD::GLD1S_IMM:         return "AArch64ISD::GLD1S_IMM";
  case AArch64ISD::SST1:              return "AArch64ISD::SST1";
  case AArch64ISD::SST1_SCALED:       return "AArch64ISD::SST1_SCALED";
  case AArch64ISD::SST1_SXTW:         return "AArch64ISD::SST1_SXTW";
  case AArch64ISD::SST1_UXTW:         return "AArch64ISD::SST1_UXTW";
  case AArch64ISD::SST1_SXTW_SCALED:  return "AArch64ISD::SST1_SXTW_SCALED";
  case AArch64ISD::SST1_UXTW_SCALED:  return "AArch64ISD::SST1_UXTW_SCALED";
  case AArch64ISD::SST1_IMM:          return "AArch64ISD::SST1_IMM";
  case AArch64ISD::LDP:               return "AArch64ISD::LDP";
  case AArch64ISD::STP:               return "AArch64ISD::STP";
  }
  return nullptr;
}

MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
                                    MachineBasicBlock *MBB) const {
  // We materialise the F128CSEL pseudo-instruction as some control flow and a
  // phi node:

  // OrigBB:
  //     [... previous instrs leading to comparison ...]
  //     b.ne TrueBB
  //     b EndBB
  // TrueBB:
  //     ; Fallthrough
  // EndBB:
  //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]

  MachineFunction *MF = MBB->getParent();
  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  DebugLoc DL = MI.getDebugLoc();
  MachineFunction::iterator It = ++MBB->getIterator();

  Register DestReg = MI.getOperand(0).getReg();
  Register IfTrueReg = MI.getOperand(1).getReg();
  Register IfFalseReg = MI.getOperand(2).getReg();
  unsigned CondCode = MI.getOperand(3).getImm();
  bool NZCVKilled = MI.getOperand(4).isKill();

  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, TrueBB);
  MF->insert(It, EndBB);

  // Transfer rest of current basic-block to EndBB
  EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
                MBB->end());
  EndBB->transferSuccessorsAndUpdatePHIs(MBB);

  BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
  BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
  MBB->addSuccessor(TrueBB);
  MBB->addSuccessor(EndBB);

  // TrueBB falls through to the end.
  TrueBB->addSuccessor(EndBB);

  if (!NZCVKilled) {
    TrueBB->addLiveIn(AArch64::NZCV);
    EndBB->addLiveIn(AArch64::NZCV);
  }

  BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
      .addReg(IfTrueReg)
      .addMBB(TrueBB)
      .addReg(IfFalseReg)
      .addMBB(MBB);

  MI.eraseFromParent();
  return EndBB;
}

MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
       MachineInstr &MI, MachineBasicBlock *BB) const {
  assert(!isAsynchronousEHPersonality(classifyEHPersonality(
             BB->getParent()->getFunction().getPersonalityFn())) &&
         "SEH does not use catchret!");
  return BB;
}

MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
     MachineInstr &MI, MachineBasicBlock *BB) const {
  MI.eraseFromParent();
  return BB;
}

MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
    MachineInstr &MI, MachineBasicBlock *BB) const {
  switch (MI.getOpcode()) {
  default:
#ifndef NDEBUG
    MI.dump();
#endif
    llvm_unreachable("Unexpected instruction for custom inserter!");

  case AArch64::F128CSEL:
    return EmitF128CSEL(MI, BB);

  case TargetOpcode::STACKMAP:
  case TargetOpcode::PATCHPOINT:
    return emitPatchPoint(MI, BB);

  case AArch64::CATCHRET:
    return EmitLoweredCatchRet(MI, BB);
  case AArch64::CATCHPAD:
    return EmitLoweredCatchPad(MI, BB);
  }
}

//===----------------------------------------------------------------------===//
// AArch64 Lowering private implementation.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//

/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
/// CC
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Unknown condition code!");
  case ISD::SETNE:
    return AArch64CC::NE;
  case ISD::SETEQ:
    return AArch64CC::EQ;
  case ISD::SETGT:
    return AArch64CC::GT;
  case ISD::SETGE:
    return AArch64CC::GE;
  case ISD::SETLT:
    return AArch64CC::LT;
  case ISD::SETLE:
    return AArch64CC::LE;
  case ISD::SETUGT:
    return AArch64CC::HI;
  case ISD::SETUGE:
    return AArch64CC::HS;
  case ISD::SETULT:
    return AArch64CC::LO;
  case ISD::SETULE:
    return AArch64CC::LS;
  }
}

/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
static void changeFPCCToAArch64CC(ISD::CondCode CC,
                                  AArch64CC::CondCode &CondCode,
                                  AArch64CC::CondCode &CondCode2) {
  CondCode2 = AArch64CC::AL;
  switch (CC) {
  default:
    llvm_unreachable("Unknown FP condition!");
  case ISD::SETEQ:
  case ISD::SETOEQ:
    CondCode = AArch64CC::EQ;
    break;
  case ISD::SETGT:
  case ISD::SETOGT:
    CondCode = AArch64CC::GT;
    break;
  case ISD::SETGE:
  case ISD::SETOGE:
    CondCode = AArch64CC::GE;
    break;
  case ISD::SETOLT:
    CondCode = AArch64CC::MI;
    break;
  case ISD::SETOLE:
    CondCode = AArch64CC::LS;
    break;
  case ISD::SETONE:
    CondCode = AArch64CC::MI;
    CondCode2 = AArch64CC::GT;
    break;
  case ISD::SETO:
    CondCode = AArch64CC::VC;
    break;
  case ISD::SETUO:
    CondCode = AArch64CC::VS;
    break;
  case ISD::SETUEQ:
    CondCode = AArch64CC::EQ;
    CondCode2 = AArch64CC::VS;
    break;
  case ISD::SETUGT:
    CondCode = AArch64CC::HI;
    break;
  case ISD::SETUGE:
    CondCode = AArch64CC::PL;
    break;
  case ISD::SETLT:
  case ISD::SETULT:
    CondCode = AArch64CC::LT;
    break;
  case ISD::SETLE:
  case ISD::SETULE:
    CondCode = AArch64CC::LE;
    break;
  case ISD::SETNE:
  case ISD::SETUNE:
    CondCode = AArch64CC::NE;
    break;
  }
}

/// Convert a DAG fp condition code to an AArch64 CC.
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
/// should be AND'ed instead of OR'ed.
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
                                     AArch64CC::CondCode &CondCode,
                                     AArch64CC::CondCode &CondCode2) {
  CondCode2 = AArch64CC::AL;
  switch (CC) {
  default:
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
    assert(CondCode2 == AArch64CC::AL);
    break;
  case ISD::SETONE:
    // (a one b)
    // == ((a olt b) || (a ogt b))
    // == ((a ord b) && (a une b))
    CondCode = AArch64CC::VC;
    CondCode2 = AArch64CC::NE;
    break;
  case ISD::SETUEQ:
    // (a ueq b)
    // == ((a uno b) || (a oeq b))
    // == ((a ule b) && (a uge b))
    CondCode = AArch64CC::PL;
    CondCode2 = AArch64CC::LE;
    break;
  }
}

/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
/// CC usable with the vector instructions. Fewer operations are available
/// without a real NZCV register, so we have to use less efficient combinations
/// to get the same effect.
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
                                        AArch64CC::CondCode &CondCode,
                                        AArch64CC::CondCode &CondCode2,
                                        bool &Invert) {
  Invert = false;
  switch (CC) {
  default:
    // Mostly the scalar mappings work fine.
    changeFPCCToAArch64CC(CC, CondCode, CondCode2);
    break;
  case ISD::SETUO:
    Invert = true;
    LLVM_FALLTHROUGH;
  case ISD::SETO:
    CondCode = AArch64CC::MI;
    CondCode2 = AArch64CC::GE;
    break;
  case ISD::SETUEQ:
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE:
    // All of the compare-mask comparisons are ordered, but we can switch
    // between the two by a double inversion. E.g. ULE == !OGT.
    Invert = true;
    changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
                          CondCode, CondCode2);
    break;
  }
}

static bool isLegalArithImmed(uint64_t C) {
  // Matches AArch64DAGToDAGISel::SelectArithImmed().
  bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
  LLVM_DEBUG(dbgs() << "Is imm " << C
                    << " legal: " << (IsLegal ? "yes\n" : "no\n"));
  return IsLegal;
}

// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
// can be set differently by this operation. It comes down to whether
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
// everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
//
// So, finally, the only LLVM-native comparisons that don't mention C and V
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
// the absence of information about op2.
static bool isCMN(SDValue Op, ISD::CondCode CC) {
  return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
         (CC == ISD::SETEQ || CC == ISD::SETNE);
}

static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
                                      SelectionDAG &DAG, SDValue Chain,
                                      bool IsSignaling) {
  EVT VT = LHS.getValueType();
  assert(VT != MVT::f128);
  assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented");
  unsigned Opcode =
      IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
  return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
}

static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                              const SDLoc &dl, SelectionDAG &DAG) {
  EVT VT = LHS.getValueType();
  const bool FullFP16 =
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();

  if (VT.isFloatingPoint()) {
    assert(VT != MVT::f128);
    if (VT == MVT::f16 && !FullFP16) {
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
      VT = MVT::f32;
    }
    return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
  }

  // The CMP instruction is just an alias for SUBS, and representing it as
  // SUBS means that it's possible to get CSE with subtract operations.
  // A later phase can perform the optimization of setting the destination
  // register to WZR/XZR if it ends up being unused.
  unsigned Opcode = AArch64ISD::SUBS;

  if (isCMN(RHS, CC)) {
    // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
    Opcode = AArch64ISD::ADDS;
    RHS = RHS.getOperand(1);
  } else if (isCMN(LHS, CC)) {
    // As we are looking for EQ/NE compares, the operands can be commuted ; can
    // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
    Opcode = AArch64ISD::ADDS;
    LHS = LHS.getOperand(1);
  } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
             !isUnsignedIntSetCC(CC)) {
    // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
    // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
    // of the signed comparisons.
    Opcode = AArch64ISD::ANDS;
    RHS = LHS.getOperand(1);
    LHS = LHS.getOperand(0);
  }

  return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
      .getValue(1);
}

/// \defgroup AArch64CCMP CMP;CCMP matching
///
/// These functions deal with the formation of CMP;CCMP;... sequences.
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
/// a comparison. They set the NZCV flags to a predefined value if their
/// predicate is false. This allows to express arbitrary conjunctions, for
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
/// expressed as:
///   cmp A
///   ccmp B, inv(CB), CA
///   check for CB flags
///
/// This naturally lets us implement chains of AND operations with SETCC
/// operands. And we can even implement some other situations by transforming
/// them:
///   - We can implement (NEG SETCC) i.e. negating a single comparison by
///     negating the flags used in a CCMP/FCCMP operations.
///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
///     by negating the flags we test for afterwards. i.e.
///     NEG (CMP CCMP CCCMP ...) can be implemented.
///   - Note that we can only ever negate all previously processed results.
///     What we can not implement by flipping the flags to test is a negation
///     of two sub-trees (because the negation affects all sub-trees emitted so
///     far, so the 2nd sub-tree we emit would also affect the first).
/// With those tools we can implement some OR operations:
///   - (OR (SETCC A) (SETCC B)) can be implemented via:
///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
///   - After transforming OR to NEG/AND combinations we may be able to use NEG
///     elimination rules from earlier to implement the whole thing as a
///     CCMP/FCCMP chain.
///
/// As complete example:
///     or (or (setCA (cmp A)) (setCB (cmp B)))
///        (and (setCC (cmp C)) (setCD (cmp D)))"
/// can be reassociated to:
///     or (and (setCC (cmp C)) setCD (cmp D))
//         (or (setCA (cmp A)) (setCB (cmp B)))
/// can be transformed to:
///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
/// which can be implemented as:
///   cmp C
///   ccmp D, inv(CD), CC
///   ccmp A, CA, inv(CD)
///   ccmp B, CB, inv(CA)
///   check for CB flags
///
/// A counterexample is "or (and A B) (and C D)" which translates to
/// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
/// can only implement 1 of the inner (not) operations, but not both!
/// @{

/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
                                         ISD::CondCode CC, SDValue CCOp,
                                         AArch64CC::CondCode Predicate,
                                         AArch64CC::CondCode OutCC,
                                         const SDLoc &DL, SelectionDAG &DAG) {
  unsigned Opcode = 0;
  const bool FullFP16 =
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();

  if (LHS.getValueType().isFloatingPoint()) {
    assert(LHS.getValueType() != MVT::f128);
    if (LHS.getValueType() == MVT::f16 && !FullFP16) {
      LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
    }
    Opcode = AArch64ISD::FCCMP;
  } else if (RHS.getOpcode() == ISD::SUB) {
    SDValue SubOp0 = RHS.getOperand(0);
    if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
      // See emitComparison() on why we can only do this for SETEQ and SETNE.
      Opcode = AArch64ISD::CCMN;
      RHS = RHS.getOperand(1);
    }
  }
  if (Opcode == 0)
    Opcode = AArch64ISD::CCMP;

  SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
  AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
  unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
  SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
  return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
}

/// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
/// expressed as a conjunction. See \ref AArch64CCMP.
/// \param CanNegate    Set to true if we can negate the whole sub-tree just by
///                     changing the conditions on the SETCC tests.
///                     (this means we can call emitConjunctionRec() with
///                      Negate==true on this sub-tree)
/// \param MustBeFirst  Set to true if this subtree needs to be negated and we
///                     cannot do the negation naturally. We are required to
///                     emit the subtree first in this case.
/// \param WillNegate   Is true if are called when the result of this
///                     subexpression must be negated. This happens when the
///                     outer expression is an OR. We can use this fact to know
///                     that we have a double negation (or (or ...) ...) that
///                     can be implemented for free.
static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
                               bool &MustBeFirst, bool WillNegate,
                               unsigned Depth = 0) {
  if (!Val.hasOneUse())
    return false;
  unsigned Opcode = Val->getOpcode();
  if (Opcode == ISD::SETCC) {
    if (Val->getOperand(0).getValueType() == MVT::f128)
      return false;
    CanNegate = true;
    MustBeFirst = false;
    return true;
  }
  // Protect against exponential runtime and stack overflow.
  if (Depth > 6)
    return false;
  if (Opcode == ISD::AND || Opcode == ISD::OR) {
    bool IsOR = Opcode == ISD::OR;
    SDValue O0 = Val->getOperand(0);
    SDValue O1 = Val->getOperand(1);
    bool CanNegateL;
    bool MustBeFirstL;
    if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
      return false;
    bool CanNegateR;
    bool MustBeFirstR;
    if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
      return false;

    if (MustBeFirstL && MustBeFirstR)
      return false;

    if (IsOR) {
      // For an OR expression we need to be able to naturally negate at least
      // one side or we cannot do the transformation at all.
      if (!CanNegateL && !CanNegateR)
        return false;
      // If we the result of the OR will be negated and we can naturally negate
      // the leafs, then this sub-tree as a whole negates naturally.
      CanNegate = WillNegate && CanNegateL && CanNegateR;
      // If we cannot naturally negate the whole sub-tree, then this must be
      // emitted first.
      MustBeFirst = !CanNegate;
    } else {
      assert(Opcode == ISD::AND && "Must be OR or AND");
      // We cannot naturally negate an AND operation.
      CanNegate = false;
      MustBeFirst = MustBeFirstL || MustBeFirstR;
    }
    return true;
  }
  return false;
}

/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
/// Tries to transform the given i1 producing node @p Val to a series compare
/// and conditional compare operations. @returns an NZCV flags producing node
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
/// transformation was not possible.
/// \p Negate is true if we want this sub-tree being negated just by changing
/// SETCC conditions.
static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
    AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
    AArch64CC::CondCode Predicate) {
  // We're at a tree leaf, produce a conditional comparison operation.
  unsigned Opcode = Val->getOpcode();
  if (Opcode == ISD::SETCC) {
    SDValue LHS = Val->getOperand(0);
    SDValue RHS = Val->getOperand(1);
    ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
    bool isInteger = LHS.getValueType().isInteger();
    if (Negate)
      CC = getSetCCInverse(CC, LHS.getValueType());
    SDLoc DL(Val);
    // Determine OutCC and handle FP special case.
    if (isInteger) {
      OutCC = changeIntCCToAArch64CC(CC);
    } else {
      assert(LHS.getValueType().isFloatingPoint());
      AArch64CC::CondCode ExtraCC;
      changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
      // Some floating point conditions can't be tested with a single condition
      // code. Construct an additional comparison in this case.
      if (ExtraCC != AArch64CC::AL) {
        SDValue ExtraCmp;
        if (!CCOp.getNode())
          ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
        else
          ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
                                               ExtraCC, DL, DAG);
        CCOp = ExtraCmp;
        Predicate = ExtraCC;
      }
    }

    // Produce a normal comparison if we are first in the chain
    if (!CCOp)
      return emitComparison(LHS, RHS, CC, DL, DAG);
    // Otherwise produce a ccmp.
    return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
                                     DAG);
  }
  assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");

  bool IsOR = Opcode == ISD::OR;

  SDValue LHS = Val->getOperand(0);
  bool CanNegateL;
  bool MustBeFirstL;
  bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
  assert(ValidL && "Valid conjunction/disjunction tree");
  (void)ValidL;

  SDValue RHS = Val->getOperand(1);
  bool CanNegateR;
  bool MustBeFirstR;
  bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
  assert(ValidR && "Valid conjunction/disjunction tree");
  (void)ValidR;

  // Swap sub-tree that must come first to the right side.
  if (MustBeFirstL) {
    assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
    std::swap(LHS, RHS);
    std::swap(CanNegateL, CanNegateR);
    std::swap(MustBeFirstL, MustBeFirstR);
  }

  bool NegateR;
  bool NegateAfterR;
  bool NegateL;
  bool NegateAfterAll;
  if (Opcode == ISD::OR) {
    // Swap the sub-tree that we can negate naturally to the left.
    if (!CanNegateL) {
      assert(CanNegateR && "at least one side must be negatable");
      assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
      assert(!Negate);
      std::swap(LHS, RHS);
      NegateR = false;
      NegateAfterR = true;
    } else {
      // Negate the left sub-tree if possible, otherwise negate the result.
      NegateR = CanNegateR;
      NegateAfterR = !CanNegateR;
    }
    NegateL = true;
    NegateAfterAll = !Negate;
  } else {
    assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
    assert(!Negate && "Valid conjunction/disjunction tree");

    NegateL = false;
    NegateR = false;
    NegateAfterR = false;
    NegateAfterAll = false;
  }

  // Emit sub-trees.
  AArch64CC::CondCode RHSCC;
  SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
  if (NegateAfterR)
    RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
  SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
  if (NegateAfterAll)
    OutCC = AArch64CC::getInvertedCondCode(OutCC);
  return CmpL;
}

/// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
/// In some cases this is even possible with OR operations in the expression.
/// See \ref AArch64CCMP.
/// \see emitConjunctionRec().
static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
                               AArch64CC::CondCode &OutCC) {
  bool DummyCanNegate;
  bool DummyMustBeFirst;
  if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
    return SDValue();

  return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
}

/// @}

/// Returns how profitable it is to fold a comparison's operand's shift and/or
/// extension operations.
static unsigned getCmpOperandFoldingProfit(SDValue Op) {
  auto isSupportedExtend = [&](SDValue V) {
    if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
      return true;

    if (V.getOpcode() == ISD::AND)
      if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
        uint64_t Mask = MaskCst->getZExtValue();
        return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
      }

    return false;
  };

  if (!Op.hasOneUse())
    return 0;

  if (isSupportedExtend(Op))
    return 1;

  unsigned Opc = Op.getOpcode();
  if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
    if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t Shift = ShiftCst->getZExtValue();
      if (isSupportedExtend(Op.getOperand(0)))
        return (Shift <= 4) ? 2 : 1;
      EVT VT = Op.getValueType();
      if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
        return 1;
    }

  return 0;
}

static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
                             SDValue &AArch64cc, SelectionDAG &DAG,
                             const SDLoc &dl) {
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
    EVT VT = RHS.getValueType();
    uint64_t C = RHSC->getZExtValue();
    if (!isLegalArithImmed(C)) {
      // Constant does not fit, try adjusting it by one?
      switch (CC) {
      default:
        break;
      case ISD::SETLT:
      case ISD::SETGE:
        if ((VT == MVT::i32 && C != 0x80000000 &&
             isLegalArithImmed((uint32_t)(C - 1))) ||
            (VT == MVT::i64 && C != 0x80000000ULL &&
             isLegalArithImmed(C - 1ULL))) {
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETULT:
      case ISD::SETUGE:
        if ((VT == MVT::i32 && C != 0 &&
             isLegalArithImmed((uint32_t)(C - 1))) ||
            (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
          C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETLE:
      case ISD::SETGT:
        if ((VT == MVT::i32 && C != INT32_MAX &&
             isLegalArithImmed((uint32_t)(C + 1))) ||
            (VT == MVT::i64 && C != INT64_MAX &&
             isLegalArithImmed(C + 1ULL))) {
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      case ISD::SETULE:
      case ISD::SETUGT:
        if ((VT == MVT::i32 && C != UINT32_MAX &&
             isLegalArithImmed((uint32_t)(C + 1))) ||
            (VT == MVT::i64 && C != UINT64_MAX &&
             isLegalArithImmed(C + 1ULL))) {
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
          C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
          RHS = DAG.getConstant(C, dl, VT);
        }
        break;
      }
    }
  }

  // Comparisons are canonicalized so that the RHS operand is simpler than the
  // LHS one, the extreme case being when RHS is an immediate. However, AArch64
  // can fold some shift+extend operations on the RHS operand, so swap the
  // operands if that can be done.
  //
  // For example:
  //    lsl     w13, w11, #1
  //    cmp     w13, w12
  // can be turned into:
  //    cmp     w12, w11, lsl #1
  if (!isa<ConstantSDNode>(RHS) ||
      !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
    SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;

    if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
      std::swap(LHS, RHS);
      CC = ISD::getSetCCSwappedOperands(CC);
    }
  }

  SDValue Cmp;
  AArch64CC::CondCode AArch64CC;
  if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
    const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);

    // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
    // For the i8 operand, the largest immediate is 255, so this can be easily
    // encoded in the compare instruction. For the i16 operand, however, the
    // largest immediate cannot be encoded in the compare.
    // Therefore, use a sign extending load and cmn to avoid materializing the
    // -1 constant. For example,
    // movz w1, #65535
    // ldrh w0, [x0, #0]
    // cmp w0, w1
    // >
    // ldrsh w0, [x0, #0]
    // cmn w0, #1
    // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
    // if and only if (sext LHS) == (sext RHS). The checks are in place to
    // ensure both the LHS and RHS are truly zero extended and to make sure the
    // transformation is profitable.
    if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
        cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
        cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
        LHS.getNode()->hasNUsesOfValue(1, 0)) {
      int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
      if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
        SDValue SExt =
            DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
                        DAG.getValueType(MVT::i16));
        Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
                                                   RHS.getValueType()),
                             CC, dl, DAG);
        AArch64CC = changeIntCCToAArch64CC(CC);
      }
    }

    if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
      if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
        if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
          AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
      }
    }
  }

  if (!Cmp) {
    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
    AArch64CC = changeIntCCToAArch64CC(CC);
  }
  AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
  return Cmp;
}

static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
  assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
         "Unsupported value type");
  SDValue Value, Overflow;
  SDLoc DL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  unsigned Opc = 0;
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Unknown overflow instruction!");
  case ISD::SADDO:
    Opc = AArch64ISD::ADDS;
    CC = AArch64CC::VS;
    break;
  case ISD::UADDO:
    Opc = AArch64ISD::ADDS;
    CC = AArch64CC::HS;
    break;
  case ISD::SSUBO:
    Opc = AArch64ISD::SUBS;
    CC = AArch64CC::VS;
    break;
  case ISD::USUBO:
    Opc = AArch64ISD::SUBS;
    CC = AArch64CC::LO;
    break;
  // Multiply needs a little bit extra work.
  case ISD::SMULO:
  case ISD::UMULO: {
    CC = AArch64CC::NE;
    bool IsSigned = Op.getOpcode() == ISD::SMULO;
    if (Op.getValueType() == MVT::i32) {
      unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      // For a 32 bit multiply with overflow check we want the instruction
      // selector to generate a widening multiply (SMADDL/UMADDL). For that we
      // need to generate the following pattern:
      // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
      LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
      RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
      SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
      SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
                                DAG.getConstant(0, DL, MVT::i64));
      // On AArch64 the upper 32 bits are always zero extended for a 32 bit
      // operation. We need to clear out the upper 32 bits, because we used a
      // widening multiply that wrote all 64 bits. In the end this should be a
      // noop.
      Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
      if (IsSigned) {
        // The signed overflow check requires more than just a simple check for
        // any bit set in the upper 32 bits of the result. These bits could be
        // just the sign bits of a negative number. To perform the overflow
        // check we have to arithmetic shift right the 32nd bit of the result by
        // 31 bits. Then we compare the result to the upper 32 bits.
        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
                                        DAG.getConstant(32, DL, MVT::i64));
        UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
        SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
                                        DAG.getConstant(31, DL, MVT::i64));
        // It is important that LowerBits is last, otherwise the arithmetic
        // shift will not be folded into the compare (SUBS).
        SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
        Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
                       .getValue(1);
      } else {
        // The overflow check for unsigned multiply is easy. We only need to
        // check if any of the upper 32 bits are set. This can be done with a
        // CMP (shifted register). For that we need to generate the following
        // pattern:
        // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
        SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
                                        DAG.getConstant(32, DL, MVT::i64));
        SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
        Overflow =
            DAG.getNode(AArch64ISD::SUBS, DL, VTs,
                        DAG.getConstant(0, DL, MVT::i64),
                        UpperBits).getValue(1);
      }
      break;
    }
    assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
    // For the 64 bit multiply
    Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
    if (IsSigned) {
      SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
      SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
                                      DAG.getConstant(63, DL, MVT::i64));
      // It is important that LowerBits is last, otherwise the arithmetic
      // shift will not be folded into the compare (SUBS).
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
      Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
                     .getValue(1);
    } else {
      SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
      Overflow =
          DAG.getNode(AArch64ISD::SUBS, DL, VTs,
                      DAG.getConstant(0, DL, MVT::i64),
                      UpperBits).getValue(1);
    }
    break;
  }
  } // switch (...)

  if (Opc) {
    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);

    // Emit the AArch64 operation with overflow check.
    Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
    Overflow = Value.getValue(1);
  }
  return std::make_pair(Value, Overflow);
}

SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
                                             RTLIB::Libcall Call) const {
  bool IsStrict = Op->isStrictFPOpcode();
  unsigned Offset = IsStrict ? 1 : 0;
  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
  SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end());
  MakeLibCallOptions CallOptions;
  SDValue Result;
  SDLoc dl(Op);
  std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops,
                                        CallOptions, dl, Chain);
  return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
}

// Returns true if the given Op is the overflow flag result of an overflow
// intrinsic operation.
static bool isOverflowIntrOpRes(SDValue Op) {
  unsigned Opc = Op.getOpcode();
  return (Op.getResNo() == 1 &&
          (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
           Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
}

static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
  SDValue Sel = Op.getOperand(0);
  SDValue Other = Op.getOperand(1);
  SDLoc dl(Sel);

  // If the operand is an overflow checking operation, invert the condition
  // code and kill the Not operation. I.e., transform:
  // (xor (overflow_op_bool, 1))
  //   -->
  // (csel 1, 0, invert(cc), overflow_op_bool)
  // ... which later gets transformed to just a cset instruction with an
  // inverted condition code, rather than a cset + eor sequence.
  if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
      return SDValue();

    SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
    SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
    AArch64CC::CondCode CC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
    SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
    return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
                       CCVal, Overflow);
  }
  // If neither operand is a SELECT_CC, give up.
  if (Sel.getOpcode() != ISD::SELECT_CC)
    std::swap(Sel, Other);
  if (Sel.getOpcode() != ISD::SELECT_CC)
    return Op;

  // The folding we want to perform is:
  // (xor x, (select_cc a, b, cc, 0, -1) )
  //   -->
  // (csel x, (xor x, -1), cc ...)
  //
  // The latter will get matched to a CSINV instruction.

  ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
  SDValue LHS = Sel.getOperand(0);
  SDValue RHS = Sel.getOperand(1);
  SDValue TVal = Sel.getOperand(2);
  SDValue FVal = Sel.getOperand(3);

  // FIXME: This could be generalized to non-integer comparisons.
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
    return Op;

  ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
  ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);

  // The values aren't constants, this isn't the pattern we're looking for.
  if (!CFVal || !CTVal)
    return Op;

  // We can commute the SELECT_CC by inverting the condition.  This
  // might be needed to make this fit into a CSINV pattern.
  if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
    std::swap(TVal, FVal);
    std::swap(CTVal, CFVal);
    CC = ISD::getSetCCInverse(CC, LHS.getValueType());
  }

  // If the constants line up, perform the transform!
  if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);

    FVal = Other;
    TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
                       DAG.getConstant(-1ULL, dl, Other.getValueType()));

    return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
                       CCVal, Cmp);
  }

  return Op;
}

static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
  EVT VT = Op.getValueType();

  // Let legalize expand this if it isn't a legal type yet.
  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  SDVTList VTs = DAG.getVTList(VT, MVT::i32);

  unsigned Opc;
  bool ExtraOp = false;
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Invalid code");
  case ISD::ADDC:
    Opc = AArch64ISD::ADDS;
    break;
  case ISD::SUBC:
    Opc = AArch64ISD::SUBS;
    break;
  case ISD::ADDE:
    Opc = AArch64ISD::ADCS;
    ExtraOp = true;
    break;
  case ISD::SUBE:
    Opc = AArch64ISD::SBCS;
    ExtraOp = true;
    break;
  }

  if (!ExtraOp)
    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
                     Op.getOperand(2));
}

static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
  // Let legalize expand this if it isn't a legal type yet.
  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
    return SDValue();

  SDLoc dl(Op);
  AArch64CC::CondCode CC;
  // The actual operation that sets the overflow or carry flag.
  SDValue Value, Overflow;
  std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);

  // We use 0 and 1 as false and true values.
  SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
  SDValue FVal = DAG.getConstant(0, dl, MVT::i32);

  // We use an inverted condition, because the conditional select is inverted
  // too. This will allow it to be selected to a single instruction:
  // CSINC Wd, WZR, WZR, invert(cond).
  SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
  Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
                         CCVal, Overflow);

  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
  return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}

// Prefetch operands are:
// 1: Address to prefetch
// 2: bool isWrite
// 3: int locality (0 = no locality ... 3 = extreme locality)
// 4: bool isDataCache
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
  unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
  unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();

  bool IsStream = !Locality;
  // When the locality number is set
  if (Locality) {
    // The front-end should have filtered out the out-of-range values
    assert(Locality <= 3 && "Prefetch locality out-of-range");
    // The locality degree is the opposite of the cache speed.
    // Put the number the other way around.
    // The encoding starts at 0 for level 1
    Locality = 3 - Locality;
  }

  // built the mask value encoding the expected behavior.
  unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
                   (!IsData << 3) |     // IsDataCache bit
                   (Locality << 1) |    // Cache level bits
                   (unsigned)IsStream;  // Stream bit
  return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
                     DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
}

SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
                                              SelectionDAG &DAG) const {
  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");

  RTLIB::Libcall LC;
  LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());

  return LowerF128Call(Op, DAG, LC);
}

SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
                                             SelectionDAG &DAG) const {
  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
  if (SrcVal.getValueType() != MVT::f128) {
    // It's legal except when f128 is involved
    return Op;
  }

  RTLIB::Libcall LC;
  LC = RTLIB::getFPROUND(SrcVal.getValueType(), Op.getValueType());

  // FP_ROUND node has a second operand indicating whether it is known to be
  // precise. That doesn't take part in the LibCall so we can't directly use
  // LowerF128Call.
  MakeLibCallOptions CallOptions;
  SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
  SDValue Result;
  SDLoc dl(Op);
  std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
                                        CallOptions, dl, Chain);
  return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
}

SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
                                                    SelectionDAG &DAG) const {
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
  // Any additional optimization in this function should be recorded
  // in the cost tables.
  EVT InVT = Op.getOperand(0).getValueType();
  EVT VT = Op.getValueType();
  unsigned NumElts = InVT.getVectorNumElements();

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (InVT.getVectorElementType() == MVT::f16 &&
      !Subtarget->hasFullFP16()) {
    MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
    SDLoc dl(Op);
    return DAG.getNode(
        Op.getOpcode(), dl, Op.getValueType(),
        DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
  }

  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
    SDLoc dl(Op);
    SDValue Cv =
        DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
                    Op.getOperand(0));
    return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
  }

  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
    SDLoc dl(Op);
    MVT ExtVT =
        MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
                         VT.getVectorNumElements());
    SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
    return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
  }

  // Type changing conversions are illegal.
  return Op;
}

SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
                                              SelectionDAG &DAG) const {
  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);

  if (SrcVal.getValueType().isVector())
    return LowerVectorFP_TO_INT(Op, DAG);

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
    assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
    SDLoc dl(Op);
    return DAG.getNode(
        Op.getOpcode(), dl, Op.getValueType(),
        DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
  }

  if (SrcVal.getValueType() != MVT::f128) {
    // It's legal except when f128 is involved
    return Op;
  }

  RTLIB::Libcall LC;
  if (Op.getOpcode() == ISD::FP_TO_SINT ||
      Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
    LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType());
  else
    LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType());

  return LowerF128Call(Op, DAG, LC);
}

static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
  // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
  // Any additional optimization in this function should be recorded
  // in the cost tables.
  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  SDValue In = Op.getOperand(0);
  EVT InVT = In.getValueType();

  if (VT.getSizeInBits() < InVT.getSizeInBits()) {
    MVT CastVT =
        MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
                         InVT.getVectorNumElements());
    In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
    return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
  }

  if (VT.getSizeInBits() > InVT.getSizeInBits()) {
    unsigned CastOpc =
        Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    EVT CastVT = VT.changeVectorElementTypeToInteger();
    In = DAG.getNode(CastOpc, dl, CastVT, In);
    return DAG.getNode(Op.getOpcode(), dl, VT, In);
  }

  return Op;
}

SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
                                            SelectionDAG &DAG) const {
  if (Op.getValueType().isVector())
    return LowerVectorINT_TO_FP(Op, DAG);

  bool IsStrict = Op->isStrictFPOpcode();
  SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);

  // f16 conversions are promoted to f32 when full fp16 is not supported.
  if (Op.getValueType() == MVT::f16 &&
      !Subtarget->hasFullFP16()) {
    assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
    SDLoc dl(Op);
    return DAG.getNode(
        ISD::FP_ROUND, dl, MVT::f16,
        DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal),
        DAG.getIntPtrConstant(0, dl));
  }

  // i128 conversions are libcalls.
  if (SrcVal.getValueType() == MVT::i128)
    return SDValue();

  // Other conversions are legal, unless it's to the completely software-based
  // fp128.
  if (Op.getValueType() != MVT::f128)
    return Op;

  RTLIB::Libcall LC;
  if (Op.getOpcode() == ISD::SINT_TO_FP ||
      Op.getOpcode() == ISD::STRICT_SINT_TO_FP)
    LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType());
  else
    LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType());

  return LowerF128Call(Op, DAG, LC);
}

SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
                                            SelectionDAG &DAG) const {
  // For iOS, we want to call an alternative entry point: __sincos_stret,
  // which returns the values in two S / D registers.
  SDLoc dl(Op);
  SDValue Arg = Op.getOperand(0);
  EVT ArgVT = Arg.getValueType();
  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());

  ArgListTy Args;
  ArgListEntry Entry;

  Entry.Node = Arg;
  Entry.Ty = ArgTy;
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
                                        : RTLIB::SINCOS_STRET_F32;
  const char *LibcallName = getLibcallName(LC);
  SDValue Callee =
      DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));

  StructType *RetTy = StructType::get(ArgTy, ArgTy);
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(DAG.getEntryNode())
      .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));

  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
  return CallResult.first;
}

static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
  if (Op.getValueType() != MVT::f16)
    return SDValue();

  assert(Op.getOperand(0).getValueType() == MVT::i16);
  SDLoc DL(Op);

  Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
  return SDValue(
      DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
      0);
}

static EVT getExtensionTo64Bits(const EVT &OrigVT) {
  if (OrigVT.getSizeInBits() >= 64)
    return OrigVT;

  assert(OrigVT.isSimple() && "Expecting a simple value type");

  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
  switch (OrigSimpleTy) {
  default: llvm_unreachable("Unexpected Vector Type");
  case MVT::v2i8:
  case MVT::v2i16:
     return MVT::v2i32;
  case MVT::v4i8:
    return  MVT::v4i16;
  }
}

static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
                                                 const EVT &OrigTy,
                                                 const EVT &ExtTy,
                                                 unsigned ExtOpcode) {
  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
  // 64-bits we need to insert a new extension so that it will be 64-bits.
  assert(ExtTy.is128BitVector() && "Unexpected extension size");
  if (OrigTy.getSizeInBits() >= 64)
    return N;

  // Must extend size to at least 64 bits to be used as an operand for VMULL.
  EVT NewVT = getExtensionTo64Bits(OrigTy);

  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}

static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
                                   bool isSigned) {
  EVT VT = N->getValueType(0);

  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  for (const SDValue &Elt : N->op_values()) {
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
      unsigned EltSize = VT.getScalarSizeInBits();
      unsigned HalfSize = EltSize / 2;
      if (isSigned) {
        if (!isIntN(HalfSize, C->getSExtValue()))
          return false;
      } else {
        if (!isUIntN(HalfSize, C->getZExtValue()))
          return false;
      }
      continue;
    }
    return false;
  }

  return true;
}

static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
    return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
                                             N->getOperand(0)->getValueType(0),
                                             N->getValueType(0),
                                             N->getOpcode());

  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
  EVT VT = N->getValueType(0);
  SDLoc dl(N);
  unsigned EltSize = VT.getScalarSizeInBits() / 2;
  unsigned NumElts = VT.getVectorNumElements();
  MVT TruncVT = MVT::getIntegerVT(EltSize);
  SmallVector<SDValue, 8> Ops;
  for (unsigned i = 0; i != NumElts; ++i) {
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
    const APInt &CInt = C->getAPIntValue();
    // Element types smaller than 32 bits are not legal, so use i32 elements.
    // The values are implicitly truncated so sext vs. zext doesn't matter.
    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
  }
  return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}

static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
  return N->getOpcode() == ISD::SIGN_EXTEND ||
         isExtendedBUILD_VECTOR(N, DAG, true);
}

static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
  return N->getOpcode() == ISD::ZERO_EXTEND ||
         isExtendedBUILD_VECTOR(N, DAG, false);
}

static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
  }
  return false;
}

static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
  unsigned Opcode = N->getOpcode();
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
    SDNode *N0 = N->getOperand(0).getNode();
    SDNode *N1 = N->getOperand(1).getNode();
    return N0->hasOneUse() && N1->hasOneUse() &&
      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
  }
  return false;
}

SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
                                                SelectionDAG &DAG) const {
  // The rounding mode is in bits 23:22 of the FPSCR.
  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
  // so that the shift + and get folded into a bitfield extract.
  SDLoc dl(Op);

  SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
                                DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
                                                MVT::i64));
  SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
                                  DAG.getConstant(1U << 22, dl, MVT::i32));
  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
                              DAG.getConstant(22, dl, MVT::i32));
  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
                     DAG.getConstant(3, dl, MVT::i32));
}

static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
  // Multiplications are only custom-lowered for 128-bit vectors so that
  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
  EVT VT = Op.getValueType();
  assert(VT.is128BitVector() && VT.isInteger() &&
         "unexpected type for custom-lowering ISD::MUL");
  SDNode *N0 = Op.getOperand(0).getNode();
  SDNode *N1 = Op.getOperand(1).getNode();
  unsigned NewOpc = 0;
  bool isMLA = false;
  bool isN0SExt = isSignExtended(N0, DAG);
  bool isN1SExt = isSignExtended(N1, DAG);
  if (isN0SExt && isN1SExt)
    NewOpc = AArch64ISD::SMULL;
  else {
    bool isN0ZExt = isZeroExtended(N0, DAG);
    bool isN1ZExt = isZeroExtended(N1, DAG);
    if (isN0ZExt && isN1ZExt)
      NewOpc = AArch64ISD::UMULL;
    else if (isN1SExt || isN1ZExt) {
      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
      if (isN1SExt && isAddSubSExt(N0, DAG)) {
        NewOpc = AArch64ISD::SMULL;
        isMLA = true;
      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
        NewOpc =  AArch64ISD::UMULL;
        isMLA = true;
      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
        std::swap(N0, N1);
        NewOpc =  AArch64ISD::UMULL;
        isMLA = true;
      }
    }

    if (!NewOpc) {
      if (VT == MVT::v2i64)
        // Fall through to expand this.  It is not legal.
        return SDValue();
      else
        // Other vector multiplications are legal.
        return Op;
    }
  }

  // Legalize to a S/UMULL instruction
  SDLoc DL(Op);
  SDValue Op0;
  SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
  if (!isMLA) {
    Op0 = skipExtensionForVectorMULL(N0, DAG);
    assert(Op0.getValueType().is64BitVector() &&
           Op1.getValueType().is64BitVector() &&
           "unexpected types for extended operands to VMULL");
    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
  }
  // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
  // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
  // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
  SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
  SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
  EVT Op1VT = Op1.getValueType();
  return DAG.getNode(N0->getOpcode(), DL, VT,
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
                     DAG.getNode(NewOpc, DL, VT,
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}

SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
                                                     SelectionDAG &DAG) const {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDLoc dl(Op);
  switch (IntNo) {
  default: return SDValue();    // Don't custom lower most intrinsics.
  case Intrinsic::thread_pointer: {
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
    return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
  }
  case Intrinsic::aarch64_neon_abs: {
    EVT Ty = Op.getValueType();
    if (Ty == MVT::i64) {
      SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
                                   Op.getOperand(1));
      Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
      return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
    } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
      return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
    } else {
      report_fatal_error("Unexpected type for AArch64 NEON intrinic");
    }
  }
  case Intrinsic::aarch64_neon_smax:
    return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_umax:
    return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_smin:
    return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_neon_umin:
    return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));

  case Intrinsic::aarch64_sve_sunpkhi:
    return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_sunpklo:
    return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_uunpkhi:
    return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_uunpklo:
    return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_clasta_n:
    return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::aarch64_sve_clastb_n:
    return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::aarch64_sve_lasta:
    return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_lastb:
    return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_rev:
    return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(),
                       Op.getOperand(1));
  case Intrinsic::aarch64_sve_tbl:
    return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_trn1:
    return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_trn2:
    return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_uzp1:
    return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_uzp2:
    return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_zip1:
    return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_zip2:
    return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::aarch64_sve_ptrue:
    return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(),
                       Op.getOperand(1));

  case Intrinsic::aarch64_sve_insr: {
    SDValue Scalar = Op.getOperand(2);
    EVT ScalarTy = Scalar.getValueType();
    if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
      Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);

    return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
                       Op.getOperand(1), Scalar);
  }

  case Intrinsic::localaddress: {
    const auto &MF = DAG.getMachineFunction();
    const auto *RegInfo = Subtarget->getRegisterInfo();
    unsigned Reg = RegInfo->getLocalAddressRegister(MF);
    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
                              Op.getSimpleValueType());
  }

  case Intrinsic::eh_recoverfp: {
    // FIXME: This needs to be implemented to correctly handle highly aligned
    // stack objects. For now we simply return the incoming FP. Refer D53541
    // for more details.
    SDValue FnOp = Op.getOperand(1);
    SDValue IncomingFPOp = Op.getOperand(2);
    GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
    auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
    if (!Fn)
      report_fatal_error(
          "llvm.eh.recoverfp must take a function as the first argument");
    return IncomingFPOp;
  }
  }
}

bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
  return ExtVal.getValueType().isScalableVector();
}

// Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
                                        EVT VT, EVT MemVT,
                                        SelectionDAG &DAG) {
  assert(VT.isVector() && "VT should be a vector type");
  assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);

  SDValue Value = ST->getValue();

  // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
  // the word lane which represent the v4i8 subvector.  It optimizes the store
  // to:
  //
  //   xtn  v0.8b, v0.8h
  //   str  s0, [x0]

  SDValue Undef = DAG.getUNDEF(MVT::i16);
  SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
                                        {Undef, Undef, Undef, Undef});

  SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
                                 Value, UndefVec);
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);

  Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
  SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
                                     Trunc, DAG.getConstant(0, DL, MVT::i64));

  return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
                      ST->getBasePtr(), ST->getMemOperand());
}

// Custom lowering for any store, vector or scalar and/or default or with
// a truncate operations.  Currently only custom lower truncate operation
// from vector v4i16 to v4i8 or volatile stores of i128.
SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
                                          SelectionDAG &DAG) const {
  SDLoc Dl(Op);
  StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
  assert (StoreNode && "Can only custom lower store nodes");

  SDValue Value = StoreNode->getValue();

  EVT VT = Value.getValueType();
  EVT MemVT = StoreNode->getMemoryVT();

  if (VT.isVector()) {
    unsigned AS = StoreNode->getAddressSpace();
    unsigned Align = StoreNode->getAlignment();
    if (Align < MemVT.getStoreSize() &&
        !allowsMisalignedMemoryAccesses(MemVT, AS, Align,
                                        StoreNode->getMemOperand()->getFlags(),
                                        nullptr)) {
      return scalarizeVectorStore(StoreNode, DAG);
    }

    if (StoreNode->isTruncatingStore()) {
      return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
    }
  } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
    assert(StoreNode->getValue()->getValueType(0) == MVT::i128);
    SDValue Lo =
        DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
                    DAG.getConstant(0, Dl, MVT::i64));
    SDValue Hi =
        DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
                    DAG.getConstant(1, Dl, MVT::i64));
    SDValue Result = DAG.getMemIntrinsicNode(
        AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other),
        {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
        StoreNode->getMemoryVT(), StoreNode->getMemOperand());
    return Result;
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
                                              SelectionDAG &DAG) const {
  LLVM_DEBUG(dbgs() << "Custom lowering: ");
  LLVM_DEBUG(Op.dump());

  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("unimplemented operand");
    return SDValue();
  case ISD::BITCAST:
    return LowerBITCAST(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:
    return LowerGlobalTLSAddress(Op, DAG);
  case ISD::SETCC:
  case ISD::STRICT_FSETCC:
  case ISD::STRICT_FSETCCS:
    return LowerSETCC(Op, DAG);
  case ISD::BR_CC:
    return LowerBR_CC(Op, DAG);
  case ISD::SELECT:
    return LowerSELECT(Op, DAG);
  case ISD::SELECT_CC:
    return LowerSELECT_CC(Op, DAG);
  case ISD::JumpTable:
    return LowerJumpTable(Op, DAG);
  case ISD::BR_JT:
    return LowerBR_JT(Op, DAG);
  case ISD::ConstantPool:
    return LowerConstantPool(Op, DAG);
  case ISD::BlockAddress:
    return LowerBlockAddress(Op, DAG);
  case ISD::VASTART:
    return LowerVASTART(Op, DAG);
  case ISD::VACOPY:
    return LowerVACOPY(Op, DAG);
  case ISD::VAARG:
    return LowerVAARG(Op, DAG);
  case ISD::ADDC:
  case ISD::ADDE:
  case ISD::SUBC:
  case ISD::SUBE:
    return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
  case ISD::SADDO:
  case ISD::UADDO:
  case ISD::SSUBO:
  case ISD::USUBO:
  case ISD::SMULO:
  case ISD::UMULO:
    return LowerXALUO(Op, DAG);
  case ISD::FADD:
    return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
  case ISD::FSUB:
    return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
  case ISD::FMUL:
    return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
  case ISD::FDIV:
    return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
  case ISD::FP_ROUND:
  case ISD::STRICT_FP_ROUND:
    return LowerFP_ROUND(Op, DAG);
  case ISD::FP_EXTEND:
    return LowerFP_EXTEND(Op, DAG);
  case ISD::FRAMEADDR:
    return LowerFRAMEADDR(Op, DAG);
  case ISD::SPONENTRY:
    return LowerSPONENTRY(Op, DAG);
  case ISD::RETURNADDR:
    return LowerRETURNADDR(Op, DAG);
  case ISD::ADDROFRETURNADDR:
    return LowerADDROFRETURNADDR(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:
    return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT:
    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::BUILD_VECTOR:
    return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:
    return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::SPLAT_VECTOR:
    return LowerSPLAT_VECTOR(Op, DAG);
  case ISD::EXTRACT_SUBVECTOR:
    return LowerEXTRACT_SUBVECTOR(Op, DAG);
  case ISD::SRA:
  case ISD::SRL:
  case ISD::SHL:
    return LowerVectorSRA_SRL_SHL(Op, DAG);
  case ISD::SHL_PARTS:
    return LowerShiftLeftParts(Op, DAG);
  case ISD::SRL_PARTS:
  case ISD::SRA_PARTS:
    return LowerShiftRightParts(Op, DAG);
  case ISD::CTPOP:
    return LowerCTPOP(Op, DAG);
  case ISD::FCOPYSIGN:
    return LowerFCOPYSIGN(Op, DAG);
  case ISD::OR:
    return LowerVectorOR(Op, DAG);
  case ISD::XOR:
    return LowerXOR(Op, DAG);
  case ISD::PREFETCH:
    return LowerPREFETCH(Op, DAG);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::STRICT_SINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
    return LowerINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::STRICT_FP_TO_SINT:
  case ISD::STRICT_FP_TO_UINT:
    return LowerFP_TO_INT(Op, DAG);
  case ISD::FSINCOS:
    return LowerFSINCOS(Op, DAG);
  case ISD::FLT_ROUNDS_:
    return LowerFLT_ROUNDS_(Op, DAG);
  case ISD::MUL:
    return LowerMUL(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN:
    return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::STORE:
    return LowerSTORE(Op, DAG);
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
    return LowerVECREDUCE(Op, DAG);
  case ISD::ATOMIC_LOAD_SUB:
    return LowerATOMIC_LOAD_SUB(Op, DAG);
  case ISD::ATOMIC_LOAD_AND:
    return LowerATOMIC_LOAD_AND(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    return LowerDYNAMIC_STACKALLOC(Op, DAG);
  }
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
                                                     bool IsVarArg) const {
  switch (CC) {
  default:
    report_fatal_error("Unsupported calling convention.");
  case CallingConv::AArch64_SVE_VectorCall:
    // Calling SVE functions is currently not yet supported.
    report_fatal_error("Unsupported calling convention.");
  case CallingConv::WebKit_JS:
    return CC_AArch64_WebKit_JS;
  case CallingConv::GHC:
    return CC_AArch64_GHC;
  case CallingConv::C:
  case CallingConv::Fast:
  case CallingConv::PreserveMost:
  case CallingConv::CXX_FAST_TLS:
  case CallingConv::Swift:
    if (Subtarget->isTargetWindows() && IsVarArg)
      return CC_AArch64_Win64_VarArg;
    if (!Subtarget->isTargetDarwin())
      return CC_AArch64_AAPCS;
    if (!IsVarArg)
      return CC_AArch64_DarwinPCS;
    return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
                                      : CC_AArch64_DarwinPCS_VarArg;
   case CallingConv::Win64:
    return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
   case CallingConv::CFGuard_Check:
     return CC_AArch64_Win64_CFGuard_Check;
   case CallingConv::AArch64_VectorCall:
     return CC_AArch64_AAPCS;
  }
}

CCAssignFn *
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
  return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
                                      : RetCC_AArch64_AAPCS;
}

SDValue AArch64TargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  DenseMap<unsigned, SDValue> CopiedRegs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  // At this point, Ins[].VT may already be promoted to i32. To correctly
  // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
  // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
  // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
  // we use a special version of AnalyzeFormalArguments to pass in ValVT and
  // LocVT.
  unsigned NumArgs = Ins.size();
  Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
  unsigned CurArgIdx = 0;
  for (unsigned i = 0; i != NumArgs; ++i) {
    MVT ValVT = Ins[i].VT;
    if (Ins[i].isOrigArg()) {
      std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[i].getOrigArgIndex();

      // Get type of the original argument.
      EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
                                  /*AllowUnknown*/ true);
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
        ValVT = MVT::i8;
      else if (ActualMVT == MVT::i16)
        ValVT = MVT::i16;
    }
    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
    bool Res =
        AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
    assert(!Res && "Call operand has unhandled type");
    (void)Res;
  }
  assert(ArgLocs.size() == Ins.size());
  SmallVector<SDValue, 16> ArgValues;
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];

    if (Ins[i].Flags.isByVal()) {
      // Byval is used for HFAs in the PCS, but the system should work in a
      // non-compliant manner for larger structs.
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
      int Size = Ins[i].Flags.getByValSize();
      unsigned NumRegs = (Size + 7) / 8;

      // FIXME: This works on big-endian for composite byvals, which are the common
      // case. It should also work for fundamental types too.
      unsigned FrameIdx =
        MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
      InVals.push_back(FrameIdxN);

      continue;
    }

    SDValue ArgValue;
    if (VA.isRegLoc()) {
      // Arguments stored in registers.
      EVT RegVT = VA.getLocVT();
      const TargetRegisterClass *RC;

      if (RegVT == MVT::i32)
        RC = &AArch64::GPR32RegClass;
      else if (RegVT == MVT::i64)
        RC = &AArch64::GPR64RegClass;
      else if (RegVT == MVT::f16)
        RC = &AArch64::FPR16RegClass;
      else if (RegVT == MVT::f32)
        RC = &AArch64::FPR32RegClass;
      else if (RegVT == MVT::f64 || RegVT.is64BitVector())
        RC = &AArch64::FPR64RegClass;
      else if (RegVT == MVT::f128 || RegVT.is128BitVector())
        RC = &AArch64::FPR128RegClass;
      else if (RegVT.isScalableVector() &&
               RegVT.getVectorElementType() == MVT::i1)
        RC = &AArch64::PPRRegClass;
      else if (RegVT.isScalableVector())
        RC = &AArch64::ZPRRegClass;
      else
        llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");

      // Transform the arguments in physical registers into virtual ones.
      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
      ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);

      // If this is an 8, 16 or 32-bit value, it is really passed promoted
      // to 64 bits.  Insert an assert[sz]ext to capture this, then
      // truncate to the right size.
      switch (VA.getLocInfo()) {
      default:
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::Indirect:
        assert(VA.getValVT().isScalableVector() &&
               "Only scalable vectors can be passed indirectly");
        llvm_unreachable("Spilling of SVE vectors not yet implemented");
      case CCValAssign::BCvt:
        ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
        break;
      case CCValAssign::AExt:
      case CCValAssign::SExt:
      case CCValAssign::ZExt:
        break;
      case CCValAssign::AExtUpper:
        ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
                               DAG.getConstant(32, DL, RegVT));
        ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
        break;
      }
    } else { // VA.isRegLoc()
      assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
      unsigned ArgOffset = VA.getLocMemOffset();
      unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;

      uint32_t BEAlign = 0;
      if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
          !Ins[i].Flags.isInConsecutiveRegs())
        BEAlign = 8 - ArgSize;

      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);

      // Create load nodes to retrieve arguments from the stack.
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));

      // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
      ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
      MVT MemVT = VA.getValVT();

      switch (VA.getLocInfo()) {
      default:
        break;
      case CCValAssign::Trunc:
      case CCValAssign::BCvt:
        MemVT = VA.getLocVT();
        break;
      case CCValAssign::Indirect:
        assert(VA.getValVT().isScalableVector() &&
               "Only scalable vectors can be passed indirectly");
        llvm_unreachable("Spilling of SVE vectors not yet implemented");
      case CCValAssign::SExt:
        ExtType = ISD::SEXTLOAD;
        break;
      case CCValAssign::ZExt:
        ExtType = ISD::ZEXTLOAD;
        break;
      case CCValAssign::AExt:
        ExtType = ISD::EXTLOAD;
        break;
      }

      ArgValue = DAG.getExtLoad(
          ExtType, DL, VA.getLocVT(), Chain, FIN,
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
          MemVT);

    }
    if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
      ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
                             ArgValue, DAG.getValueType(MVT::i32));
    InVals.push_back(ArgValue);
  }

  // varargs
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  if (isVarArg) {
    if (!Subtarget->isTargetDarwin() || IsWin64) {
      // The AAPCS variadic function ABI is identical to the non-variadic
      // one. As a result there may be more arguments in registers and we should
      // save them for future reference.
      // Win64 variadic functions also pass arguments in registers, but all float
      // arguments are passed in integer registers.
      saveVarArgRegisters(CCInfo, DAG, DL, Chain);
    }

    // This will point to the next argument passed via stack.
    unsigned StackOffset = CCInfo.getNextStackOffset();
    // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
    StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));

    if (MFI.hasMustTailInVarArgFunc()) {
      SmallVector<MVT, 2> RegParmTypes;
      RegParmTypes.push_back(MVT::i64);
      RegParmTypes.push_back(MVT::f128);
      // Compute the set of forwarded registers. The rest are scratch.
      SmallVectorImpl<ForwardedRegister> &Forwards =
                                       FuncInfo->getForwardedMustTailRegParms();
      CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
                                               CC_AArch64_AAPCS);

      // Conservatively forward X8, since it might be used for aggregate return.
      if (!CCInfo.isAllocated(AArch64::X8)) {
        unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
        Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
      }
    }
  }

  // On Windows, InReg pointers must be returned, so record the pointer in a
  // virtual register at the start of the function so it can be returned in the
  // epilogue.
  if (IsWin64) {
    for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
      if (Ins[I].Flags.isInReg()) {
        assert(!FuncInfo->getSRetReturnReg());

        MVT PtrTy = getPointerTy(DAG.getDataLayout());
        Register Reg =
            MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
        FuncInfo->setSRetReturnReg(Reg);

        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
        Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
        break;
      }
    }
  }

  unsigned StackArgSize = CCInfo.getNextStackOffset();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
    // This is a non-standard ABI so by fiat I say we're allowed to make full
    // use of the stack area to be popped, which must be aligned to 16 bytes in
    // any case:
    StackArgSize = alignTo(StackArgSize, 16);

    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
    // a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackArgSize);

    // This realignment carries over to the available bytes below. Our own
    // callers will guarantee the space is free by giving an aligned value to
    // CALLSEQ_START.
  }
  // Even if we're not expected to free up the space, it's useful to know how
  // much is there while considering tail calls (because we can reuse it).
  FuncInfo->setBytesInStackArgArea(StackArgSize);

  if (Subtarget->hasCustomCallingConv())
    Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  return Chain;
}

void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
                                                SelectionDAG &DAG,
                                                const SDLoc &DL,
                                                SDValue &Chain) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());

  SmallVector<SDValue, 8> MemOps;

  static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
                                          AArch64::X3, AArch64::X4, AArch64::X5,
                                          AArch64::X6, AArch64::X7 };
  static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);

  unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
  int GPRIdx = 0;
  if (GPRSaveSize != 0) {
    if (IsWin64) {
      GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
      if (GPRSaveSize & 15)
        // The extra size here, if triggered, will always be 8.
        MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
    } else
      GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);

    SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);

    for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
      unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
      SDValue Store = DAG.getStore(
          Val.getValue(1), DL, Val, FIN,
          IsWin64
              ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
                                                  GPRIdx,
                                                  (i - FirstVariadicGPR) * 8)
              : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
      MemOps.push_back(Store);
      FIN =
          DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
    }
  }
  FuncInfo->setVarArgsGPRIndex(GPRIdx);
  FuncInfo->setVarArgsGPRSize(GPRSaveSize);

  if (Subtarget->hasFPARMv8() && !IsWin64) {
    static const MCPhysReg FPRArgRegs[] = {
        AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
        AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
    static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
    unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);

    unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
    int FPRIdx = 0;
    if (FPRSaveSize != 0) {
      FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);

      SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);

      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
        unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);

        SDValue Store = DAG.getStore(
            Val.getValue(1), DL, Val, FIN,
            MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
        MemOps.push_back(Store);
        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
                          DAG.getConstant(16, DL, PtrVT));
      }
    }
    FuncInfo->setVarArgsFPRIndex(FPRIdx);
    FuncInfo->setVarArgsFPRSize(FPRSaveSize);
  }

  if (!MemOps.empty()) {
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
  }
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue AArch64TargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
    SDValue ThisVal) const {
  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
                          ? RetCC_AArch64_WebKit_JS
                          : RetCC_AArch64_AAPCS;
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  DenseMap<unsigned, SDValue> CopiedRegs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeCallResult(Ins, RetCC);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign VA = RVLocs[i];

    // Pass 'this' value directly from the argument to return value, to avoid
    // reg unit interference
    if (i == 0 && isThisReturn) {
      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
             "unexpected return calling convention register assignment");
      InVals.push_back(ThisVal);
      continue;
    }

    // Avoid copying a physreg twice since RegAllocFast is incompetent and only
    // allows one use of a physreg per block.
    SDValue Val = CopiedRegs.lookup(VA.getLocReg());
    if (!Val) {
      Val =
          DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
      Chain = Val.getValue(1);
      InFlag = Val.getValue(2);
      CopiedRegs[VA.getLocReg()] = Val;
    }

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::AExtUpper:
      Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
  return CC == CallingConv::Fast;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::PreserveMost:
  case CallingConv::Swift:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

bool AArch64TargetLowering::isEligibleForTailCallOptimization(
    SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
  if (!mayTailCallThisCC(CalleeCC))
    return false;

  MachineFunction &MF = DAG.getMachineFunction();
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86) but less efficient and uglier in LowerCall.
  for (Function::const_arg_iterator i = CallerF.arg_begin(),
                                    e = CallerF.arg_end();
       i != e; ++i) {
    if (i->hasByValAttr())
      return false;

    // On Windows, "inreg" attributes signify non-aggregate indirect returns.
    // In this case, it is necessary to save/restore X0 in the callee. Tail
    // call opt interferes with this. So we disable tail call opt when the
    // caller has an argument with "inreg" attribute.

    // FIXME: Check whether the callee also has an "inreg" argument.
    if (i->hasInRegAttr())
      return false;
  }

  if (getTargetMachine().Options.GuaranteedTailCallOpt)
    return canGuaranteeTCO(CalleeCC) && CCMatch;

  // Externally-defined functions with weak linkage should not be
  // tail-called on AArch64 when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    const GlobalValue *GV = G->getGlobal();
    const Triple &TT = getTargetMachine().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
      return false;
  }

  // Now we search for cases where we can use a tail call without changing the
  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
  // concept.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!isVarArg || CalleeCC == CallingConv::C) &&
         "Unexpected variadic calling convention");

  LLVMContext &C = *DAG.getContext();
  if (isVarArg && !Outs.empty()) {
    // At least two cases here: if caller is fastcc then we can't have any
    // memory arguments (we'd be expected to clean up the stack afterwards). If
    // caller is C then we could potentially use its argument area.

    // FIXME: for now we take the most conservative of these in both cases:
    // disallow all variadic memory operands.
    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);

    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
    for (const CCValAssign &ArgLoc : ArgLocs)
      if (!ArgLoc.isRegLoc())
        return false;
  }

  // Check that the call results are passed in the same way.
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
                                  CCAssignFnForCall(CalleeCC, isVarArg),
                                  CCAssignFnForCall(CallerCC, isVarArg)))
    return false;
  // The callee has to preserve all registers the caller needs to preserve.
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  if (!CCMatch) {
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
    if (Subtarget->hasCustomCallingConv()) {
      TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
      TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
    }
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
      return false;
  }

  // Nothing more to check if the callee is taking no arguments
  if (Outs.empty())
    return true;

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);

  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));

  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  // If the stack arguments for this call do not fit into our own save area then
  // the call cannot be made tail.
  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
    return false;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
    return false;

  return true;
}

SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
                                                   SelectionDAG &DAG,
                                                   MachineFrameInfo &MFI,
                                                   int ClobberedFI) const {
  SmallVector<SDValue, 8> ArgChains;
  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;

  // Include the original chain at the beginning of the list. When this is
  // used by target LowerCall hooks, this helps legalize find the
  // CALLSEQ_BEGIN node.
  ArgChains.push_back(Chain);

  // Add a chain value for each stack argument corresponding
  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
                            UE = DAG.getEntryNode().getNode()->use_end();
       U != UE; ++U)
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
        if (FI->getIndex() < 0) {
          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
          int64_t InLastByte = InFirstByte;
          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;

          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
            ArgChains.push_back(SDValue(L, 1));
        }

  // Build a tokenfactor for all the chains.
  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}

bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
                                                   bool TailCallOpt) const {
  return CallCC == CallingConv::Fast && TailCallOpt;
}

/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
/// and add input and output parameter nodes.
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc &DL = CLI.DL;
  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &IsTailCall = CLI.IsTailCall;
  CallingConv::ID CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFunction::CallSiteInfo CSInfo;
  bool IsThisReturn = false;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
  bool IsSibCall = false;

  if (IsTailCall) {
    // Check if it's really possible to do a tail call.
    IsTailCall = isEligibleForTailCallOptimization(
        Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
    if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
      report_fatal_error("failed to perform tail call elimination on a call "
                         "site marked musttail");

    // A sibling call is one where we're under the usual C ABI and not planning
    // to change that but can still do a tail call:
    if (!TailCallOpt && IsTailCall)
      IsSibCall = true;

    if (IsTailCall)
      ++NumTailCalls;
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  if (IsVarArg) {
    // Handle fixed and variable vector arguments differently.
    // Variable vector arguments always go into memory.
    unsigned NumArgs = Outs.size();

    for (unsigned i = 0; i != NumArgs; ++i) {
      MVT ArgVT = Outs[i].VT;
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
                                               /*IsVarArg=*/ !Outs[i].IsFixed);
      bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
      assert(!Res && "Call operand has unhandled type");
      (void)Res;
    }
  } else {
    // At this point, Outs[].VT may already be promoted to i32. To correctly
    // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
    // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
    // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
    // we use a special version of AnalyzeCallOperands to pass in ValVT and
    // LocVT.
    unsigned NumArgs = Outs.size();
    for (unsigned i = 0; i != NumArgs; ++i) {
      MVT ValVT = Outs[i].VT;
      // Get type of the original argument.
      EVT ActualVT = getValueType(DAG.getDataLayout(),
                                  CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
                                  /*AllowUnknown*/ true);
      MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
      // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
      if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
        ValVT = MVT::i8;
      else if (ActualMVT == MVT::i16)
        ValVT = MVT::i16;

      CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
      bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
      assert(!Res && "Call operand has unhandled type");
      (void)Res;
    }
  }

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (IsSibCall) {
    // Since we're not changing the ABI to make this a tail call, the memory
    // operands are already available in the caller's incoming argument space.
    NumBytes = 0;
  }

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0. Completely unused for non-tail calls.
  int FPDiff = 0;

  if (IsTailCall && !IsSibCall) {
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();

    // Since callee will pop argument stack as a tail call, we must keep the
    // popped size 16-byte aligned.
    NumBytes = alignTo(NumBytes, 16);

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // can actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  if (!IsSibCall)
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);

  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
                                        getPointerTy(DAG.getDataLayout()));

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallSet<unsigned, 8> RegsUsed;
  SmallVector<SDValue, 8> MemOpChains;
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
    const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
    for (const auto &F : Forwards) {
      SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
       RegsToPass.emplace_back(F.PReg, Val);
    }
  }

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      if (Outs[i].ArgVT == MVT::i1) {
        // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
      }
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExtUpper:
      assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getBitcast(VA.getLocVT(), Arg);
      break;
    case CCValAssign::Trunc:
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      break;
    case CCValAssign::FPExt:
      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::Indirect:
      assert(VA.getValVT().isScalableVector() &&
             "Only scalable vectors can be passed indirectly");
      llvm_unreachable("Spilling of SVE vectors not yet implemented");
    }

    if (VA.isRegLoc()) {
      if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
          Outs[0].VT == MVT::i64) {
        assert(VA.getLocVT() == MVT::i64 &&
               "unexpected calling convention register assignment");
        assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
               "unexpected use of 'returned'");
        IsThisReturn = true;
      }
      if (RegsUsed.count(VA.getLocReg())) {
        // If this register has already been used then we're trying to pack
        // parts of an [N x i32] into an X-register. The extension type will
        // take care of putting the two halves in the right place but we have to
        // combine them.
        SDValue &Bits =
            std::find_if(RegsToPass.begin(), RegsToPass.end(),
                         [=](const std::pair<unsigned, SDValue> &Elt) {
                           return Elt.first == VA.getLocReg();
                         })
                ->second;
        Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
        // Call site info is used for function's parameter entry value
        // tracking. For now we track only simple cases when parameter
        // is transferred through whole register.
        CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(),
                                    [&VA](MachineFunction::ArgRegPair ArgReg) {
                                      return ArgReg.Reg == VA.getLocReg();
                                    }),
                     CSInfo.end());
      } else {
        RegsToPass.emplace_back(VA.getLocReg(), Arg);
        RegsUsed.insert(VA.getLocReg());
        const TargetOptions &Options = DAG.getTarget().Options;
        if (Options.EnableDebugEntryValues)
          CSInfo.emplace_back(VA.getLocReg(), i);
      }
    } else {
      assert(VA.isMemLoc());

      SDValue DstAddr;
      MachinePointerInfo DstInfo;

      // FIXME: This works on big-endian for composite byvals, which are the
      // common case. It should also work for fundamental types too.
      uint32_t BEAlign = 0;
      unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
                                        : VA.getValVT().getSizeInBits();
      OpSize = (OpSize + 7) / 8;
      if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
          !Flags.isInConsecutiveRegs()) {
        if (OpSize < 8)
          BEAlign = 8 - OpSize;
      }
      unsigned LocMemOffset = VA.getLocMemOffset();
      int32_t Offset = LocMemOffset + BEAlign;
      SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
      PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);

      if (IsTailCall) {
        Offset = Offset + FPDiff;
        int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);

        DstAddr = DAG.getFrameIndex(FI, PtrVT);
        DstInfo =
            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);

        // Make sure any stack arguments overlapping with where we're storing
        // are loaded before this eventual operation. Otherwise they'll be
        // clobbered.
        Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
      } else {
        SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);

        DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
        DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
                                               LocMemOffset);
      }

      if (Outs[i].Flags.isByVal()) {
        SDValue SizeNode =
            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
        SDValue Cpy = DAG.getMemcpy(
            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
            /*isVol = */ false, /*AlwaysInline = */ false,
            /*isTailCall = */ false,
            DstInfo, MachinePointerInfo());

        MemOpChains.push_back(Cpy);
      } else {
        // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
        // promoted to a legal register type i32, we should truncate Arg back to
        // i1/i8/i16.
        if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
            VA.getValVT() == MVT::i16)
          Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);

        SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
        MemOpChains.push_back(Store);
      }
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (auto &RegToPass : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
                             RegToPass.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    auto GV = G->getGlobal();
    unsigned OpFlags =
        Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
    if (OpFlags & AArch64II::MO_GOT) {
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
    } else {
      const GlobalValue *GV = G->getGlobal();
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
    }
  } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    if (getTargetMachine().getCodeModel() == CodeModel::Large &&
        Subtarget->isTargetMachO()) {
      const char *Sym = S->getSymbol();
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
      Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
    } else {
      const char *Sym = S->getSymbol();
      Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
    }
  }

  // We don't usually want to end the call-sequence here because we would tidy
  // the frame up *after* the call, however in the ABI-changing tail-call case
  // we've carefully laid out the parameters so that when sp is reset they'll be
  // in the correct location.
  if (IsTailCall && !IsSibCall) {
    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
    InFlag = Chain.getValue(1);
  }

  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (IsTailCall) {
    // Each tail call may have to adjust the stack by a different amount, so
    // this information must travel along with the operation for eventual
    // consumption by emitEpilogue.
    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
  }

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (auto &RegToPass : RegsToPass)
    Ops.push_back(DAG.getRegister(RegToPass.first,
                                  RegToPass.second.getValueType()));

  // Check callee args/returns for SVE registers and set calling convention
  // accordingly.
  if (CallConv == CallingConv::C) {
    bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
      return Out.VT.isScalableVector();
    });
    bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
      return In.VT.isScalableVector();
    });

    if (CalleeInSVE || CalleeOutSVE)
      CallConv = CallingConv::AArch64_SVE_VectorCall;
  }

  // Add a register mask operand representing the call-preserved registers.
  const uint32_t *Mask;
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  if (IsThisReturn) {
    // For 'this' returns, use the X0-preserving mask if applicable
    Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
    if (!Mask) {
      IsThisReturn = false;
      Mask = TRI->getCallPreservedMask(MF, CallConv);
    }
  } else
    Mask = TRI->getCallPreservedMask(MF, CallConv);

  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  // If we're doing a tall call, use a TC_RETURN here rather than an
  // actual call instruction.
  if (IsTailCall) {
    MF.getFrameInfo().setHasTailCall();
    SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
    return Ret;
  }

  // Returns a chain and a flag for retval copy to use.
  Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
  InFlag = Chain.getValue(1);
  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));

  uint64_t CalleePopBytes =
      DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
                             DAG.getIntPtrConstant(CalleePopBytes, DL, true),
                             InFlag, DL);
  if (!Ins.empty())
    InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
                         InVals, IsThisReturn,
                         IsThisReturn ? OutVals[0] : SDValue());
}

bool AArch64TargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
                          ? RetCC_AArch64_WebKit_JS
                          : RetCC_AArch64_AAPCS;
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC);
}

SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                   bool isVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   const SDLoc &DL, SelectionDAG &DAG) const {
  auto &MF = DAG.getMachineFunction();
  auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
                          ? RetCC_AArch64_WebKit_JS
                          : RetCC_AArch64_AAPCS;
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeReturn(Outs, RetCC);

  // Copy the result values into the output registers.
  SDValue Flag;
  SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
  SmallSet<unsigned, 4> RegsUsed;
  for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
       ++i, ++realRVLocIdx) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    SDValue Arg = OutVals[realRVLocIdx];

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      if (Outs[i].ArgVT == MVT::i1) {
        // AAPCS requires i1 to be zero-extended to i8 by the producer of the
        // value. This is strictly redundant on Darwin (which uses "zeroext
        // i1"), but will be optimised out before ISel.
        Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
        Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      }
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
    case CCValAssign::ZExt:
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      break;
    case CCValAssign::AExtUpper:
      assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
      Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
      Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
                        DAG.getConstant(32, DL, VA.getLocVT()));
      break;
    }

    if (RegsUsed.count(VA.getLocReg())) {
      SDValue &Bits =
          std::find_if(RetVals.begin(), RetVals.end(),
                       [=](const std::pair<unsigned, SDValue> &Elt) {
                         return Elt.first == VA.getLocReg();
                       })
              ->second;
      Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
    } else {
      RetVals.emplace_back(VA.getLocReg(), Arg);
      RegsUsed.insert(VA.getLocReg());
    }
  }

  SmallVector<SDValue, 4> RetOps(1, Chain);
  for (auto &RetVal : RetVals) {
    Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(
        DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
  }

  // Windows AArch64 ABIs require that for returning structs by value we copy
  // the sret argument into X0 for the return.
  // We saved the argument into a virtual register in the entry block,
  // so now we copy the value out and into X0.
  if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
    SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
                                     getPointerTy(MF.getDataLayout()));

    unsigned RetValReg = AArch64::X0;
    Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
    Flag = Chain.getValue(1);

    RetOps.push_back(
      DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
  }

  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *I =
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
  if (I) {
    for (; *I; ++I) {
      if (AArch64::GPR64RegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
      else if (AArch64::FPR64RegClass.contains(*I))
        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
      else
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
    }
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
}

//===----------------------------------------------------------------------===//
//  Other Lowering Code
//===----------------------------------------------------------------------===//

SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
                                    N->getOffset(), Flag);
}

SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}

SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
                                   N->getOffset(), Flag);
}

SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
                                             SelectionDAG &DAG,
                                             unsigned Flag) const {
  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}

// (loadGOT sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
                                      unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
  // FIXME: Once remat is capable of dealing with instructions with register
  // operands, expand this into two nodes instead of using a wrapper node.
  return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
}

// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
                                            unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  const unsigned char MO_NC = AArch64II::MO_NC;
  return DAG.getNode(
      AArch64ISD::WrapperLarge, DL, Ty,
      getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
      getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
}

// (addlow (adrp %hi(sym)) %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
                                       unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
  SDValue Lo = getTargetNode(N, Ty, DAG,
                             AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
  return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
}

// (adr sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
                                           unsigned Flags) const {
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
  SDLoc DL(N);
  EVT Ty = getPointerTy(DAG.getDataLayout());
  SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
  return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
}

SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
                                                  SelectionDAG &DAG) const {
  GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GN->getGlobal();
  unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());

  if (OpFlags != AArch64II::MO_NO_FLAG)
    assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
           "unexpected offset in global node");

  // This also catches the large code model case for Darwin, and tiny code
  // model with got relocations.
  if ((OpFlags & AArch64II::MO_GOT) != 0) {
    return getGOT(GN, DAG, OpFlags);
  }

  SDValue Result;
  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
    Result = getAddrLarge(GN, DAG, OpFlags);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    Result = getAddrTiny(GN, DAG, OpFlags);
  } else {
    Result = getAddr(GN, DAG, OpFlags);
  }
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(GN);
  if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
                         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  return Result;
}

/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address (for Darwin, currently) and
/// return an SDValue containing the final node.

/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
///     + "extern __thread" declaration.
///     + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i64] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first xword, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "x0".
///
/// Since this descriptor may be in a different unit, in general even the
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
/// is:
///     adrp x0, _var@TLVPPAGE
///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
///                                      ; the function pointer
///     blr x1                           ; Uses descriptor address in x0
///     ; Address of _var is now in x0.
///
/// If the address of _var's descriptor *is* known to the linker, then it can
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
/// a slight efficiency gain.
SDValue
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
                                                   SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin() &&
         "This function expects a Darwin target");

  SDLoc DL(Op);
  MVT PtrVT = getPointerTy(DAG.getDataLayout());
  MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();

  SDValue TLVPAddr =
      DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
  SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);

  // The first entry in the descriptor is a function pointer that we must call
  // to obtain the address of the variable.
  SDValue Chain = DAG.getEntryNode();
  SDValue FuncTLVGet = DAG.getLoad(
      PtrMemVT, DL, Chain, DescAddr,
      MachinePointerInfo::getGOT(DAG.getMachineFunction()),
      /* Alignment = */ PtrMemVT.getSizeInBits() / 8,
      MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
  Chain = FuncTLVGet.getValue(1);

  // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
  FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setAdjustsStack(true);

  // TLS calls preserve all registers except those that absolutely must be
  // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
  // silly).
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask = TRI->getTLSCallPreservedMask();
  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);

  // Finally, we can make the call. This is just a degenerate version of a
  // normal AArch64 call node: x0 takes the address of the descriptor, and
  // returns the address of the variable in this thread.
  Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
  Chain =
      DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
                  Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
}

/// Convert a thread-local variable reference into a sequence of instructions to
/// compute the variable's address for the local exec TLS model of ELF targets.
/// The sequence depends on the maximum TLS area size.
SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
                                                    SDValue ThreadBase,
                                                    const SDLoc &DL,
                                                    SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue TPOff, Addr;

  switch (DAG.getTarget().Options.TLSSize) {
  default:
    llvm_unreachable("Unexpected TLS size");

  case 12: {
    // mrs   x0, TPIDR_EL0
    // add   x0, x0, :tprel_lo12:a
    SDValue Var = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
    return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
                                      Var,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
  }

  case 24: {
    // mrs   x0, TPIDR_EL0
    // add   x0, x0, :tprel_hi12:a
    // add   x0, x0, :tprel_lo12_nc:a
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
                                      HiVar,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
    return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
                                      LoVar,
                                      DAG.getTargetConstant(0, DL, MVT::i32)),
                   0);
  }

  case 32: {
    // mrs   x1, TPIDR_EL0
    // movz  x0, #:tprel_g1:a
    // movk  x0, #:tprel_g0_nc:a
    // add   x0, x1, x0
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(16, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
  }

  case 48: {
    // mrs   x1, TPIDR_EL0
    // movz  x0, #:tprel_g2:a
    // movk  x0, #:tprel_g1_nc:a
    // movk  x0, #:tprel_g0_nc:a
    // add   x0, x1, x0
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
    SDValue MiVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, PtrVT, 0,
        AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(32, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
                                       DAG.getTargetConstant(16, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
  }
  }
}

/// When accessing thread-local variables under either the general-dynamic or
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
/// is a function pointer to carry out the resolution.
///
/// The sequence is:
///    adrp  x0, :tlsdesc:var
///    ldr   x1, [x0, #:tlsdesc_lo12:var]
///    add   x0, x0, #:tlsdesc_lo12:var
///    .tlsdesccall var
///    blr   x1
///    (TPIDR_EL0 offset now in x0)
///
///  The above sequence must be produced unscheduled, to enable the linker to
///  optimize/relax this sequence.
///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
///  above sequence, and expanded really late in the compilation flow, to ensure
///  the sequence is produced as per above.
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
                                                      const SDLoc &DL,
                                                      SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  SDValue Chain = DAG.getEntryNode();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  Chain =
      DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
  SDValue Glue = Chain.getValue(1);

  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}

SDValue
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
                                                SelectionDAG &DAG) const {
  assert(Subtarget->isTargetELF() && "This function expects an ELF target");

  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());

  if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
    if (Model == TLSModel::LocalDynamic)
      Model = TLSModel::GeneralDynamic;
  }

  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      Model != TLSModel::LocalExec)
    report_fatal_error("ELF TLS only supported in small memory model or "
                       "in local exec TLS model");
  // Different choices can be made for the maximum size of the TLS area for a
  // module. For the small address model, the default TLS size is 16MiB and the
  // maximum TLS size is 4GiB.
  // FIXME: add tiny and large code model support for TLS access models other
  // than local exec. We currently generate the same code as small for tiny,
  // which may be larger than needed.

  SDValue TPOff;
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);
  const GlobalValue *GV = GA->getGlobal();

  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);

  if (Model == TLSModel::LocalExec) {
    return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
  } else if (Model == TLSModel::InitialExec) {
    TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
    TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
  } else if (Model == TLSModel::LocalDynamic) {
    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
    // the beginning of the module's TLS region, followed by a DTPREL offset
    // calculation.

    // These accesses will need deduplicating if there's more than one.
    AArch64FunctionInfo *MFI =
        DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
    MFI->incNumLocalDynamicTLSAccesses();

    // The call needs a relocation too for linker relaxation. It doesn't make
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
    // the address.
    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
                                                  AArch64II::MO_TLS);

    // Now we can calculate the offset from TPIDR_EL0 to this module's
    // thread-local area.
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);

    // Now use :dtprel_whatever: operations to calculate this variable's offset
    // in its thread-storage area.
    SDValue HiVar = DAG.getTargetGlobalAddress(
        GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
    SDValue LoVar = DAG.getTargetGlobalAddress(
        GV, DL, MVT::i64, 0,
        AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);

    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
                                       DAG.getTargetConstant(0, DL, MVT::i32)),
                    0);
  } else if (Model == TLSModel::GeneralDynamic) {
    // The call needs a relocation too for linker relaxation. It doesn't make
    // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
    // the address.
    SDValue SymAddr =
        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);

    // Finally we can make a call to calculate the offset from tpidr_el0.
    TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
  } else
    llvm_unreachable("Unsupported ELF TLS access model");

  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}

SDValue
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
                                                    SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");

  SDValue Chain = DAG.getEntryNode();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);

  SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);

  // Load the ThreadLocalStoragePointer from the TEB
  // A pointer to the TLS array is located at offset 0x58 from the TEB.
  SDValue TLSArray =
      DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
  TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
  Chain = TLSArray.getValue(1);

  // Load the TLS index from the C runtime;
  // This does the same as getAddr(), but without having a GlobalAddressSDNode.
  // This also does the same as LOADgot, but using a generic i32 load,
  // while LOADgot only loads i64.
  SDValue TLSIndexHi =
      DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
  SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
      "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
  SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
  SDValue TLSIndex =
      DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
  TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
  Chain = TLSIndex.getValue(1);

  // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
  // offset into the TLSArray.
  TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
  SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
                             DAG.getConstant(3, DL, PtrVT));
  SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
                            DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
                            MachinePointerInfo());
  Chain = TLS.getValue(1);

  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GA->getGlobal();
  SDValue TGAHi = DAG.getTargetGlobalAddress(
      GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
  SDValue TGALo = DAG.getTargetGlobalAddress(
      GV, DL, PtrVT, 0,
      AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);

  // Add the offset from the start of the .tls section (section base).
  SDValue Addr =
      SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
                                 DAG.getTargetConstant(0, DL, MVT::i32)),
              0);
  Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
  return Addr;
}

SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
                                                     SelectionDAG &DAG) const {
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  if (Subtarget->isTargetDarwin())
    return LowerDarwinGlobalTLSAddress(Op, DAG);
  if (Subtarget->isTargetELF())
    return LowerELFGlobalTLSAddress(Op, DAG);
  if (Subtarget->isTargetWindows())
    return LowerWindowsGlobalTLSAddress(Op, DAG);

  llvm_unreachable("Unexpected platform trying to use TLS");
}

SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc dl(Op);

  MachineFunction &MF = DAG.getMachineFunction();
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
  // will not be produced, as they are conditional branch instructions that do
  // not set flags.
  bool ProduceNonFlagSettingCondBr =
      !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);

  // Handle f128 first, since lowering it will result in comparing the return
  // value of a libcall against zero, which is just what the rest of LowerBR_CC
  // is expecting to deal with.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
  // instruction.
  if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
      return SDValue();

    // The actual operation with overflow check.
    AArch64CC::CondCode OFCC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);

    if (CC == ISD::SETNE)
      OFCC = getInvertedCondCode(OFCC);
    SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);

    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
                       Overflow);
  }

  if (LHS.getValueType().isInteger()) {
    assert((LHS.getValueType() == RHS.getValueType()) &&
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));

    // If the RHS of the comparison is zero, we can potentially fold this
    // to a specialized branch.
    const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
    if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
      if (CC == ISD::SETEQ) {
        // See if we can use a TBZ to fold in an AND as well.
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
        // out of bounds, a late MI-layer pass rewrites branches.
        // 403.gcc is an example that hits this case.
        if (LHS.getOpcode() == ISD::AND &&
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
          SDValue Test = LHS.getOperand(0);
          uint64_t Mask = LHS.getConstantOperandVal(1);
          return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
                             Dest);
        }

        return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
      } else if (CC == ISD::SETNE) {
        // See if we can use a TBZ to fold in an AND as well.
        // TBZ has a smaller branch displacement than CBZ.  If the offset is
        // out of bounds, a late MI-layer pass rewrites branches.
        // 403.gcc is an example that hits this case.
        if (LHS.getOpcode() == ISD::AND &&
            isa<ConstantSDNode>(LHS.getOperand(1)) &&
            isPowerOf2_64(LHS.getConstantOperandVal(1))) {
          SDValue Test = LHS.getOperand(0);
          uint64_t Mask = LHS.getConstantOperandVal(1);
          return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
                             DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
                             Dest);
        }

        return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
      } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
        // Don't combine AND since emitComparison converts the AND to an ANDS
        // (a.k.a. TST) and the test in the test bit and branch instruction
        // becomes redundant.  This would also increase register pressure.
        uint64_t Mask = LHS.getValueSizeInBits() - 1;
        return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
                           DAG.getConstant(Mask, dl, MVT::i64), Dest);
      }
    }
    if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
        LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
      // Don't combine AND since emitComparison converts the AND to an ANDS
      // (a.k.a. TST) and the test in the test bit and branch instruction
      // becomes redundant.  This would also increase register pressure.
      uint64_t Mask = LHS.getValueSizeInBits() - 1;
      return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
                         DAG.getConstant(Mask, dl, MVT::i64), Dest);
    }

    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
                       Cmp);
  }

  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
         LHS.getValueType() == MVT::f64);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two branches to implement.
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
  SDValue BR1 =
      DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
  if (CC2 != AArch64CC::AL) {
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
                       Cmp);
  }

  return BR1;
}

SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
                                              SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  SDValue In1 = Op.getOperand(0);
  SDValue In2 = Op.getOperand(1);
  EVT SrcVT = In2.getValueType();

  if (SrcVT.bitsLT(VT))
    In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
  else if (SrcVT.bitsGT(VT))
    In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));

  EVT VecVT;
  uint64_t EltMask;
  SDValue VecVal1, VecVal2;

  auto setVecVal = [&] (int Idx) {
    if (!VT.isVector()) {
      VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
                                          DAG.getUNDEF(VecVT), In1);
      VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
                                          DAG.getUNDEF(VecVT), In2);
    } else {
      VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
      VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
    }
  };

  if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
    VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
    EltMask = 0x80000000ULL;
    setVecVal(AArch64::ssub);
  } else if (VT == MVT::f64 || VT == MVT::v2f64) {
    VecVT = MVT::v2i64;

    // We want to materialize a mask with the high bit set, but the AdvSIMD
    // immediate moves cannot materialize that in a single instruction for
    // 64-bit elements. Instead, materialize zero and then negate it.
    EltMask = 0;

    setVecVal(AArch64::dsub);
  } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
    VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
    EltMask = 0x8000ULL;
    setVecVal(AArch64::hsub);
  } else {
    llvm_unreachable("Invalid type for copysign!");
  }

  SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);

  // If we couldn't materialize the mask above, then the mask vector will be
  // the zero vector, and we need to negate it here.
  if (VT == MVT::f64 || VT == MVT::v2f64) {
    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
    BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
    BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
  }

  SDValue Sel =
      DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);

  if (VT == MVT::f16)
    return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
  if (VT == MVT::f32)
    return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
  else if (VT == MVT::f64)
    return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
  else
    return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
}

SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
          Attribute::NoImplicitFloat))
    return SDValue();

  if (!Subtarget->hasNEON())
    return SDValue();

  // While there is no integer popcount instruction, it can
  // be more efficiently lowered to the following sequence that uses
  // AdvSIMD registers/instructions as long as the copies to/from
  // the AdvSIMD registers are cheap.
  //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
  //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
  //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
  //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
  SDValue Val = Op.getOperand(0);
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  if (VT == MVT::i32 || VT == MVT::i64) {
    if (VT == MVT::i32)
      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
    Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);

    SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
    SDValue UaddLV = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
        DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);

    if (VT == MVT::i64)
      UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
    return UaddLV;
  }

  assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
          VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
         "Unexpected type for custom ctpop lowering");

  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
  Val = DAG.getBitcast(VT8Bit, Val);
  Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);

  // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
  unsigned EltSize = 8;
  unsigned NumElts = VT.is64BitVector() ? 8 : 16;
  while (EltSize != VT.getScalarSizeInBits()) {
    EltSize *= 2;
    NumElts /= 2;
    MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
    Val = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
        DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
  }

  return Val;
}

SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {

  if (Op.getValueType().isVector())
    return LowerVSETCC(Op, DAG);

  bool IsStrict = Op->isStrictFPOpcode();
  bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
  unsigned OpNo = IsStrict ? 1 : 0;
  SDValue Chain;
  if (IsStrict)
    Chain = Op.getOperand(0);
  SDValue LHS = Op.getOperand(OpNo + 0);
  SDValue RHS = Op.getOperand(OpNo + 1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
  SDLoc dl(Op);

  // We chose ZeroOrOneBooleanContents, so use zero and one.
  EVT VT = Op.getValueType();
  SDValue TVal = DAG.getConstant(1, dl, VT);
  SDValue FVal = DAG.getConstant(0, dl, VT);

  // Handle f128 first, since one possible outcome is a normal integer
  // comparison which gets picked up by the next if statement.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
                        IsSignaling);

    // If softenSetCCOperands returned a scalar, use it.
    if (!RHS.getNode()) {
      assert(LHS.getValueType() == Op.getValueType() &&
             "Unexpected setcc expansion!");
      return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
    }
  }

  if (LHS.getValueType().isInteger()) {
    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(
        LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);

    // Note that we inverted the condition above, so we reverse the order of
    // the true and false operands here.  This will allow the setcc to be
    // matched to a single CSINC instruction.
    SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
    return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
  }

  // Now we know we're dealing with FP values.
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
         LHS.getValueType() == MVT::f64);

  // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
  // and do the comparison.
  SDValue Cmp;
  if (IsStrict)
    Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
  else
    Cmp = emitComparison(LHS, RHS, CC, dl, DAG);

  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);
  SDValue Res;
  if (CC2 == AArch64CC::AL) {
    changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
                          CC2);
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);

    // Note that we inverted the condition above, so we reverse the order of
    // the true and false operands here.  This will allow the setcc to be
    // matched to a single CSINC instruction.
    Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
  } else {
    // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
    // totally clean.  Some of them require two CSELs to implement.  As is in
    // this case, we emit the first CSEL and then emit a second using the output
    // of the first as the RHS.  We're effectively OR'ing the two CC's together.

    // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
    SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
    SDValue CS1 =
        DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);

    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
  }
  return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
}

SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
                                              SDValue RHS, SDValue TVal,
                                              SDValue FVal, const SDLoc &dl,
                                              SelectionDAG &DAG) const {
  // Handle f128 first, because it will result in a comparison of some RTLIB
  // call result against zero.
  if (LHS.getValueType() == MVT::f128) {
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (!RHS.getNode()) {
      RHS = DAG.getConstant(0, dl, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  // Also handle f16, for which we need to do a f32 comparison.
  if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
    LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
    RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
  }

  // Next, handle integers.
  if (LHS.getValueType().isInteger()) {
    assert((LHS.getValueType() == RHS.getValueType()) &&
           (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));

    unsigned Opcode = AArch64ISD::CSEL;

    // If both the TVal and the FVal are constants, see if we can swap them in
    // order to for a CSINV or CSINC out of them.
    ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
    ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);

    if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
      std::swap(TVal, FVal);
      std::swap(CTVal, CFVal);
      CC = ISD::getSetCCInverse(CC, LHS.getValueType());
    } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
      std::swap(TVal, FVal);
      std::swap(CTVal, CFVal);
      CC = ISD::getSetCCInverse(CC, LHS.getValueType());
    } else if (TVal.getOpcode() == ISD::XOR) {
      // If TVal is a NOT we want to swap TVal and FVal so that we can match
      // with a CSINV rather than a CSEL.
      if (isAllOnesConstant(TVal.getOperand(1))) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }
    } else if (TVal.getOpcode() == ISD::SUB) {
      // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
      // that we can match with a CSNEG rather than a CSEL.
      if (isNullConstant(TVal.getOperand(0))) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }
    } else if (CTVal && CFVal) {
      const int64_t TrueVal = CTVal->getSExtValue();
      const int64_t FalseVal = CFVal->getSExtValue();
      bool Swap = false;

      // If both TVal and FVal are constants, see if FVal is the
      // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
      // instead of a CSEL in that case.
      if (TrueVal == ~FalseVal) {
        Opcode = AArch64ISD::CSINV;
      } else if (TrueVal == -FalseVal) {
        Opcode = AArch64ISD::CSNEG;
      } else if (TVal.getValueType() == MVT::i32) {
        // If our operands are only 32-bit wide, make sure we use 32-bit
        // arithmetic for the check whether we can use CSINC. This ensures that
        // the addition in the check will wrap around properly in case there is
        // an overflow (which would not be the case if we do the check with
        // 64-bit arithmetic).
        const uint32_t TrueVal32 = CTVal->getZExtValue();
        const uint32_t FalseVal32 = CFVal->getZExtValue();

        if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
          Opcode = AArch64ISD::CSINC;

          if (TrueVal32 > FalseVal32) {
            Swap = true;
          }
        }
        // 64-bit check whether we can use CSINC.
      } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
        Opcode = AArch64ISD::CSINC;

        if (TrueVal > FalseVal) {
          Swap = true;
        }
      }

      // Swap TVal and FVal if necessary.
      if (Swap) {
        std::swap(TVal, FVal);
        std::swap(CTVal, CFVal);
        CC = ISD::getSetCCInverse(CC, LHS.getValueType());
      }

      if (Opcode != AArch64ISD::CSEL) {
        // Drop FVal since we can get its value by simply inverting/negating
        // TVal.
        FVal = TVal;
      }
    }

    // Avoid materializing a constant when possible by reusing a known value in
    // a register.  However, don't perform this optimization if the known value
    // is one, zero or negative one in the case of a CSEL.  We can always
    // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
    // FVal, respectively.
    ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
    if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
        !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
      // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
      // "a != C ? x : a" to avoid materializing C.
      if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
        TVal = LHS;
      else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
        FVal = LHS;
    } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
      assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
      // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
      // avoid materializing C.
      AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
      if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
        Opcode = AArch64ISD::CSINV;
        TVal = LHS;
        FVal = DAG.getConstant(0, dl, FVal.getValueType());
      }
    }

    SDValue CCVal;
    SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
    EVT VT = TVal.getValueType();
    return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
  }

  // Now we know we're dealing with FP values.
  assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
         LHS.getValueType() == MVT::f64);
  assert(LHS.getValueType() == RHS.getValueType());
  EVT VT = TVal.getValueType();
  SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two CSELs to implement.
  AArch64CC::CondCode CC1, CC2;
  changeFPCCToAArch64CC(CC, CC1, CC2);

  if (DAG.getTarget().Options.UnsafeFPMath) {
    // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
    // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
    ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
    if (RHSVal && RHSVal->isZero()) {
      ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
      ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);

      if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
          CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
        TVal = LHS;
      else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
               CFVal && CFVal->isZero() &&
               FVal.getValueType() == LHS.getValueType())
        FVal = LHS;
    }
  }

  // Emit first, and possibly only, CSEL.
  SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
  SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);

  // If we need a second CSEL, emit it, using the output of the first as the
  // RHS.  We're effectively OR'ing the two CC's together.
  if (CC2 != AArch64CC::AL) {
    SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
  }

  // Otherwise, return the output of the first CSEL.
  return CS1;
}

SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
                                              SelectionDAG &DAG) const {
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue TVal = Op.getOperand(2);
  SDValue FVal = Op.getOperand(3);
  SDLoc DL(Op);
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}

SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
                                           SelectionDAG &DAG) const {
  SDValue CCVal = Op->getOperand(0);
  SDValue TVal = Op->getOperand(1);
  SDValue FVal = Op->getOperand(2);
  SDLoc DL(Op);

  // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
  // instruction.
  if (isOverflowIntrOpRes(CCVal)) {
    // Only lower legal XALUO ops.
    if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
      return SDValue();

    AArch64CC::CondCode OFCC;
    SDValue Value, Overflow;
    std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
    SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);

    return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
                       CCVal, Overflow);
  }

  // Lower it the same way as we would lower a SELECT_CC node.
  ISD::CondCode CC;
  SDValue LHS, RHS;
  if (CCVal.getOpcode() == ISD::SETCC) {
    LHS = CCVal.getOperand(0);
    RHS = CCVal.getOperand(1);
    CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
  } else {
    LHS = CCVal;
    RHS = DAG.getConstant(0, DL, CCVal.getValueType());
    CC = ISD::SETNE;
  }
  return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}

SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
                                              SelectionDAG &DAG) const {
  // Jump table entries as PC relative offsets. No additional tweaking
  // is necessary here. Just get the address of the jump table.
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);

  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      !Subtarget->isTargetMachO()) {
    return getAddrLarge(JT, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(JT, DAG);
  }
  return getAddr(JT, DAG);
}

SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
                                          SelectionDAG &DAG) const {
  // Jump table entries as PC relative offsets. No additional tweaking
  // is necessary here. Just get the address of the jump table.
  SDLoc DL(Op);
  SDValue JT = Op.getOperand(1);
  SDValue Entry = Op.getOperand(2);
  int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();

  SDNode *Dest =
      DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
                         Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
                     SDValue(Dest, 0));
}

SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
                                                 SelectionDAG &DAG) const {
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);

  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
    // Use the GOT for the large code model on iOS.
    if (Subtarget->isTargetMachO()) {
      return getGOT(CP, DAG);
    }
    return getAddrLarge(CP, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(CP, DAG);
  } else {
    return getAddr(CP, DAG);
  }
}

SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
  if (getTargetMachine().getCodeModel() == CodeModel::Large &&
      !Subtarget->isTargetMachO()) {
    return getAddrLarge(BA, DAG);
  } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
    return getAddrTiny(BA, DAG);
  }
  return getAddr(BA, DAG);
}

SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
                                                 SelectionDAG &DAG) const {
  AArch64FunctionInfo *FuncInfo =
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();

  SDLoc DL(Op);
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
                                 getPointerTy(DAG.getDataLayout()));
  FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
                                                  SelectionDAG &DAG) const {
  AArch64FunctionInfo *FuncInfo =
      DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();

  SDLoc DL(Op);
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
                                     ? FuncInfo->getVarArgsGPRIndex()
                                     : FuncInfo->getVarArgsStackIndex(),
                                 getPointerTy(DAG.getDataLayout()));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
                                                SelectionDAG &DAG) const {
  // The layout of the va_list struct is specified in the AArch64 Procedure Call
  // Standard, section B.3.
  MachineFunction &MF = DAG.getMachineFunction();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);

  SDValue Chain = Op.getOperand(0);
  SDValue VAList = Op.getOperand(1);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  SmallVector<SDValue, 4> MemOps;

  // void *__stack at offset 0
  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
                                MachinePointerInfo(SV), /* Alignment = */ 8));

  // void *__gr_top at offset 8
  int GPRSize = FuncInfo->getVarArgsGPRSize();
  if (GPRSize > 0) {
    SDValue GRTop, GRTopAddr;

    GRTopAddr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));

    GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
    GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
                        DAG.getConstant(GPRSize, DL, PtrVT));

    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
                                  MachinePointerInfo(SV, 8),
                                  /* Alignment = */ 8));
  }

  // void *__vr_top at offset 16
  int FPRSize = FuncInfo->getVarArgsFPRSize();
  if (FPRSize > 0) {
    SDValue VRTop, VRTopAddr;
    VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                            DAG.getConstant(16, DL, PtrVT));

    VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
    VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
                        DAG.getConstant(FPRSize, DL, PtrVT));

    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
                                  MachinePointerInfo(SV, 16),
                                  /* Alignment = */ 8));
  }

  // int __gr_offs at offset 24
  SDValue GROffsAddr =
      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
  MemOps.push_back(DAG.getStore(
      Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
      MachinePointerInfo(SV, 24), /* Alignment = */ 4));

  // int __vr_offs at offset 28
  SDValue VROffsAddr =
      DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
  MemOps.push_back(DAG.getStore(
      Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
      MachinePointerInfo(SV, 28), /* Alignment = */ 4));

  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}

SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
                                            SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();

  if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
    return LowerWin64_VASTART(Op, DAG);
  else if (Subtarget->isTargetDarwin())
    return LowerDarwin_VASTART(Op, DAG);
  else
    return LowerAAPCS_VASTART(Op, DAG);
}

SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
                                           SelectionDAG &DAG) const {
  // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
  // pointer.
  SDLoc DL(Op);
  unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
  unsigned VaListSize = (Subtarget->isTargetDarwin() ||
                         Subtarget->isTargetWindows()) ? PtrSize : 32;
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();

  return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
                       DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize,
                       false, false, false, MachinePointerInfo(DestSV),
                       MachinePointerInfo(SrcSV));
}

SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  assert(Subtarget->isTargetDarwin() &&
         "automatic va_arg instruction only works on Darwin");

  const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue Chain = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  unsigned Align = Op.getConstantOperandVal(3);
  unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
  SDValue VAList =
      DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
  Chain = VAList.getValue(1);
  VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);

  if (Align > MinSlotSize) {
    assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                         DAG.getConstant(Align - 1, DL, PtrVT));
    VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
                         DAG.getConstant(-(int64_t)Align, DL, PtrVT));
  }

  Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
  unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);

  // Scalar integer and FP values smaller than 64 bits are implicitly extended
  // up to 64 bits.  At the very least, we have to increase the striding of the
  // vaargs list to match this, and for FP values we need to introduce
  // FP_ROUND nodes as well.
  if (VT.isInteger() && !VT.isVector())
    ArgSize = std::max(ArgSize, MinSlotSize);
  bool NeedFPTrunc = false;
  if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
    ArgSize = 8;
    NeedFPTrunc = true;
  }

  // Increment the pointer, VAList, to the next vaarg
  SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                               DAG.getConstant(ArgSize, DL, PtrVT));
  VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);

  // Store the incremented VAList to the legalized pointer
  SDValue APStore =
      DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));

  // Load the actual argument out of the pointer VAList
  if (NeedFPTrunc) {
    // Load the value as an f64.
    SDValue WideFP =
        DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
    // Round the value down to an f32.
    SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
                                   DAG.getIntPtrConstant(1, DL));
    SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
    // Merge the rounded value with the chain output of the load.
    return DAG.getMergeValues(Ops, DL);
  }

  return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
}

SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
                                              SelectionDAG &DAG) const {
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());

  if (Subtarget->isTargetILP32())
    FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
                            DAG.getValueType(VT));

  return FrameAddr;
}

SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
                                              SelectionDAG &DAG) const {
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();

  EVT VT = getPointerTy(DAG.getDataLayout());
  SDLoc DL(Op);
  int FI = MFI.CreateFixedObject(4, 0, false);
  return DAG.getFrameIndex(FI, VT);
}

#define GET_REGISTER_MATCHER
#include "AArch64GenAsmMatcher.inc"

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register AArch64TargetLowering::
getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
  Register Reg = MatchRegisterName(RegName);
  if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
    const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
    unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
    if (!Subtarget->isXRegisterReserved(DwarfRegNum))
      Reg = 0;
  }
  if (Reg)
    return Reg;
  report_fatal_error(Twine("Invalid register name \""
                              + StringRef(RegName)  + "\"."));
}

SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
                                                     SelectionDAG &DAG) const {
  DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  SDValue FrameAddr =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
  SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));

  return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
}

SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
                                               SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
    return DAG.getLoad(VT, DL, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
}

/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
                                                    SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt = Op.getOperand(2);
  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;

  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);

  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
  SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);

  // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
  // is "undef". We wanted 0, so CSEL it directly.
  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
                               ISD::SETEQ, dl, DAG);
  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
  HiBitsForLo =
      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
                  HiBitsForLo, CCVal, Cmp);

  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
                                   DAG.getConstant(VTBits, dl, MVT::i64));

  SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
  SDValue LoForNormalShift =
      DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);

  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
                       dl, DAG);
  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
  SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
                           LoForNormalShift, CCVal, Cmp);

  // AArch64 shifts larger than the register width are wrapped rather than
  // clamped, so we can't just emit "hi >> x".
  SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
  SDValue HiForBigShift =
      Opc == ISD::SRA
          ? DAG.getNode(Opc, dl, VT, ShOpHi,
                        DAG.getConstant(VTBits - 1, dl, MVT::i64))
          : DAG.getConstant(0, dl, VT);
  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
                           HiForNormalShift, CCVal, Cmp);

  SDValue Ops[2] = { Lo, Hi };
  return DAG.getMergeValues(Ops, dl);
}

/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
                                                   SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt = Op.getOperand(2);

  assert(Op.getOpcode() == ISD::SHL_PARTS);
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
                                 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
  SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);

  // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
  // is "undef". We wanted 0, so CSEL it directly.
  SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
                               ISD::SETEQ, dl, DAG);
  SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
  LoBitsForHi =
      DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
                  LoBitsForHi, CCVal, Cmp);

  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
                                   DAG.getConstant(VTBits, dl, MVT::i64));
  SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
  SDValue HiForNormalShift =
      DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);

  SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);

  Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
                       dl, DAG);
  CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
  SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
                           HiForNormalShift, CCVal, Cmp);

  // AArch64 shifts of larger than register sizes are wrapped rather than
  // clamped, so we can't just emit "lo << a" if a is too big.
  SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
  SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
  SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
                           LoForNormalShift, CCVal, Cmp);

  SDValue Ops[2] = { Lo, Hi };
  return DAG.getMergeValues(Ops, dl);
}

bool AArch64TargetLowering::isOffsetFoldingLegal(
    const GlobalAddressSDNode *GA) const {
  // Offsets are folded in the DAG combine rather than here so that we can
  // intelligently choose an offset based on the uses.
  return false;
}

bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                         bool OptForSize) const {
  bool IsLegal = false;
  // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
  // 16-bit case when target has full fp16 support.
  // FIXME: We should be able to handle f128 as well with a clever lowering.
  const APInt ImmInt = Imm.bitcastToAPInt();
  if (VT == MVT::f64)
    IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
  else if (VT == MVT::f32)
    IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
  else if (VT == MVT::f16 && Subtarget->hasFullFP16())
    IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
  // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
  //       generate that fmov.

  // If we can not materialize in immediate field for fmov, check if the
  // value can be encoded as the immediate operand of a logical instruction.
  // The immediate value will be created with either MOVZ, MOVN, or ORR.
  if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
    // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
    // however the mov+fmov sequence is always better because of the reduced
    // cache pressure. The timings are still the same if you consider
    // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
    // movw+movk is fused). So we limit up to 2 instrdduction at most.
    SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
    AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
			      Insn);
    unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
    IsLegal = Insn.size() <= Limit;
  }

  LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
                    << " imm value: "; Imm.dump(););
  return IsLegal;
}

//===----------------------------------------------------------------------===//
//                          AArch64 Optimization Hooks
//===----------------------------------------------------------------------===//

static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
                           SDValue Operand, SelectionDAG &DAG,
                           int &ExtraSteps) {
  EVT VT = Operand.getValueType();
  if (ST->hasNEON() &&
      (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
       VT == MVT::f32 || VT == MVT::v1f32 ||
       VT == MVT::v2f32 || VT == MVT::v4f32)) {
    if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
      // For the reciprocal estimates, convergence is quadratic, so the number
      // of digits is doubled after each iteration.  In ARMv8, the accuracy of
      // the initial estimate is 2^-8.  Thus the number of extra steps to refine
      // the result for float (23 mantissa bits) is 2 and for double (52
      // mantissa bits) is 3.
      ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;

    return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
  }

  return SDValue();
}

SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
                                               SelectionDAG &DAG, int Enabled,
                                               int &ExtraSteps,
                                               bool &UseOneConst,
                                               bool Reciprocal) const {
  if (Enabled == ReciprocalEstimate::Enabled ||
      (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
                                       DAG, ExtraSteps)) {
      SDLoc DL(Operand);
      EVT VT = Operand.getValueType();

      SDNodeFlags Flags;
      Flags.setAllowReassociation(true);

      // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
      // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
      for (int i = ExtraSteps; i > 0; --i) {
        SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
                                   Flags);
        Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
      }
      if (!Reciprocal) {
        EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
                                      VT);
        SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
        SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);

        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
        // Correct the result if the operand is 0.0.
        Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
                               VT, Eq, Operand, Estimate);
      }

      ExtraSteps = 0;
      return Estimate;
    }

  return SDValue();
}

SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
                                                SelectionDAG &DAG, int Enabled,
                                                int &ExtraSteps) const {
  if (Enabled == ReciprocalEstimate::Enabled)
    if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
                                       DAG, ExtraSteps)) {
      SDLoc DL(Operand);
      EVT VT = Operand.getValueType();

      SDNodeFlags Flags;
      Flags.setAllowReassociation(true);

      // Newton reciprocal iteration: E * (2 - X * E)
      // AArch64 reciprocal iteration instruction: (2 - M * N)
      for (int i = ExtraSteps; i > 0; --i) {
        SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
                                   Estimate, Flags);
        Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
      }

      ExtraSteps = 0;
      return Estimate;
    }

  return SDValue();
}

//===----------------------------------------------------------------------===//
//                          AArch64 Inline Assembly Support
//===----------------------------------------------------------------------===//

// Table of Constraints
// TODO: This is the current set of constraints supported by ARM for the
// compiler, not all of them may make sense.
//
// r - A general register
// w - An FP/SIMD register of some size in the range v0-v31
// x - An FP/SIMD register of some size in the range v0-v15
// I - Constant that can be used with an ADD instruction
// J - Constant that can be used with a SUB instruction
// K - Constant that can be used with a 32-bit logical instruction
// L - Constant that can be used with a 64-bit logical instruction
// M - Constant that can be used as a 32-bit MOV immediate
// N - Constant that can be used as a 64-bit MOV immediate
// Q - A memory reference with base register and no offset
// S - A symbolic address
// Y - Floating point constant zero
// Z - Integer constant zero
//
//   Note that general register operands will be output using their 64-bit x
// register name, whatever the size of the variable, unless the asm operand
// is prefixed by the %w modifier. Floating-point and SIMD register operands
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
// %q modifier.
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
  // At this point, we have to lower this constraint to something else, so we
  // lower it to an "r" or "w". However, by doing this we will force the result
  // to be in register, while the X constraint is much more permissive.
  //
  // Although we are correct (we are free to emit anything, without
  // constraints), we might break use cases that would expect us to be more
  // efficient and emit something else.
  if (!Subtarget->hasFPARMv8())
    return "r";

  if (ConstraintVT.isFloatingPoint())
    return "w";

  if (ConstraintVT.isVector() &&
     (ConstraintVT.getSizeInBits() == 64 ||
      ConstraintVT.getSizeInBits() == 128))
    return "w";

  return "r";
}

enum PredicateConstraint {
  Upl,
  Upa,
  Invalid
};

static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
  PredicateConstraint P = PredicateConstraint::Invalid;
  if (Constraint == "Upa")
    P = PredicateConstraint::Upa;
  if (Constraint == "Upl")
    P = PredicateConstraint::Upl;
  return P;
}

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default:
      break;
    case 'x':
    case 'w':
    case 'y':
      return C_RegisterClass;
    // An address with a single base register. Due to the way we
    // currently handle addresses it is the same as 'r'.
    case 'Q':
      return C_Memory;
    case 'I':
    case 'J':
    case 'K':
    case 'L':
    case 'M':
    case 'N':
    case 'Y':
    case 'Z':
      return C_Immediate;
    case 'z':
    case 'S': // A symbolic address
      return C_Other;
    }
  } else if (parsePredicateConstraint(Constraint) !=
             PredicateConstraint::Invalid)
      return C_RegisterClass;
  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
  // If we don't have a value, we can't do a match,
  // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'x':
  case 'w':
  case 'y':
    if (type->isFloatingPointTy() || type->isVectorTy())
      weight = CW_Register;
    break;
  case 'z':
    weight = CW_Constant;
    break;
  case 'U':
    if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
      weight = CW_Register;
    break;
  }
  return weight;
}

std::pair<unsigned, const TargetRegisterClass *>
AArch64TargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':
      if (VT.getSizeInBits() == 64)
        return std::make_pair(0U, &AArch64::GPR64commonRegClass);
      return std::make_pair(0U, &AArch64::GPR32commonRegClass);
    case 'w':
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector())
        return std::make_pair(0U, &AArch64::ZPRRegClass);
      if (VT.getSizeInBits() == 16)
        return std::make_pair(0U, &AArch64::FPR16RegClass);
      if (VT.getSizeInBits() == 32)
        return std::make_pair(0U, &AArch64::FPR32RegClass);
      if (VT.getSizeInBits() == 64)
        return std::make_pair(0U, &AArch64::FPR64RegClass);
      if (VT.getSizeInBits() == 128)
        return std::make_pair(0U, &AArch64::FPR128RegClass);
      break;
    // The instructions that this constraint is designed for can
    // only take 128-bit registers so just use that regclass.
    case 'x':
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector())
        return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
      if (VT.getSizeInBits() == 128)
        return std::make_pair(0U, &AArch64::FPR128_loRegClass);
      break;
    case 'y':
      if (!Subtarget->hasFPARMv8())
        break;
      if (VT.isScalableVector())
        return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
      break;
    }
  } else {
    PredicateConstraint PC = parsePredicateConstraint(Constraint);
    if (PC != PredicateConstraint::Invalid) {
      assert(VT.isScalableVector());
      bool restricted = (PC == PredicateConstraint::Upl);
      return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
                          : std::make_pair(0U, &AArch64::PPRRegClass);
    }
  }
  if (StringRef("{cc}").equals_lower(Constraint))
    return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);

  // Use the default implementation in TargetLowering to convert the register
  // constraint into a member of a register class.
  std::pair<unsigned, const TargetRegisterClass *> Res;
  Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);

  // Not found as a standard register?
  if (!Res.second) {
    unsigned Size = Constraint.size();
    if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
        tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
      int RegNo;
      bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
      if (!Failed && RegNo >= 0 && RegNo <= 31) {
        // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
        // By default we'll emit v0-v31 for this unless there's a modifier where
        // we'll emit the correct register as well.
        if (VT != MVT::Other && VT.getSizeInBits() == 64) {
          Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
          Res.second = &AArch64::FPR64RegClass;
        } else {
          Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
          Res.second = &AArch64::FPR128RegClass;
        }
      }
    }
  }

  if (Res.second && !Subtarget->hasFPARMv8() &&
      !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
      !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
    return std::make_pair(0U, nullptr);

  return Res;
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void AArch64TargetLowering::LowerAsmOperandForConstraint(
    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
    SelectionDAG &DAG) const {
  SDValue Result;

  // Currently only support length 1 constraints.
  if (Constraint.length() != 1)
    return;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default:
    break;

  // This set of constraints deal with valid constants for various instructions.
  // Validate and return a target constant for them if we can.
  case 'z': {
    // 'z' maps to xzr or wzr so it needs an input of 0.
    if (!isNullConstant(Op))
      return;

    if (Op.getValueType() == MVT::i64)
      Result = DAG.getRegister(AArch64::XZR, MVT::i64);
    else
      Result = DAG.getRegister(AArch64::WZR, MVT::i32);
    break;
  }
  case 'S': {
    // An absolute symbolic address or label reference.
    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
                                          GA->getValueType(0));
    } else if (const BlockAddressSDNode *BA =
                   dyn_cast<BlockAddressSDNode>(Op)) {
      Result =
          DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
    } else if (const ExternalSymbolSDNode *ES =
                   dyn_cast<ExternalSymbolSDNode>(Op)) {
      Result =
          DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
    } else
      return;
    break;
  }

  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    if (!C)
      return;

    // Grab the value and do some validation.
    uint64_t CVal = C->getZExtValue();
    switch (ConstraintLetter) {
    // The I constraint applies only to simple ADD or SUB immediate operands:
    // i.e. 0 to 4095 with optional shift by 12
    // The J constraint applies only to ADD or SUB immediates that would be
    // valid when negated, i.e. if [an add pattern] were to be output as a SUB
    // instruction [or vice versa], in other words -1 to -4095 with optional
    // left shift by 12.
    case 'I':
      if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
        break;
      return;
    case 'J': {
      uint64_t NVal = -C->getSExtValue();
      if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
        CVal = C->getSExtValue();
        break;
      }
      return;
    }
    // The K and L constraints apply *only* to logical immediates, including
    // what used to be the MOVI alias for ORR (though the MOVI alias has now
    // been removed and MOV should be used). So these constraints have to
    // distinguish between bit patterns that are valid 32-bit or 64-bit
    // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
    // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
    // versa.
    case 'K':
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
        break;
      return;
    case 'L':
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
        break;
      return;
    // The M and N constraints are a superset of K and L respectively, for use
    // with the MOV (immediate) alias. As well as the logical immediates they
    // also match 32 or 64-bit immediates that can be loaded either using a
    // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
    // (M) or 64-bit 0x1234000000000000 (N) etc.
    // As a note some of this code is liberally stolen from the asm parser.
    case 'M': {
      if (!isUInt<32>(CVal))
        return;
      if (AArch64_AM::isLogicalImmediate(CVal, 32))
        break;
      if ((CVal & 0xFFFF) == CVal)
        break;
      if ((CVal & 0xFFFF0000ULL) == CVal)
        break;
      uint64_t NCVal = ~(uint32_t)CVal;
      if ((NCVal & 0xFFFFULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
        break;
      return;
    }
    case 'N': {
      if (AArch64_AM::isLogicalImmediate(CVal, 64))
        break;
      if ((CVal & 0xFFFFULL) == CVal)
        break;
      if ((CVal & 0xFFFF0000ULL) == CVal)
        break;
      if ((CVal & 0xFFFF00000000ULL) == CVal)
        break;
      if ((CVal & 0xFFFF000000000000ULL) == CVal)
        break;
      uint64_t NCVal = ~CVal;
      if ((NCVal & 0xFFFFULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF0000ULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF00000000ULL) == NCVal)
        break;
      if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
        break;
      return;
    }
    default:
      return;
    }

    // All assembler immediates are 64-bit integers.
    Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
    break;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

//===----------------------------------------------------------------------===//
//                     AArch64 Advanced SIMD Support
//===----------------------------------------------------------------------===//

/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
  EVT VT = V64Reg.getValueType();
  unsigned NarrowSize = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
  MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
  SDLoc DL(V64Reg);

  return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
                     V64Reg, DAG.getConstant(0, DL, MVT::i32));
}

/// getExtFactor - Determine the adjustment factor for the position when
/// generating an "extract from vector registers" instruction.
static unsigned getExtFactor(SDValue &V) {
  EVT EltType = V.getValueType().getVectorElementType();
  return EltType.getSizeInBits() / 8;
}

/// NarrowVector - Given a value in the V128 register class, produce the
/// equivalent value in the V64 register class.
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
  EVT VT = V128Reg.getValueType();
  unsigned WideSize = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
  SDLoc DL(V128Reg);

  return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
}

// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
  LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  unsigned NumElts = VT.getVectorNumElements();

  struct ShuffleSourceInfo {
    SDValue Vec;
    unsigned MinElt;
    unsigned MaxElt;

    // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
    // be compatible with the shuffle we intend to construct. As a result
    // ShuffleVec will be some sliding window into the original Vec.
    SDValue ShuffleVec;

    // Code should guarantee that element i in Vec starts at element "WindowBase
    // + i * WindowScale in ShuffleVec".
    int WindowBase;
    int WindowScale;

    ShuffleSourceInfo(SDValue Vec)
      : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
          ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}

    bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
  };

  // First gather all vectors used as an immediate source for this BUILD_VECTOR
  // node.
  SmallVector<ShuffleSourceInfo, 2> Sources;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.isUndef())
      continue;
    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
             !isa<ConstantSDNode>(V.getOperand(1))) {
      LLVM_DEBUG(
          dbgs() << "Reshuffle failed: "
                    "a shuffle can only come from building a vector from "
                    "various elements of other vectors, provided their "
                    "indices are constant\n");
      return SDValue();
    }

    // Add this element source to the list if it's not already there.
    SDValue SourceVec = V.getOperand(0);
    auto Source = find(Sources, SourceVec);
    if (Source == Sources.end())
      Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));

    // Update the minimum and maximum lane number seen.
    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
    Source->MinElt = std::min(Source->MinElt, EltNo);
    Source->MaxElt = std::max(Source->MaxElt, EltNo);
  }

  if (Sources.size() > 2) {
    LLVM_DEBUG(
        dbgs() << "Reshuffle failed: currently only do something sane when at "
                  "most two source vectors are involved\n");
    return SDValue();
  }

  // Find out the smallest element size among result and two sources, and use
  // it as element size to build the shuffle_vector.
  EVT SmallestEltTy = VT.getVectorElementType();
  for (auto &Source : Sources) {
    EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
    if (SrcEltTy.bitsLT(SmallestEltTy)) {
      SmallestEltTy = SrcEltTy;
    }
  }
  unsigned ResMultiplier =
      VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
  NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
  EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);

  // If the source vector is too wide or too narrow, we may nevertheless be able
  // to construct a compatible shuffle either by concatenating it with UNDEF or
  // extracting a suitable range of elements.
  for (auto &Src : Sources) {
    EVT SrcVT = Src.ShuffleVec.getValueType();

    if (SrcVT.getSizeInBits() == VT.getSizeInBits())
      continue;

    // This stage of the search produces a source with the same element type as
    // the original, but with a total width matching the BUILD_VECTOR output.
    EVT EltVT = SrcVT.getVectorElementType();
    unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
    EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);

    if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
      assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
      // We can pad out the smaller vector for free, so if it's part of a
      // shuffle...
      Src.ShuffleVec =
          DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
                      DAG.getUNDEF(Src.ShuffleVec.getValueType()));
      continue;
    }

    assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());

    if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
      LLVM_DEBUG(
          dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
      return SDValue();
    }

    if (Src.MinElt >= NumSrcElts) {
      // The extraction can just take the second half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
      Src.WindowBase = -NumSrcElts;
    } else if (Src.MaxElt < NumSrcElts) {
      // The extraction can just take the first half
      Src.ShuffleVec =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i64));
    } else {
      // An actual VEXT is needed
      SDValue VEXTSrc1 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(0, dl, MVT::i64));
      SDValue VEXTSrc2 =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
                      DAG.getConstant(NumSrcElts, dl, MVT::i64));
      unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);

      Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
                                   VEXTSrc2,
                                   DAG.getConstant(Imm, dl, MVT::i32));
      Src.WindowBase = -Src.MinElt;
    }
  }

  // Another possible incompatibility occurs from the vector element types. We
  // can fix this by bitcasting the source vectors to the same type we intend
  // for the shuffle.
  for (auto &Src : Sources) {
    EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
    if (SrcEltTy == SmallestEltTy)
      continue;
    assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
    Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
    Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
    Src.WindowBase *= Src.WindowScale;
  }

  // Final sanity check before we try to actually produce a shuffle.
  LLVM_DEBUG(for (auto Src
                  : Sources)
                 assert(Src.ShuffleVec.getValueType() == ShuffleVT););

  // The stars all align, our next step is to produce the mask for the shuffle.
  SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
  int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
    SDValue Entry = Op.getOperand(i);
    if (Entry.isUndef())
      continue;

    auto Src = find(Sources, Entry.getOperand(0));
    int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();

    // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
    // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
    // segment.
    EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
    int BitsDefined =
        std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
    int LanesDefined = BitsDefined / BitsPerShuffleLane;

    // This source is expected to fill ResMultiplier lanes of the final shuffle,
    // starting at the appropriate offset.
    int *LaneMask = &Mask[i * ResMultiplier];

    int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
    ExtractBase += NumElts * (Src - Sources.begin());
    for (int j = 0; j < LanesDefined; ++j)
      LaneMask[j] = ExtractBase + j;
  }

  // Final check before we try to produce nonsense...
  if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
    LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
    return SDValue();
  }

  SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
  for (unsigned i = 0; i < Sources.size(); ++i)
    ShuffleOps[i] = Sources[i].ShuffleVec;

  SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
                                         ShuffleOps[1], Mask);
  SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);

  LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
             dbgs() << "Reshuffle, creating node: "; V.dump(););

  return V;
}

// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
  unsigned NumElts = VT.getVectorNumElements();

  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
  if (M[0] < 0)
    return false;

  Imm = M[0];

  // If this is a VEXT shuffle, the immediate value is the index of the first
  // element.  The other shuffle indices must be the successive elements after
  // the first one.
  unsigned ExpectedElt = Imm;
  for (unsigned i = 1; i < NumElts; ++i) {
    // Increment the expected index.  If it wraps around, just follow it
    // back to index zero and keep going.
    ++ExpectedElt;
    if (ExpectedElt == NumElts)
      ExpectedElt = 0;

    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if (ExpectedElt != static_cast<unsigned>(M[i]))
      return false;
  }

  return true;
}

// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are different.
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
                      unsigned &Imm) {
  // Look for the first non-undef element.
  const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });

  // Benefit form APInt to handle overflow when calculating expected element.
  unsigned NumElts = VT.getVectorNumElements();
  unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
  APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
  // The following shuffle indices must be the successive elements after the
  // first real element.
  const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
      [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
  if (FirstWrongElt != M.end())
    return false;

  // The index of an EXT is the first element if it is not UNDEF.
  // Watch out for the beginning UNDEFs. The EXT index should be the expected
  // value of the first element.  E.g.
  // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
  // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
  // ExpectedElt is the last mask index plus 1.
  Imm = ExpectedElt.getZExtValue();

  // There are two difference cases requiring to reverse input vectors.
  // For example, for vector <4 x i32> we have the following cases,
  // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
  // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
  // For both cases, we finally use mask <5, 6, 7, 0>, which requires
  // to reverse two input vectors.
  if (Imm < NumElts)
    ReverseEXT = true;
  else
    Imm -= NumElts;

  return true;
}

/// isREVMask - Check if a vector shuffle corresponds to a REV
/// instruction with the specified blocksize.  (The order of the elements
/// within each block of the vector is reversed.)
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
         "Only possible block sizes for REV are: 16, 32, 64");

  unsigned EltSz = VT.getScalarSizeInBits();
  if (EltSz == 64)
    return false;

  unsigned NumElts = VT.getVectorNumElements();
  unsigned BlockElts = M[0] + 1;
  // If the first shuffle index is UNDEF, be optimistic.
  if (M[0] < 0)
    BlockElts = BlockSize / EltSz;

  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
    return false;

  for (unsigned i = 0; i < NumElts; ++i) {
    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
      return false;
  }

  return true;
}

static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  unsigned Idx = WhichResult * NumElts / 2;
  for (unsigned i = 0; i != NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
      return false;
    Idx += 1;
  }

  return true;
}

static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i != NumElts; ++i) {
    if (M[i] < 0)
      continue; // ignore UNDEF indices
    if ((unsigned)M[i] != 2 * i + WhichResult)
      return false;
  }

  return true;
}

static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i < NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
      return false;
  }
  return true;
}

/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  unsigned Idx = WhichResult * NumElts / 2;
  for (unsigned i = 0; i != NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
      return false;
    Idx += 1;
  }

  return true;
}

/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned Half = VT.getVectorNumElements() / 2;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned j = 0; j != 2; ++j) {
    unsigned Idx = WhichResult;
    for (unsigned i = 0; i != Half; ++i) {
      int MIdx = M[i + j * Half];
      if (MIdx >= 0 && (unsigned)MIdx != Idx)
        return false;
      Idx += 2;
    }
  }

  return true;
}

/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts % 2 != 0)
    return false;
  WhichResult = (M[0] == 0 ? 0 : 1);
  for (unsigned i = 0; i < NumElts; i += 2) {
    if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
        (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
      return false;
  }
  return true;
}

static bool isINSMask(ArrayRef<int> M, int NumInputElements,
                      bool &DstIsLeft, int &Anomaly) {
  if (M.size() != static_cast<size_t>(NumInputElements))
    return false;

  int NumLHSMatch = 0, NumRHSMatch = 0;
  int LastLHSMismatch = -1, LastRHSMismatch = -1;

  for (int i = 0; i < NumInputElements; ++i) {
    if (M[i] == -1) {
      ++NumLHSMatch;
      ++NumRHSMatch;
      continue;
    }

    if (M[i] == i)
      ++NumLHSMatch;
    else
      LastLHSMismatch = i;

    if (M[i] == i + NumInputElements)
      ++NumRHSMatch;
    else
      LastRHSMismatch = i;
  }

  if (NumLHSMatch == NumInputElements - 1) {
    DstIsLeft = true;
    Anomaly = LastLHSMismatch;
    return true;
  } else if (NumRHSMatch == NumInputElements - 1) {
    DstIsLeft = false;
    Anomaly = LastRHSMismatch;
    return true;
  }

  return false;
}

static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
  if (VT.getSizeInBits() != 128)
    return false;

  unsigned NumElts = VT.getVectorNumElements();

  for (int I = 0, E = NumElts / 2; I != E; I++) {
    if (Mask[I] != I)
      return false;
  }

  int Offset = NumElts / 2;
  for (int I = NumElts / 2, E = NumElts; I != E; I++) {
    if (Mask[I] != I + SplitLHS * Offset)
      return false;
  }

  return true;
}

static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue V0 = Op.getOperand(0);
  SDValue V1 = Op.getOperand(1);
  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();

  if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
      VT.getVectorElementType() != V1.getValueType().getVectorElementType())
    return SDValue();

  bool SplitV0 = V0.getValueSizeInBits() == 128;

  if (!isConcatMask(Mask, VT, SplitV0))
    return SDValue();

  EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
  if (SplitV0) {
    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
                     DAG.getConstant(0, DL, MVT::i64));
  }
  if (V1.getValueSizeInBits() == 128) {
    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
                     DAG.getConstant(0, DL, MVT::i64));
  }
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
}

/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
                                      SDValue RHS, SelectionDAG &DAG,
                                      const SDLoc &dl) {
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
  unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);

  enum {
    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
    OP_VREV,
    OP_VDUP0,
    OP_VDUP1,
    OP_VDUP2,
    OP_VDUP3,
    OP_VEXT1,
    OP_VEXT2,
    OP_VEXT3,
    OP_VUZPL, // VUZP, left result
    OP_VUZPR, // VUZP, right result
    OP_VZIPL, // VZIP, left result
    OP_VZIPR, // VZIP, right result
    OP_VTRNL, // VTRN, left result
    OP_VTRNR  // VTRN, right result
  };

  if (OpNum == OP_COPY) {
    if (LHSID == (1 * 9 + 2) * 9 + 3)
      return LHS;
    assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
    return RHS;
  }

  SDValue OpLHS, OpRHS;
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
  EVT VT = OpLHS.getValueType();

  switch (OpNum) {
  default:
    llvm_unreachable("Unknown shuffle opcode!");
  case OP_VREV:
    // VREV divides the vector in half and swaps within the half.
    if (VT.getVectorElementType() == MVT::i32 ||
        VT.getVectorElementType() == MVT::f32)
      return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
    // vrev <4 x i16> -> REV32
    if (VT.getVectorElementType() == MVT::i16 ||
        VT.getVectorElementType() == MVT::f16)
      return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
    // vrev <4 x i8> -> REV16
    assert(VT.getVectorElementType() == MVT::i8);
    return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
  case OP_VDUP0:
  case OP_VDUP1:
  case OP_VDUP2:
  case OP_VDUP3: {
    EVT EltTy = VT.getVectorElementType();
    unsigned Opcode;
    if (EltTy == MVT::i8)
      Opcode = AArch64ISD::DUPLANE8;
    else if (EltTy == MVT::i16 || EltTy == MVT::f16)
      Opcode = AArch64ISD::DUPLANE16;
    else if (EltTy == MVT::i32 || EltTy == MVT::f32)
      Opcode = AArch64ISD::DUPLANE32;
    else if (EltTy == MVT::i64 || EltTy == MVT::f64)
      Opcode = AArch64ISD::DUPLANE64;
    else
      llvm_unreachable("Invalid vector element type?");

    if (VT.getSizeInBits() == 64)
      OpLHS = WidenVector(OpLHS, DAG);
    SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
    return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
  }
  case OP_VEXT1:
  case OP_VEXT2:
  case OP_VEXT3: {
    unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
    return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
                       DAG.getConstant(Imm, dl, MVT::i32));
  }
  case OP_VUZPL:
    return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VUZPR:
    return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VZIPL:
    return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VZIPR:
    return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VTRNL:
    return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  case OP_VTRNR:
    return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
                       OpRHS);
  }
}

static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
                           SelectionDAG &DAG) {
  // Check to see if we can use the TBL instruction.
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  SDLoc DL(Op);

  EVT EltVT = Op.getValueType().getVectorElementType();
  unsigned BytesPerElt = EltVT.getSizeInBits() / 8;

  SmallVector<SDValue, 8> TBLMask;
  for (int Val : ShuffleMask) {
    for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
      unsigned Offset = Byte + Val * BytesPerElt;
      TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
    }
  }

  MVT IndexVT = MVT::v8i8;
  unsigned IndexLen = 8;
  if (Op.getValueSizeInBits() == 128) {
    IndexVT = MVT::v16i8;
    IndexLen = 16;
  }

  SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
  SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);

  SDValue Shuffle;
  if (V2.getNode()->isUndef()) {
    if (IndexLen == 8)
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
    Shuffle = DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
        DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
        DAG.getBuildVector(IndexVT, DL,
                           makeArrayRef(TBLMask.data(), IndexLen)));
  } else {
    if (IndexLen == 8) {
      V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
      Shuffle = DAG.getNode(
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
          DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
          DAG.getBuildVector(IndexVT, DL,
                             makeArrayRef(TBLMask.data(), IndexLen)));
    } else {
      // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
      // cannot currently represent the register constraints on the input
      // table registers.
      //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
      //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
      //                   IndexLen));
      Shuffle = DAG.getNode(
          ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
          DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
          V2Cst, DAG.getBuildVector(IndexVT, DL,
                                    makeArrayRef(TBLMask.data(), IndexLen)));
    }
  }
  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
}

static unsigned getDUPLANEOp(EVT EltType) {
  if (EltType == MVT::i8)
    return AArch64ISD::DUPLANE8;
  if (EltType == MVT::i16 || EltType == MVT::f16)
    return AArch64ISD::DUPLANE16;
  if (EltType == MVT::i32 || EltType == MVT::f32)
    return AArch64ISD::DUPLANE32;
  if (EltType == MVT::i64 || EltType == MVT::f64)
    return AArch64ISD::DUPLANE64;

  llvm_unreachable("Invalid vector element type?");
}

SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
                                                   SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();

  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());

  // Convert shuffles that are directly supported on NEON to target-specific
  // DAG nodes, instead of keeping them as shuffles and matching them again
  // during code selection.  This is more efficient and avoids the possibility
  // of inconsistencies between legalization and selection.
  ArrayRef<int> ShuffleMask = SVN->getMask();

  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);

  if (SVN->isSplat()) {
    int Lane = SVN->getSplatIndex();
    // If this is undef splat, generate it via "just" vdup, if possible.
    if (Lane == -1)
      Lane = 0;

    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
      return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
                         V1.getOperand(0));
    // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
    // constant. If so, we can just reference the lane's definition directly.
    if (V1.getOpcode() == ISD::BUILD_VECTOR &&
        !isa<ConstantSDNode>(V1.getOperand(Lane)))
      return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));

    // Otherwise, duplicate from the lane of the input vector.
    unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());

    // Try to eliminate a bitcasted extract subvector before a DUPLANE.
    auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
      // Match: dup (bitcast (extract_subv X, C)), LaneC
      if (BitCast.getOpcode() != ISD::BITCAST ||
          BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
        return false;

      // The extract index must align in the destination type. That may not
      // happen if the bitcast is from narrow to wide type.
      SDValue Extract = BitCast.getOperand(0);
      unsigned ExtIdx = Extract.getConstantOperandVal(1);
      unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
      unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
      unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
      if (ExtIdxInBits % CastedEltBitWidth != 0)
        return false;

      // Update the lane value by offsetting with the scaled extract index.
      LaneC += ExtIdxInBits / CastedEltBitWidth;

      // Determine the casted vector type of the wide vector input.
      // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
      // Examples:
      // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
      // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
      unsigned SrcVecNumElts =
          Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
      CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
                                SrcVecNumElts);
      return true;
    };
    MVT CastVT;
    if (getScaledOffsetDup(V1, Lane, CastVT)) {
      V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0));
    } else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
      // The lane is incremented by the index of the extract.
      // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
      Lane += V1.getConstantOperandVal(1);
      V1 = V1.getOperand(0);
    } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
      // The lane is decremented if we are splatting from the 2nd operand.
      // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
      unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
      Lane -= Idx * VT.getVectorNumElements() / 2;
      V1 = WidenVector(V1.getOperand(Idx), DAG);
    } else if (VT.getSizeInBits() == 64) {
      // Widen the operand to 128-bit register with undef.
      V1 = WidenVector(V1, DAG);
    }
    return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
  }

  if (isREVMask(ShuffleMask, VT, 64))
    return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
  if (isREVMask(ShuffleMask, VT, 32))
    return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
  if (isREVMask(ShuffleMask, VT, 16))
    return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);

  bool ReverseEXT = false;
  unsigned Imm;
  if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
    if (ReverseEXT)
      std::swap(V1, V2);
    Imm *= getExtFactor(V1);
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
                       DAG.getConstant(Imm, dl, MVT::i32));
  } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
    Imm *= getExtFactor(V1);
    return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
                       DAG.getConstant(Imm, dl, MVT::i32));
  }

  unsigned WhichResult;
  if (isZIPMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }
  if (isUZPMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }
  if (isTRNMask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
  }

  if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }
  if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }
  if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
    unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
    return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
  }

  if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
    return Concat;

  bool DstIsLeft;
  int Anomaly;
  int NumInputElements = V1.getValueType().getVectorNumElements();
  if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
    SDValue DstVec = DstIsLeft ? V1 : V2;
    SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);

    SDValue SrcVec = V1;
    int SrcLane = ShuffleMask[Anomaly];
    if (SrcLane >= NumInputElements) {
      SrcVec = V2;
      SrcLane -= VT.getVectorNumElements();
    }
    SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);

    EVT ScalarVT = VT.getVectorElementType();

    if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
      ScalarVT = MVT::i32;

    return DAG.getNode(
        ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
        DstLaneV);
  }

  // If the shuffle is not directly supported and it has 4 elements, use
  // the PerfectShuffle-generated table to synthesize it from other shuffles.
  unsigned NumElts = VT.getVectorNumElements();
  if (NumElts == 4) {
    unsigned PFIndexes[4];
    for (unsigned i = 0; i != 4; ++i) {
      if (ShuffleMask[i] < 0)
        PFIndexes[i] = 8;
      else
        PFIndexes[i] = ShuffleMask[i];
    }

    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
                            PFIndexes[2] * 9 + PFIndexes[3];
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    unsigned Cost = (PFEntry >> 30);

    if (Cost <= 4)
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
  }

  return GenerateTBL(Op, ShuffleMask, DAG);
}

SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT ElemVT = VT.getScalarType();

  SDValue SplatVal = Op.getOperand(0);

  // Extend input splat value where needed to fit into a GPR (32b or 64b only)
  // FPRs don't have this restriction.
  switch (ElemVT.getSimpleVT().SimpleTy) {
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32);
    return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
  case MVT::i64:
    SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
    return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
  case MVT::i1: {
    // The general case of i1.  There isn't any natural way to do this,
    // so we use some trickery with whilelo.
    // TODO: Add special cases for splat of constant true/false.
    SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
    SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal,
                           DAG.getValueType(MVT::i1));
    SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl,
                                       MVT::i64);
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID,
                       DAG.getConstant(0, dl, MVT::i64), SplatVal);
  }
  // TODO: we can support float types, but haven't added patterns yet.
  case MVT::f16:
  case MVT::f32:
  case MVT::f64:
  default:
    report_fatal_error("Unsupported SPLAT_VECTOR input operand type");
  }
}

static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
                               APInt &UndefBits) {
  EVT VT = BVN->getValueType(0);
  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
    unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;

    for (unsigned i = 0; i < NumSplats; ++i) {
      CnstBits <<= SplatBitSize;
      UndefBits <<= SplatBitSize;
      CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
      UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
    }

    return true;
  }

  return false;
}

// Try 64-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                 const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;

    if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
      Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);

      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 32-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits,
                                  const SDValue *LHS = nullptr) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
      Shift = 0;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
      Shift = 8;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
      Shift = 16;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
      Shift = 24;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov;

      if (LHS)
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));
      else
        Mov = DAG.getNode(NewOp, dl, MovTy,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));

      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 16-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits,
                                  const SDValue *LHS = nullptr) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
      Shift = 0;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
      Shift = 8;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov;

      if (LHS)
        Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));
      else
        Mov = DAG.getNode(NewOp, dl, MovTy,
                          DAG.getConstant(Value, dl, MVT::i32),
                          DAG.getConstant(Shift, dl, MVT::i32));

      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 32-bit splatted SIMD immediate with shifted ones.
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
                                    SelectionDAG &DAG, const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
    bool isAdvSIMDModImm = false;
    uint64_t Shift;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
      Shift = 264;
    }
    else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
      Shift = 272;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32),
                                DAG.getConstant(Shift, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try 8-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                 const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;

    if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
      Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);

      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Try FP splatted SIMD immediate.
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
                                  const APInt &Bits) {
  if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
    uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
    EVT VT = Op.getValueType();
    bool isWide = (VT.getSizeInBits() == 128);
    MVT MovTy;
    bool isAdvSIMDModImm = false;

    if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
      MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
    }
    else if (isWide &&
             (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
      Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
      MovTy = MVT::v2f64;
    }

    if (isAdvSIMDModImm) {
      SDLoc dl(Op);
      SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
                                DAG.getConstant(Value, dl, MVT::i32));
      return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
    }
  }

  return SDValue();
}

// Specialized code to quickly find if PotentialBVec is a BuildVector that
// consists of only the same constant int value, returned in reference arg
// ConstVal
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
                                     uint64_t &ConstVal) {
  BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
  if (!Bvec)
    return false;
  ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
  if (!FirstElt)
    return false;
  EVT VT = Bvec->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();
  for (unsigned i = 1; i < NumElts; ++i)
    if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
      return false;
  ConstVal = FirstElt->getZExtValue();
  return true;
}

static unsigned getIntrinsicID(const SDNode *N) {
  unsigned Opcode = N->getOpcode();
  switch (Opcode) {
  default:
    return Intrinsic::not_intrinsic;
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    if (IID < Intrinsic::num_intrinsics)
      return IID;
    return Intrinsic::not_intrinsic;
  }
  }
}

// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
// Also, logical shift right -> sri, with the same structure.
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);

  if (!VT.isVector())
    return SDValue();

  SDLoc DL(N);

  // Is the first op an AND?
  const SDValue And = N->getOperand(0);
  if (And.getOpcode() != ISD::AND)
    return SDValue();

  // Is the second op an shl or lshr?
  SDValue Shift = N->getOperand(1);
  // This will have been turned into: AArch64ISD::VSHL vector, #shift
  // or AArch64ISD::VLSHR vector, #shift
  unsigned ShiftOpc = Shift.getOpcode();
  if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
    return SDValue();
  bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;

  // Is the shift amount constant?
  ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
  if (!C2node)
    return SDValue();

  // Is the and mask vector all constant?
  uint64_t C1;
  if (!isAllConstantBuildVector(And.getOperand(1), C1))
    return SDValue();

  // Is C1 == ~C2, taking into account how much one can shift elements of a
  // particular size?
  uint64_t C2 = C2node->getZExtValue();
  unsigned ElemSizeInBits = VT.getScalarSizeInBits();
  if (C2 > ElemSizeInBits)
    return SDValue();
  unsigned ElemMask = (1 << ElemSizeInBits) - 1;
  if ((C1 & ElemMask) != (~C2 & ElemMask))
    return SDValue();

  SDValue X = And.getOperand(0);
  SDValue Y = Shift.getOperand(0);

  unsigned Intrin =
      IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
  SDValue ResultSLI =
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                  DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
                  Shift.getOperand(1));

  LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
  LLVM_DEBUG(N->dump(&DAG));
  LLVM_DEBUG(dbgs() << "into: \n");
  LLVM_DEBUG(ResultSLI->dump(&DAG));

  ++NumShiftInserts;
  return ResultSLI;
}

SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
  if (EnableAArch64SlrGeneration) {
    if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
      return Res;
  }

  EVT VT = Op.getValueType();

  SDValue LHS = Op.getOperand(0);
  BuildVectorSDNode *BVN =
      dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
  if (!BVN) {
    // OR commutes, so try swapping the operands.
    LHS = Op.getOperand(1);
    BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
  }
  if (!BVN)
    return Op;

  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;

    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
                                    DefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
                                    DefBits, &LHS)))
      return NewOp;

    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
                                    UndefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
                                    UndefBits, &LHS)))
      return NewOp;
  }

  // We can always fall back to a non-immediate OR.
  return Op;
}

// Normalize the operands of BUILD_VECTOR. The value of constant operands will
// be truncated to fit element width.
static SDValue NormalizeBuildVector(SDValue Op,
                                    SelectionDAG &DAG) {
  assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  EVT EltTy= VT.getVectorElementType();

  if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
    return Op;

  SmallVector<SDValue, 16> Ops;
  for (SDValue Lane : Op->ops()) {
    // For integer vectors, type legalization would have promoted the
    // operands already. Otherwise, if Op is a floating-point splat
    // (with operands cast to integers), then the only possibilities
    // are constants and UNDEFs.
    if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
      APInt LowBits(EltTy.getSizeInBits(),
                    CstLane->getZExtValue());
      Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
    } else if (Lane.getNode()->isUndef()) {
      Lane = DAG.getUNDEF(MVT::i32);
    } else {
      assert(Lane.getValueType() == MVT::i32 &&
             "Unexpected BUILD_VECTOR operand type");
    }
    Ops.push_back(Lane);
  }
  return DAG.getBuildVector(VT, dl, Ops);
}

static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
  EVT VT = Op.getValueType();

  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
      return NewOp;

    DefBits = ~DefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
      return NewOp;

    DefBits = UndefBits;
    if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
      return NewOp;

    DefBits = ~UndefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
      return NewOp;
  }

  return SDValue();
}

SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
                                                 SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  // Try to build a simple constant vector.
  Op = NormalizeBuildVector(Op, DAG);
  if (VT.isInteger()) {
    // Certain vector constants, used to express things like logical NOT and
    // arithmetic NEG, are passed through unmodified.  This allows special
    // patterns for these operations to match, which will lower these constants
    // to whatever is proven necessary.
    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
    if (BVN->isConstant())
      if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
        unsigned BitSize = VT.getVectorElementType().getSizeInBits();
        APInt Val(BitSize,
                  Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
        if (Val.isNullValue() || Val.isAllOnesValue())
          return Op;
      }
  }

  if (SDValue V = ConstantBuildVector(Op, DAG))
    return V;

  // Scan through the operands to find some interesting properties we can
  // exploit:
  //   1) If only one value is used, we can use a DUP, or
  //   2) if only the low element is not undef, we can just insert that, or
  //   3) if only one constant value is used (w/ some non-constant lanes),
  //      we can splat the constant value into the whole vector then fill
  //      in the non-constant lanes.
  //   4) FIXME: If different constant values are used, but we can intelligently
  //             select the values we'll be overwriting for the non-constant
  //             lanes such that we can directly materialize the vector
  //             some other way (MOVI, e.g.), we can be sneaky.
  //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
  SDLoc dl(Op);
  unsigned NumElts = VT.getVectorNumElements();
  bool isOnlyLowElement = true;
  bool usesOnlyOneValue = true;
  bool usesOnlyOneConstantValue = true;
  bool isConstant = true;
  bool AllLanesExtractElt = true;
  unsigned NumConstantLanes = 0;
  SDValue Value;
  SDValue ConstantValue;
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue V = Op.getOperand(i);
    if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
      AllLanesExtractElt = false;
    if (V.isUndef())
      continue;
    if (i > 0)
      isOnlyLowElement = false;
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
      isConstant = false;

    if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
      ++NumConstantLanes;
      if (!ConstantValue.getNode())
        ConstantValue = V;
      else if (ConstantValue != V)
        usesOnlyOneConstantValue = false;
    }

    if (!Value.getNode())
      Value = V;
    else if (V != Value)
      usesOnlyOneValue = false;
  }

  if (!Value.getNode()) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
    return DAG.getUNDEF(VT);
  }

  // Convert BUILD_VECTOR where all elements but the lowest are undef into
  // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
  // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
  if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
    LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
                         "SCALAR_TO_VECTOR node\n");
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
  }

  if (AllLanesExtractElt) {
    SDNode *Vector = nullptr;
    bool Even = false;
    bool Odd = false;
    // Check whether the extract elements match the Even pattern <0,2,4,...> or
    // the Odd pattern <1,3,5,...>.
    for (unsigned i = 0; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      const SDNode *N = V.getNode();
      if (!isa<ConstantSDNode>(N->getOperand(1)))
        break;
      SDValue N0 = N->getOperand(0);

      // All elements are extracted from the same vector.
      if (!Vector) {
        Vector = N0.getNode();
        // Check that the type of EXTRACT_VECTOR_ELT matches the type of
        // BUILD_VECTOR.
        if (VT.getVectorElementType() !=
            N0.getValueType().getVectorElementType())
          break;
      } else if (Vector != N0.getNode()) {
        Odd = false;
        Even = false;
        break;
      }

      // Extracted values are either at Even indices <0,2,4,...> or at Odd
      // indices <1,3,5,...>.
      uint64_t Val = N->getConstantOperandVal(1);
      if (Val == 2 * i) {
        Even = true;
        continue;
      }
      if (Val - 1 == 2 * i) {
        Odd = true;
        continue;
      }

      // Something does not match: abort.
      Odd = false;
      Even = false;
      break;
    }
    if (Even || Odd) {
      SDValue LHS =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
                      DAG.getConstant(0, dl, MVT::i64));
      SDValue RHS =
          DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
                      DAG.getConstant(NumElts, dl, MVT::i64));

      if (Even && !Odd)
        return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
                           RHS);
      if (Odd && !Even)
        return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
                           RHS);
    }
  }

  // Use DUP for non-constant splats. For f32 constant splats, reduce to
  // i32 and try again.
  if (usesOnlyOneValue) {
    if (!isConstant) {
      if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
          Value.getValueType() != VT) {
        LLVM_DEBUG(
            dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
        return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
      }

      // This is actually a DUPLANExx operation, which keeps everything vectory.

      SDValue Lane = Value.getOperand(1);
      Value = Value.getOperand(0);
      if (Value.getValueSizeInBits() == 64) {
        LLVM_DEBUG(
            dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
                      "widening it\n");
        Value = WidenVector(Value, DAG);
      }

      unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
      return DAG.getNode(Opcode, dl, VT, Value, Lane);
    }

    if (VT.getVectorElementType().isFloatingPoint()) {
      SmallVector<SDValue, 8> Ops;
      EVT EltTy = VT.getVectorElementType();
      assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
              "Unsupported floating-point vector type");
      LLVM_DEBUG(
          dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
                    "BITCASTS, and try again\n");
      MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
      for (unsigned i = 0; i < NumElts; ++i)
        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
      SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
      LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
                 Val.dump(););
      Val = LowerBUILD_VECTOR(Val, DAG);
      if (Val.getNode())
        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
    }
  }

  // If there was only one constant value used and for more than one lane,
  // start by splatting that value, then replace the non-constant lanes. This
  // is better than the default, which will perform a separate initialization
  // for each lane.
  if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
    // Firstly, try to materialize the splat constant.
    SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
            Val = ConstantBuildVector(Vec, DAG);
    if (!Val) {
      // Otherwise, materialize the constant and splat it.
      Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
      DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
    }

    // Now insert the non-constant lanes.
    for (unsigned i = 0; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
      if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
        // Note that type legalization likely mucked about with the VT of the
        // source operand, so we may have to convert it here before inserting.
        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
    }
    return Val;
  }

  // This will generate a load from the constant pool.
  if (isConstant) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
                  "expansion\n");
    return SDValue();
  }

  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
  if (NumElts >= 4) {
    if (SDValue shuffle = ReconstructShuffle(Op, DAG))
      return shuffle;
  }

  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
  // know the default expansion would otherwise fall back on something even
  // worse. For a vector with one or two non-undef values, that's
  // scalar_to_vector for the elements followed by a shuffle (provided the
  // shuffle is valid for the target) and materialization element by element
  // on the stack followed by a load for everything else.
  if (!isConstant && !usesOnlyOneValue) {
    LLVM_DEBUG(
        dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
                  "of INSERT_VECTOR_ELT\n");

    SDValue Vec = DAG.getUNDEF(VT);
    SDValue Op0 = Op.getOperand(0);
    unsigned i = 0;

    // Use SCALAR_TO_VECTOR for lane zero to
    // a) Avoid a RMW dependency on the full vector register, and
    // b) Allow the register coalescer to fold away the copy if the
    //    value is already in an S or D register, and we're forced to emit an
    //    INSERT_SUBREG that we can't fold anywhere.
    //
    // We also allow types like i8 and i16 which are illegal scalar but legal
    // vector element types. After type-legalization the inserted value is
    // extended (i32) and it is safe to cast them to the vector type by ignoring
    // the upper bits of the lowest lane (e.g. v8i8, v4i16).
    if (!Op0.isUndef()) {
      LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
      Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
      ++i;
    }
    LLVM_DEBUG(if (i < NumElts) dbgs()
                   << "Creating nodes for the other vector elements:\n";);
    for (; i < NumElts; ++i) {
      SDValue V = Op.getOperand(i);
      if (V.isUndef())
        continue;
      SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
    }
    return Vec;
  }

  LLVM_DEBUG(
      dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
                "better alternative\n");
  return SDValue();
}

SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                                      SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");

  // Check for non-constant or out of range lane.
  EVT VT = Op.getOperand(0).getValueType();
  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
    return SDValue();


  // Insertion/extraction are legal for V128 types.
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
      VT == MVT::v8f16)
    return Op;

  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
    return SDValue();

  // For V64 types, we perform insertion by expanding the value
  // to a V128 type and perform the insertion on that.
  SDLoc DL(Op);
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
  EVT WideTy = WideVec.getValueType();

  SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
                             Op.getOperand(1), Op.getOperand(2));
  // Re-narrow the resultant vector.
  return NarrowVector(Node, DAG);
}

SDValue
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");

  // Check for non-constant or out of range lane.
  EVT VT = Op.getOperand(0).getValueType();
  ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
    return SDValue();


  // Insertion/extraction are legal for V128 types.
  if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
      VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
      VT == MVT::v8f16)
    return Op;

  if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
      VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
    return SDValue();

  // For V64 types, we perform extraction by expanding the value
  // to a V128 type and perform the extraction on that.
  SDLoc DL(Op);
  SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
  EVT WideTy = WideVec.getValueType();

  EVT ExtrTy = WideTy.getVectorElementType();
  if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
    ExtrTy = MVT::i32;

  // For extractions, we just return the result directly.
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
                     Op.getOperand(1));
}

SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
                                                      SelectionDAG &DAG) const {
  EVT VT = Op.getOperand(0).getValueType();
  SDLoc dl(Op);
  // Just in case...
  if (!VT.isVector())
    return SDValue();

  ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
  if (!Cst)
    return SDValue();
  unsigned Val = Cst->getZExtValue();

  unsigned Size = Op.getValueSizeInBits();

  // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
  if (Val == 0)
    return Op;

  // If this is extracting the upper 64-bits of a 128-bit vector, we match
  // that directly.
  if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
    return Op;

  return SDValue();
}

bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
  if (VT.getVectorNumElements() == 4 &&
      (VT.is128BitVector() || VT.is64BitVector())) {
    unsigned PFIndexes[4];
    for (unsigned i = 0; i != 4; ++i) {
      if (M[i] < 0)
        PFIndexes[i] = 8;
      else
        PFIndexes[i] = M[i];
    }

    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
                            PFIndexes[2] * 9 + PFIndexes[3];
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    unsigned Cost = (PFEntry >> 30);

    if (Cost <= 4)
      return true;
  }

  bool DummyBool;
  int DummyInt;
  unsigned DummyUnsigned;

  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
          isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
          isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
          // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
          isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
          isZIPMask(M, VT, DummyUnsigned) ||
          isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
          isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
          isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
          isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
          isConcatMask(M, VT, VT.getSizeInBits() == 128));
}

/// getVShiftImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
  // Ignore bit_converts.
  while (Op.getOpcode() == ISD::BITCAST)
    Op = Op.getOperand(0);
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
  APInt SplatBits, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
                                    HasAnyUndefs, ElementBits) ||
      SplatBitSize > ElementBits)
    return false;
  Cnt = SplatBits.getSExtValue();
  return true;
}

/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation.  That value must be in the range:
///   0 <= Value < ElementBits for a left shift; or
///   0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}

/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
///   1 <= Value <= ElementBits for a right shift; or
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
  assert(VT.isVector() && "vector shift count is not a vector type");
  int64_t ElementBits = VT.getScalarSizeInBits();
  if (!getVShiftImm(Op, ElementBits, Cnt))
    return false;
  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
}

SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
                                                      SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  int64_t Cnt;

  if (!Op.getOperand(1).getValueType().isVector())
    return Op;
  unsigned EltSize = VT.getScalarSizeInBits();

  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("unexpected shift opcode");

  case ISD::SHL:
    if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
      return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
                         DAG.getConstant(Cnt, DL, MVT::i32));
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                       DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
                                       MVT::i32),
                       Op.getOperand(0), Op.getOperand(1));
  case ISD::SRA:
  case ISD::SRL:
    // Right shift immediate
    if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
      unsigned Opc =
          (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
      return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
                         DAG.getConstant(Cnt, DL, MVT::i32));
    }

    // Right shift register.  Note, there is not a shift right register
    // instruction, but the shift left register instruction takes a signed
    // value, where negative numbers specify a right shift.
    unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
                                                : Intrinsic::aarch64_neon_ushl;
    // negate the shift amount
    SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
    SDValue NegShiftLeft =
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                    DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
                    NegShift);
    return NegShiftLeft;
  }

  return SDValue();
}

static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
                                    AArch64CC::CondCode CC, bool NoNans, EVT VT,
                                    const SDLoc &dl, SelectionDAG &DAG) {
  EVT SrcVT = LHS.getValueType();
  assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
         "function only supposed to emit natural comparisons");

  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
  APInt CnstBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
  bool IsZero = IsCnst && (CnstBits == 0);

  if (SrcVT.getVectorElementType().isFloatingPoint()) {
    switch (CC) {
    default:
      return SDValue();
    case AArch64CC::NE: {
      SDValue Fcmeq;
      if (IsZero)
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
      else
        Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
      return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
    }
    case AArch64CC::EQ:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
    case AArch64CC::GE:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
    case AArch64CC::GT:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
    case AArch64CC::LS:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
    case AArch64CC::LT:
      if (!NoNans)
        return SDValue();
      // If we ignore NaNs then we can use to the MI implementation.
      LLVM_FALLTHROUGH;
    case AArch64CC::MI:
      if (IsZero)
        return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
      return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
    }
  }

  switch (CC) {
  default:
    return SDValue();
  case AArch64CC::NE: {
    SDValue Cmeq;
    if (IsZero)
      Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
    else
      Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
    return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
  }
  case AArch64CC::EQ:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
  case AArch64CC::GE:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
  case AArch64CC::GT:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
  case AArch64CC::LE:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
  case AArch64CC::LS:
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
  case AArch64CC::LO:
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
  case AArch64CC::LT:
    if (IsZero)
      return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
    return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
  case AArch64CC::HI:
    return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
  case AArch64CC::HS:
    return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
  }
}

SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
                                           SelectionDAG &DAG) const {
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
  SDLoc dl(Op);

  if (LHS.getValueType().getVectorElementType().isInteger()) {
    assert(LHS.getValueType() == RHS.getValueType());
    AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
    SDValue Cmp =
        EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
    return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
  }

  const bool FullFP16 =
    static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();

  // Make v4f16 (only) fcmp operations utilise vector instructions
  // v8f16 support will be a litle more complicated
  if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
    if (LHS.getValueType().getVectorNumElements() == 4) {
      LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
      RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
      SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
      DAG.ReplaceAllUsesWith(Op, NewSetcc);
      CmpVT = MVT::v4i32;
    } else
      return SDValue();
  }

  assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
          LHS.getValueType().getVectorElementType() != MVT::f128);

  // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
  // clean.  Some of them require two branches to implement.
  AArch64CC::CondCode CC1, CC2;
  bool ShouldInvert;
  changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);

  bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
  SDValue Cmp =
      EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
  if (!Cmp.getNode())
    return SDValue();

  if (CC2 != AArch64CC::AL) {
    SDValue Cmp2 =
        EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
    if (!Cmp2.getNode())
      return SDValue();

    Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
  }

  Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());

  if (ShouldInvert)
    Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());

  return Cmp;
}

static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
                                  SelectionDAG &DAG) {
  SDValue VecOp = ScalarOp.getOperand(0);
  auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
                     DAG.getConstant(0, DL, MVT::i64));
}

SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc dl(Op);
  switch (Op.getOpcode()) {
  case ISD::VECREDUCE_ADD:
    return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
  case ISD::VECREDUCE_SMAX:
    return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
  case ISD::VECREDUCE_SMIN:
    return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
  case ISD::VECREDUCE_UMAX:
    return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
  case ISD::VECREDUCE_UMIN:
    return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
  case ISD::VECREDUCE_FMAX: {
    assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
    return DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
        DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
        Op.getOperand(0));
  }
  case ISD::VECREDUCE_FMIN: {
    assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
    return DAG.getNode(
        ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
        DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
        Op.getOperand(0));
  }
  default:
    llvm_unreachable("Unhandled reduction");
  }
}

SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
                                                    SelectionDAG &DAG) const {
  auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
  if (!Subtarget.hasLSE())
    return SDValue();

  // LSE has an atomic load-add instruction, but not a load-sub.
  SDLoc dl(Op);
  MVT VT = Op.getSimpleValueType();
  SDValue RHS = Op.getOperand(2);
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
  RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
                       Op.getOperand(0), Op.getOperand(1), RHS,
                       AN->getMemOperand());
}

SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
                                                    SelectionDAG &DAG) const {
  auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
  if (!Subtarget.hasLSE())
    return SDValue();

  // LSE has an atomic load-clear instruction, but not a load-and.
  SDLoc dl(Op);
  MVT VT = Op.getSimpleValueType();
  SDValue RHS = Op.getOperand(2);
  AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
  RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
  return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
                       Op.getOperand(0), Op.getOperand(1), RHS,
                       AN->getMemOperand());
}

SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
    SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);

  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
  if (Subtarget->hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);

  Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
                     DAG.getConstant(4, dl, MVT::i64));
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
  Chain =
      DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
                  Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
                  DAG.getRegisterMask(Mask), Chain.getValue(1));
  // To match the actual intent better, we should read the output from X15 here
  // again (instead of potentially spilling it to the stack), but rereading Size
  // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
  // here.

  Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
                     DAG.getConstant(4, dl, MVT::i64));
  return Chain;
}

SDValue
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  assert(Subtarget->isTargetWindows() &&
         "Only Windows alloca probing supported");
  SDLoc dl(Op);
  // Get the inputs.
  SDNode *Node = Op.getNode();
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
  EVT VT = Node->getValueType(0);

  if (DAG.getMachineFunction().getFunction().hasFnAttribute(
          "no-stack-arg-probe")) {
    SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
    Chain = SP.getValue(1);
    SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
    if (Align)
      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
                       DAG.getConstant(-(uint64_t)Align, dl, VT));
    Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
    SDValue Ops[2] = {SP, Chain};
    return DAG.getMergeValues(Ops, dl);
  }

  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);

  Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);

  SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
  Chain = SP.getValue(1);
  SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
  if (Align)
    SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
                     DAG.getConstant(-(uint64_t)Align, dl, VT));
  Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);

  SDValue Ops[2] = {SP, Chain};
  return DAG.getMergeValues(Ops, dl);
}

/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                               const CallInst &I,
                                               MachineFunction &MF,
                                               unsigned Intrinsic) const {
  auto &DL = I.getModule()->getDataLayout();
  switch (Intrinsic) {
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_ld1x2:
  case Intrinsic::aarch64_neon_ld1x3:
  case Intrinsic::aarch64_neon_ld1x4:
  case Intrinsic::aarch64_neon_ld2lane:
  case Intrinsic::aarch64_neon_ld3lane:
  case Intrinsic::aarch64_neon_ld4lane:
  case Intrinsic::aarch64_neon_ld2r:
  case Intrinsic::aarch64_neon_ld3r:
  case Intrinsic::aarch64_neon_ld4r: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    // Conservatively set memVT to the entire set of vectors loaded.
    uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
    Info.offset = 0;
    Info.align.reset();
    // volatile loads with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
  case Intrinsic::aarch64_neon_st1x2:
  case Intrinsic::aarch64_neon_st1x3:
  case Intrinsic::aarch64_neon_st1x4:
  case Intrinsic::aarch64_neon_st2lane:
  case Intrinsic::aarch64_neon_st3lane:
  case Intrinsic::aarch64_neon_st4lane: {
    Info.opc = ISD::INTRINSIC_VOID;
    // Conservatively set memVT to the entire set of vectors stored.
    unsigned NumElts = 0;
    for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
      Type *ArgTy = I.getArgOperand(ArgI)->getType();
      if (!ArgTy->isVectorTy())
        break;
      NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
    }
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
    Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
    Info.offset = 0;
    Info.align.reset();
    // volatile stores with NEON intrinsics not supported
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  case Intrinsic::aarch64_ldaxr:
  case Intrinsic::aarch64_ldxr: {
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::aarch64_stlxr:
  case Intrinsic::aarch64_stxr: {
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::aarch64_ldaxp:
  case Intrinsic::aarch64_ldxp:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i128;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(16);
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
    return true;
  case Intrinsic::aarch64_stlxp:
  case Intrinsic::aarch64_stxp:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i128;
    Info.ptrVal = I.getArgOperand(2);
    Info.offset = 0;
    Info.align = Align(16);
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
    return true;
  case Intrinsic::aarch64_sve_ldnt1: {
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal;
    return true;
  }
  case Intrinsic::aarch64_sve_stnt1: {
    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType());
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    Info.ptrVal = I.getArgOperand(2);
    Info.offset = 0;
    Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
    Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal;
    return true;
  }
  default:
    break;
  }

  return false;
}

bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
                                                  ISD::LoadExtType ExtTy,
                                                  EVT NewVT) const {
  // TODO: This may be worth removing. Check regression tests for diffs.
  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
    return false;

  // If we're reducing the load width in order to avoid having to use an extra
  // instruction to do extension then it's probably a good idea.
  if (ExtTy != ISD::NON_EXTLOAD)
    return true;
  // Don't reduce load width if it would prevent us from combining a shift into
  // the offset.
  MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
  assert(Mem);
  const SDValue &Base = Mem->getBasePtr();
  if (Base.getOpcode() == ISD::ADD &&
      Base.getOperand(1).getOpcode() == ISD::SHL &&
      Base.getOperand(1).hasOneUse() &&
      Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
    // The shift can be combined if it matches the size of the value being
    // loaded (and so reducing the width would make it not match).
    uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
    uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
    if (ShiftAmount == Log2_32(LoadBytes))
      return false;
  }
  // We have no reason to disallow reducing the load width, so allow it.
  return true;
}

// Truncations from 64-bit GPR to 32-bit GPR is free.
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 > NumBits2;
}
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 > NumBits2;
}

/// Check if it is profitable to hoist instruction in then/else to if.
/// Not profitable if I and it's user can form a FMA instruction
/// because we prefer FMSUB/FMADD.
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
  if (I->getOpcode() != Instruction::FMul)
    return true;

  if (!I->hasOneUse())
    return true;

  Instruction *User = I->user_back();

  if (User &&
      !(User->getOpcode() == Instruction::FSub ||
        User->getOpcode() == Instruction::FAdd))
    return true;

  const TargetOptions &Options = getTargetMachine().Options;
  const Function *F = I->getFunction();
  const DataLayout &DL = F->getParent()->getDataLayout();
  Type *Ty = User->getOperand(0)->getType();

  return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
           isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
           (Options.AllowFPOpFusion == FPOpFusion::Fast ||
            Options.UnsafeFPMath));
}

// All 32-bit GPR operations implicitly zero the high-half of the corresponding
// 64-bit GPR.
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
  if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}

bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
  EVT VT1 = Val.getValueType();
  if (isZExtFree(VT1, VT2)) {
    return true;
  }

  if (Val.getOpcode() != ISD::LOAD)
    return false;

  // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
  return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
          VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
          VT1.getSizeInBits() <= 32);
}

bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
  if (isa<FPExtInst>(Ext))
    return false;

  // Vector types are not free.
  if (Ext->getType()->isVectorTy())
    return false;

  for (const Use &U : Ext->uses()) {
    // The extension is free if we can fold it with a left shift in an
    // addressing mode or an arithmetic operation: add, sub, and cmp.

    // Is there a shift?
    const Instruction *Instr = cast<Instruction>(U.getUser());

    // Is this a constant shift?
    switch (Instr->getOpcode()) {
    case Instruction::Shl:
      if (!isa<ConstantInt>(Instr->getOperand(1)))
        return false;
      break;
    case Instruction::GetElementPtr: {
      gep_type_iterator GTI = gep_type_begin(Instr);
      auto &DL = Ext->getModule()->getDataLayout();
      std::advance(GTI, U.getOperandNo()-1);
      Type *IdxTy = GTI.getIndexedType();
      // This extension will end up with a shift because of the scaling factor.
      // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
      // Get the shift amount based on the scaling factor:
      // log2(sizeof(IdxTy)) - log2(8).
      uint64_t ShiftAmt =
        countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
      // Is the constant foldable in the shift of the addressing mode?
      // I.e., shift amount is between 1 and 4 inclusive.
      if (ShiftAmt == 0 || ShiftAmt > 4)
        return false;
      break;
    }
    case Instruction::Trunc:
      // Check if this is a noop.
      // trunc(sext ty1 to ty2) to ty1.
      if (Instr->getType() == Ext->getOperand(0)->getType())
        continue;
      LLVM_FALLTHROUGH;
    default:
      return false;
    }

    // At this point we can use the bfm family, so this extension is free
    // for that use.
  }
  return true;
}

/// Check if both Op1 and Op2 are shufflevector extracts of either the lower
/// or upper half of the vector elements.
static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
  auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
    auto *FullVT = cast<VectorType>(FullV->getType());
    auto *HalfVT = cast<VectorType>(HalfV->getType());
    return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
  };

  auto extractHalf = [](Value *FullV, Value *HalfV) {
    auto *FullVT = cast<VectorType>(FullV->getType());
    auto *HalfVT = cast<VectorType>(HalfV->getType());
    return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
  };

  Constant *M1, *M2;
  Value *S1Op1, *S2Op1;
  if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
      !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
    return false;

  // Check that the operands are half as wide as the result and we extract
  // half of the elements of the input vectors.
  if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
      !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
    return false;

  // Check the mask extracts either the lower or upper half of vector
  // elements.
  int M1Start = -1;
  int M2Start = -1;
  int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
  if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
      !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
      M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
    return false;

  return true;
}

/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
/// of the vector elements.
static bool areExtractExts(Value *Ext1, Value *Ext2) {
  auto areExtDoubled = [](Instruction *Ext) {
    return Ext->getType()->getScalarSizeInBits() ==
           2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
  };

  if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
      !match(Ext2, m_ZExtOrSExt(m_Value())) ||
      !areExtDoubled(cast<Instruction>(Ext1)) ||
      !areExtDoubled(cast<Instruction>(Ext2)))
    return false;

  return true;
}

/// Check if sinking \p I's operands to I's basic block is profitable, because
/// the operands can be folded into a target instruction, e.g.
/// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
bool AArch64TargetLowering::shouldSinkOperands(
    Instruction *I, SmallVectorImpl<Use *> &Ops) const {
  if (!I->getType()->isVectorTy())
    return false;

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::aarch64_neon_umull:
      if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
        return false;
      Ops.push_back(&II->getOperandUse(0));
      Ops.push_back(&II->getOperandUse(1));
      return true;
    default:
      return false;
    }
  }

  switch (I->getOpcode()) {
  case Instruction::Sub:
  case Instruction::Add: {
    if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
      return false;

    // If the exts' operands extract either the lower or upper elements, we
    // can sink them too.
    auto Ext1 = cast<Instruction>(I->getOperand(0));
    auto Ext2 = cast<Instruction>(I->getOperand(1));
    if (areExtractShuffleVectors(Ext1, Ext2)) {
      Ops.push_back(&Ext1->getOperandUse(0));
      Ops.push_back(&Ext2->getOperandUse(0));
    }

    Ops.push_back(&I->getOperandUse(0));
    Ops.push_back(&I->getOperandUse(1));

    return true;
  }
  default:
    return false;
  }
  return false;
}

bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
                                          unsigned &RequiredAligment) const {
  if (!LoadedType.isSimple() ||
      (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
    return false;
  // Cyclone supports unaligned accesses.
  RequiredAligment = 0;
  unsigned NumBits = LoadedType.getSizeInBits();
  return NumBits == 32 || NumBits == 64;
}

/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned
AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
                                                 const DataLayout &DL) const {
  return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
}

MachineMemOperand::Flags
AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
  if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
      I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
    return MOStridedAccess;
  return MachineMemOperand::MONone;
}

bool AArch64TargetLowering::isLegalInterleavedAccessType(
    VectorType *VecTy, const DataLayout &DL) const {

  unsigned VecSize = DL.getTypeSizeInBits(VecTy);
  unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());

  // Ensure the number of vector elements is greater than 1.
  if (VecTy->getNumElements() < 2)
    return false;

  // Ensure the element type is legal.
  if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
    return false;

  // Ensure the total vector size is 64 or a multiple of 128. Types larger than
  // 128 will be split into multiple interleaved accesses.
  return VecSize == 64 || VecSize % 128 == 0;
}

/// Lower an interleaved load into a ldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
///
///      Into:
///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
bool AArch64TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  const DataLayout &DL = LI->getModule()->getDataLayout();

  VectorType *VecTy = Shuffles[0]->getType();

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
    return false;

  unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);

  // A pointer vector can not be the return type of the ldN intrinsics. Need to
  // load integer vectors first and then convert to pointer vectors.
  Type *EltTy = VecTy->getVectorElementType();
  if (EltTy->isPointerTy())
    VecTy =
        VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());

  IRBuilder<> Builder(LI);

  // The base address of the load.
  Value *BaseAddr = LI->getPointerOperand();

  if (NumLoads > 1) {
    // If we're going to generate more than one load, reset the sub-vector type
    // to something legal.
    VecTy = VectorType::get(VecTy->getVectorElementType(),
                            VecTy->getVectorNumElements() / NumLoads);

    // We will compute the pointer operand of each load from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr, VecTy->getVectorElementType()->getPointerTo(
                      LI->getPointerAddressSpace()));
  }

  Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
  Type *Tys[2] = {VecTy, PtrTy};
  static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
                                            Intrinsic::aarch64_neon_ld3,
                                            Intrinsic::aarch64_neon_ld4};
  Function *LdNFunc =
      Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);

  // Holds sub-vectors extracted from the load intrinsic return values. The
  // sub-vectors are associated with the shufflevector instructions they will
  // replace.
  DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;

  for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {

    // If we're generating more than one load, compute the base address of
    // subsequent loads as an offset from the previous.
    if (LoadCount > 0)
      BaseAddr =
          Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
                                     VecTy->getVectorNumElements() * Factor);

    CallInst *LdN = Builder.CreateCall(
        LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");

    // Extract and store the sub-vectors returned by the load intrinsic.
    for (unsigned i = 0; i < Shuffles.size(); i++) {
      ShuffleVectorInst *SVI = Shuffles[i];
      unsigned Index = Indices[i];

      Value *SubVec = Builder.CreateExtractValue(LdN, Index);

      // Convert the integer vector to pointer vector if the element is pointer.
      if (EltTy->isPointerTy())
        SubVec = Builder.CreateIntToPtr(
            SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
                                    VecTy->getVectorNumElements()));
      SubVecs[SVI].push_back(SubVec);
    }
  }

  // Replace uses of the shufflevector instructions with the sub-vectors
  // returned by the load intrinsic. If a shufflevector instruction is
  // associated with more than one sub-vector, those sub-vectors will be
  // concatenated into a single wide vector.
  for (ShuffleVectorInst *SVI : Shuffles) {
    auto &SubVec = SubVecs[SVI];
    auto *WideVec =
        SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
    SVI->replaceAllUsesWith(WideVec);
  }

  return true;
}

/// Lower an interleaved store into a stN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
///
///      Into:
///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// st3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
///        store <12 x i32> %i.vec, <12 x i32>* %ptr
///
///      Into:
///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
                                                  ShuffleVectorInst *SVI,
                                                  unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  VectorType *VecTy = SVI->getType();
  assert(VecTy->getVectorNumElements() % Factor == 0 &&
         "Invalid interleaved store");

  unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
  Type *EltTy = VecTy->getVectorElementType();
  VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);

  const DataLayout &DL = SI->getModule()->getDataLayout();

  // Skip if we do not have NEON and skip illegal vector types. We can
  // "legalize" wide vector types into multiple interleaved accesses as long as
  // the vector types are divisible by 128.
  if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
    return false;

  unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);

  Value *Op0 = SVI->getOperand(0);
  Value *Op1 = SVI->getOperand(1);
  IRBuilder<> Builder(SI);

  // StN intrinsics don't support pointer vectors as arguments. Convert pointer
  // vectors to integer vectors.
  if (EltTy->isPointerTy()) {
    Type *IntTy = DL.getIntPtrType(EltTy);
    unsigned NumOpElts = Op0->getType()->getVectorNumElements();

    // Convert to the corresponding integer vector.
    Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
    Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
    Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);

    SubVecTy = VectorType::get(IntTy, LaneLen);
  }

  // The base address of the store.
  Value *BaseAddr = SI->getPointerOperand();

  if (NumStores > 1) {
    // If we're going to generate more than one store, reset the lane length
    // and sub-vector type to something legal.
    LaneLen /= NumStores;
    SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);

    // We will compute the pointer operand of each store from the original base
    // address using GEPs. Cast the base address to a pointer to the scalar
    // element type.
    BaseAddr = Builder.CreateBitCast(
        BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
                      SI->getPointerAddressSpace()));
  }

  auto Mask = SVI->getShuffleMask();

  Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
  Type *Tys[2] = {SubVecTy, PtrTy};
  static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
                                             Intrinsic::aarch64_neon_st3,
                                             Intrinsic::aarch64_neon_st4};
  Function *StNFunc =
      Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);

  for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {

    SmallVector<Value *, 5> Ops;

    // Split the shufflevector operands into sub vectors for the new stN call.
    for (unsigned i = 0; i < Factor; i++) {
      unsigned IdxI = StoreCount * LaneLen * Factor + i;
      if (Mask[IdxI] >= 0) {
        Ops.push_back(Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
      } else {
        unsigned StartMask = 0;
        for (unsigned j = 1; j < LaneLen; j++) {
          unsigned IdxJ = StoreCount * LaneLen * Factor + j;
          if (Mask[IdxJ * Factor + IdxI] >= 0) {
            StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
            break;
          }
        }
        // Note: Filling undef gaps with random elements is ok, since
        // those elements were being written anyway (with undefs).
        // In the case of all undefs we're defaulting to using elems from 0
        // Note: StartMask cannot be negative, it's checked in
        // isReInterleaveMask
        Ops.push_back(Builder.CreateShuffleVector(
            Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
      }
    }

    // If we generating more than one store, we compute the base address of
    // subsequent stores as an offset from the previous.
    if (StoreCount > 0)
      BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
                                            BaseAddr, LaneLen * Factor);

    Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
    Builder.CreateCall(StNFunc, Ops);
  }
  return true;
}

static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
                       unsigned AlignCheck) {
  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
          (DstAlign == 0 || DstAlign % AlignCheck == 0));
}

EVT AArch64TargetLowering::getOptimalMemOpType(
    uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
    bool ZeroMemset, bool MemcpyStrSrc,
    const AttributeList &FuncAttributes) const {
  bool CanImplicitFloat =
      !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
  bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
  bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
  // Only use AdvSIMD to implement memset of 32-byte and above. It would have
  // taken one instruction to materialize the v2i64 zero and one store (with
  // restrictive addressing mode). Just do i64 stores.
  bool IsSmallMemset = IsMemset && Size < 32;
  auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
    if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
      return true;
    bool Fast;
    return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
                                          &Fast) &&
           Fast;
  };

  if (CanUseNEON && IsMemset && !IsSmallMemset &&
      AlignmentIsAcceptable(MVT::v2i64, 16))
    return MVT::v2i64;
  if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
    return MVT::f128;
  if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
    return MVT::i64;
  if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
    return MVT::i32;
  return MVT::Other;
}

LLT AArch64TargetLowering::getOptimalMemOpLLT(
    uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
    bool ZeroMemset, bool MemcpyStrSrc,
    const AttributeList &FuncAttributes) const {
  bool CanImplicitFloat =
      !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
  bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
  bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
  // Only use AdvSIMD to implement memset of 32-byte and above. It would have
  // taken one instruction to materialize the v2i64 zero and one store (with
  // restrictive addressing mode). Just do i64 stores.
  bool IsSmallMemset = IsMemset && Size < 32;
  auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
    if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
      return true;
    bool Fast;
    return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
                                          &Fast) &&
           Fast;
  };

  if (CanUseNEON && IsMemset && !IsSmallMemset &&
      AlignmentIsAcceptable(MVT::v2i64, 16))
    return LLT::vector(2, 64);
  if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
    return LLT::scalar(128);
  if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
    return LLT::scalar(64);
  if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
    return LLT::scalar(32);
  return LLT();
}

// 12-bit optionally shifted immediates are legal for adds.
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
  if (Immed == std::numeric_limits<int64_t>::min()) {
    LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
                      << ": avoid UB for INT64_MIN\n");
    return false;
  }
  // Same encoding for add/sub, just flip the sign.
  Immed = std::abs(Immed);
  bool IsLegal = ((Immed >> 12) == 0 ||
                  ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
  LLVM_DEBUG(dbgs() << "Is " << Immed
                    << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
  return IsLegal;
}

// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
// immediates is the same as for an add or a sub.
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
  return isLegalAddImmediate(Immed);
}

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                  const AddrMode &AM, Type *Ty,
                                                  unsigned AS, Instruction *I) const {
  // AArch64 has five basic addressing modes:
  //  reg
  //  reg + 9-bit signed offset
  //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
  //  reg1 + reg2
  //  reg + SIZE_IN_BYTES * reg

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // No reg+reg+imm addressing.
  if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
    return false;

  // check reg + imm case:
  // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
  uint64_t NumBytes = 0;
  if (Ty->isSized()) {
    uint64_t NumBits = DL.getTypeSizeInBits(Ty);
    NumBytes = NumBits / 8;
    if (!isPowerOf2_64(NumBits))
      NumBytes = 0;
  }

  if (!AM.Scale) {
    int64_t Offset = AM.BaseOffs;

    // 9-bit signed offset
    if (isInt<9>(Offset))
      return true;

    // 12-bit unsigned offset
    unsigned shift = Log2_64(NumBytes);
    if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
        // Must be a multiple of NumBytes (NumBytes is a power of 2)
        (Offset >> shift) << shift == Offset)
      return true;
    return false;
  }

  // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2

  return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
}

bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
  // Consider splitting large offset of struct or array.
  return true;
}

int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
                                                const AddrMode &AM, Type *Ty,
                                                unsigned AS) const {
  // Scaling factors are not free at all.
  // Operands                     | Rt Latency
  // -------------------------------------------
  // Rt, [Xn, Xm]                 | 4
  // -------------------------------------------
  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
  // Rt, [Xn, Wm, <extend> #imm]  |
  if (isLegalAddressingMode(DL, AM, Ty, AS))
    // Scale represents reg2 * scale, thus account for 1 if
    // it is not equal to 0 or 1.
    return AM.Scale != 0 && AM.Scale != 1;
  return -1;
}

bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
    const MachineFunction &MF, EVT VT) const {
  VT = VT.getScalarType();

  if (!VT.isSimple())
    return false;

  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f32:
  case MVT::f64:
    return true;
  default:
    break;
  }

  return false;
}

bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
                                                       Type *Ty) const {
  switch (Ty->getScalarType()->getTypeID()) {
  case Type::FloatTyID:
  case Type::DoubleTyID:
    return true;
  default:
    return false;
  }
}

const MCPhysReg *
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
  // LR is a callee-save register, but we must treat it as clobbered by any call
  // site. Hence we include LR in the scratch registers, which are in turn added
  // as implicit-defs for stackmaps and patchpoints.
  static const MCPhysReg ScratchRegs[] = {
    AArch64::X16, AArch64::X17, AArch64::LR, 0
  };
  return ScratchRegs;
}

bool
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
                                                     CombineLevel Level) const {
  N = N->getOperand(0).getNode();
  EVT VT = N->getValueType(0);
    // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
    // it with shift to let it be lowered to UBFX.
  if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
      isa<ConstantSDNode>(N->getOperand(1))) {
    uint64_t TruncMask = N->getConstantOperandVal(1);
    if (isMask_64(TruncMask) &&
      N->getOperand(0).getOpcode() == ISD::SRL &&
      isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
      return false;
  }
  return true;
}

bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                              Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return false;

  int64_t Val = Imm.getSExtValue();
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
    return true;

  if ((int64_t)Val < 0)
    Val = ~Val;
  if (BitSize == 32)
    Val &= (1LL << 32) - 1;

  unsigned LZ = countLeadingZeros((uint64_t)Val);
  unsigned Shift = (63 - LZ) / 16;
  // MOVZ is free so return true for one or fewer MOVK.
  return Shift < 3;
}

bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                                    unsigned Index) const {
  if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
    return false;

  return (Index == 0 || Index == ResVT.getVectorNumElements());
}

/// Turn vector tests of the signbit in the form of:
///   xor (sra X, elt_size(X)-1), -1
/// into:
///   cmge X, X, #0
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
                                         const AArch64Subtarget *Subtarget) {
  EVT VT = N->getValueType(0);
  if (!Subtarget->hasNEON() || !VT.isVector())
    return SDValue();

  // There must be a shift right algebraic before the xor, and the xor must be a
  // 'not' operation.
  SDValue Shift = N->getOperand(0);
  SDValue Ones = N->getOperand(1);
  if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
      !ISD::isBuildVectorAllOnes(Ones.getNode()))
    return SDValue();

  // The shift should be smearing the sign bit across each vector element.
  auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
  EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
  if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
    return SDValue();

  return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
}

// Generate SUBS and CSEL for integer abs.
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDLoc DL(N);

  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
  // and change it to SUB and CSEL.
  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
      N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
      N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
      if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
        SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
                                  N0.getOperand(0));
        // Generate SUBS & CSEL.
        SDValue Cmp =
            DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
                        N0.getOperand(0), DAG.getConstant(0, DL, VT));
        return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
                           DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
                           SDValue(Cmp.getNode(), 1));
      }
  return SDValue();
}

static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const AArch64Subtarget *Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
    return Cmp;

  return performIntegerAbsCombine(N, DAG);
}

SDValue
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
                                     SelectionDAG &DAG,
                                     SmallVectorImpl<SDNode *> &Created) const {
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (isIntDivCheap(N->getValueType(0), Attr))
    return SDValue(N,0); // Lower SDIV as SDIV

  // fold (sdiv X, pow2)
  EVT VT = N->getValueType(0);
  if ((VT != MVT::i32 && VT != MVT::i64) ||
      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
    return SDValue();

  SDLoc DL(N);
  SDValue N0 = N->getOperand(0);
  unsigned Lg2 = Divisor.countTrailingZeros();
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);

  // Add (N0 < 0) ? Pow2 - 1 : 0;
  SDValue CCVal;
  SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
  SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
  SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);

  Created.push_back(Cmp.getNode());
  Created.push_back(Add.getNode());
  Created.push_back(CSel.getNode());

  // Divide by pow2.
  SDValue SRA =
      DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));

  // If we're dividing by a positive value, we're done.  Otherwise, we must
  // negate the result.
  if (Divisor.isNonNegative())
    return SRA;

  Created.push_back(SRA.getNode());
  return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
}

static bool IsSVECntIntrinsic(SDValue S) {
  switch(getIntrinsicID(S.getNode())) {
  default:
    break;
  case Intrinsic::aarch64_sve_cntb:
  case Intrinsic::aarch64_sve_cnth:
  case Intrinsic::aarch64_sve_cntw:
  case Intrinsic::aarch64_sve_cntd:
    return true;
  }
  return false;
}

static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const AArch64Subtarget *Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  // The below optimizations require a constant RHS.
  if (!isa<ConstantSDNode>(N->getOperand(1)))
    return SDValue();

  SDValue N0 = N->getOperand(0);
  ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
  const APInt &ConstValue = C->getAPIntValue();

  // Allow the scaling to be folded into the `cnt` instruction by preventing
  // the scaling to be obscured here. This makes it easier to pattern match.
  if (IsSVECntIntrinsic(N0) ||
     (N0->getOpcode() == ISD::TRUNCATE &&
      (IsSVECntIntrinsic(N0->getOperand(0)))))
       if (ConstValue.sge(1) && ConstValue.sle(16))
         return SDValue();

  // Multiplication of a power of two plus/minus one can be done more
  // cheaply as as shift+add/sub. For now, this is true unilaterally. If
  // future CPUs have a cheaper MADD instruction, this may need to be
  // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
  // 64-bit is 5 cycles, so this is always a win.
  // More aggressively, some multiplications N0 * C can be lowered to
  // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
  // e.g. 6=3*2=(2+1)*2.
  // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
  // which equals to (1+2)*16-(1+2).
  // TrailingZeroes is used to test if the mul can be lowered to
  // shift+add+shift.
  unsigned TrailingZeroes = ConstValue.countTrailingZeros();
  if (TrailingZeroes) {
    // Conservatively do not lower to shift+add+shift if the mul might be
    // folded into smul or umul.
    if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
                            isZeroExtended(N0.getNode(), DAG)))
      return SDValue();
    // Conservatively do not lower to shift+add+shift if the mul might be
    // folded into madd or msub.
    if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
                           N->use_begin()->getOpcode() == ISD::SUB))
      return SDValue();
  }
  // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
  // and shift+add+shift.
  APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);

  unsigned ShiftAmt, AddSubOpc;
  // Is the shifted value the LHS operand of the add/sub?
  bool ShiftValUseIsN0 = true;
  // Do we need to negate the result?
  bool NegateResult = false;

  if (ConstValue.isNonNegative()) {
    // (mul x, 2^N + 1) => (add (shl x, N), x)
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
    // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
    APInt SCVMinus1 = ShiftedConstValue - 1;
    APInt CVPlus1 = ConstValue + 1;
    if (SCVMinus1.isPowerOf2()) {
      ShiftAmt = SCVMinus1.logBase2();
      AddSubOpc = ISD::ADD;
    } else if (CVPlus1.isPowerOf2()) {
      ShiftAmt = CVPlus1.logBase2();
      AddSubOpc = ISD::SUB;
    } else
      return SDValue();
  } else {
    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
    // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
    APInt CVNegPlus1 = -ConstValue + 1;
    APInt CVNegMinus1 = -ConstValue - 1;
    if (CVNegPlus1.isPowerOf2()) {
      ShiftAmt = CVNegPlus1.logBase2();
      AddSubOpc = ISD::SUB;
      ShiftValUseIsN0 = false;
    } else if (CVNegMinus1.isPowerOf2()) {
      ShiftAmt = CVNegMinus1.logBase2();
      AddSubOpc = ISD::ADD;
      NegateResult = true;
    } else
      return SDValue();
  }

  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
                                   DAG.getConstant(ShiftAmt, DL, MVT::i64));

  SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
  SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
  SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
  assert(!(NegateResult && TrailingZeroes) &&
         "NegateResult and TrailingZeroes cannot both be true for now.");
  // Negate the result.
  if (NegateResult)
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
  // Shift the result.
  if (TrailingZeroes)
    return DAG.getNode(ISD::SHL, DL, VT, Res,
                       DAG.getConstant(TrailingZeroes, DL, MVT::i64));
  return Res;
}

static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
                                                         SelectionDAG &DAG) {
  // Take advantage of vector comparisons producing 0 or -1 in each lane to
  // optimize away operation when it's from a constant.
  //
  // The general transformation is:
  //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
  //       AND(VECTOR_CMP(x,y), constant2)
  //    constant2 = UNARYOP(constant)

  // Early exit if this isn't a vector operation, the operand of the
  // unary operation isn't a bitwise AND, or if the sizes of the operations
  // aren't the same.
  EVT VT = N->getValueType(0);
  if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
      N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
      VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
    return SDValue();

  // Now check that the other operand of the AND is a constant. We could
  // make the transformation for non-constant splats as well, but it's unclear
  // that would be a benefit as it would not eliminate any operations, just
  // perform one more step in scalar code before moving to the vector unit.
  if (BuildVectorSDNode *BV =
          dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
    // Bail out if the vector isn't a constant.
    if (!BV->isConstant())
      return SDValue();

    // Everything checks out. Build up the new and improved node.
    SDLoc DL(N);
    EVT IntVT = BV->getValueType(0);
    // Create a new constant of the appropriate type for the transformed
    // DAG.
    SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
    // The AND node needs bitcasts to/from an integer vector type around it.
    SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
    SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
                                 N->getOperand(0)->getOperand(0), MaskConst);
    SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
    return Res;
  }

  return SDValue();
}

static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
                                     const AArch64Subtarget *Subtarget) {
  // First try to optimize away the conversion when it's conditionally from
  // a constant. Vectors only.
  if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
    return Res;

  EVT VT = N->getValueType(0);
  if (VT != MVT::f32 && VT != MVT::f64)
    return SDValue();

  // Only optimize when the source and destination types have the same width.
  if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
    return SDValue();

  // If the result of an integer load is only used by an integer-to-float
  // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
  // This eliminates an "integer-to-vector-move" UOP and improves throughput.
  SDValue N0 = N->getOperand(0);
  if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
      // Do not change the width of a volatile load.
      !cast<LoadSDNode>(N0)->isVolatile()) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
                               LN0->getPointerInfo(), LN0->getAlignment(),
                               LN0->getMemOperand()->getFlags());

    // Make sure successors of the original load stay after it by updating them
    // to use the new Chain.
    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));

    unsigned Opcode =
        (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
    return DAG.getNode(Opcode, SDLoc(N), VT, Load);
  }

  return SDValue();
}

/// Fold a floating-point multiply by power of two into floating-point to
/// fixed-point conversion.
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const AArch64Subtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  if (!N->getValueType(0).isSimple())
    return SDValue();

  SDValue Op = N->getOperand(0);
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
      Op.getOpcode() != ISD::FMUL)
    return SDValue();

  SDValue ConstVec = Op->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
  uint32_t FloatBits = FloatTy.getSizeInBits();
  if (FloatBits != 32 && FloatBits != 64)
    return SDValue();

  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
  uint32_t IntBits = IntTy.getSizeInBits();
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
    return SDValue();

  // Avoid conversions where iN is larger than the float (e.g., float -> i64).
  if (IntBits > FloatBits)
    return SDValue();

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t Bits = IntBits == 64 ? 64 : 32;
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
  if (C == -1 || C == 0 || C > Bits)
    return SDValue();

  MVT ResTy;
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
  switch (NumLanes) {
  default:
    return SDValue();
  case 2:
    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
    break;
  case 4:
    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
    break;
  }

  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
    return SDValue();

  assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
         "Illegal vector type after legalization");

  SDLoc DL(N);
  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
                                      : Intrinsic::aarch64_neon_vcvtfp2fxu;
  SDValue FixConv =
      DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
                  DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
                  Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
  // We can handle smaller integers by generating an extra trunc.
  if (IntBits < FloatBits)
    FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);

  return FixConv;
}

/// Fold a floating-point divide by power of two into fixed-point to
/// floating-point conversion.
static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const AArch64Subtarget *Subtarget) {
  if (!Subtarget->hasNEON())
    return SDValue();

  SDValue Op = N->getOperand(0);
  unsigned Opc = Op->getOpcode();
  if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
      !Op.getOperand(0).getValueType().isSimple() ||
      (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
    return SDValue();

  SDValue ConstVec = N->getOperand(1);
  if (!isa<BuildVectorSDNode>(ConstVec))
    return SDValue();

  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
  int32_t IntBits = IntTy.getSizeInBits();
  if (IntBits != 16 && IntBits != 32 && IntBits != 64)
    return SDValue();

  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
  int32_t FloatBits = FloatTy.getSizeInBits();
  if (FloatBits != 32 && FloatBits != 64)
    return SDValue();

  // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
  if (IntBits > FloatBits)
    return SDValue();

  BitVector UndefElements;
  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
  int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
  if (C == -1 || C == 0 || C > FloatBits)
    return SDValue();

  MVT ResTy;
  unsigned NumLanes = Op.getValueType().getVectorNumElements();
  switch (NumLanes) {
  default:
    return SDValue();
  case 2:
    ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
    break;
  case 4:
    ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
    break;
  }

  if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
    return SDValue();

  SDLoc DL(N);
  SDValue ConvInput = Op.getOperand(0);
  bool IsSigned = Opc == ISD::SINT_TO_FP;
  if (IntBits < FloatBits)
    ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
                            ResTy, ConvInput);

  unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
                                      : Intrinsic::aarch64_neon_vcvtfxu2fp;
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
                     DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
                     DAG.getConstant(C, DL, MVT::i32));
}

/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
                         bool &FromHi) {
  if (N.getOpcode() == ISD::SHL)
    FromHi = false;
  else if (N.getOpcode() == ISD::SRL)
    FromHi = true;
  else
    return false;

  if (!isa<ConstantSDNode>(N.getOperand(1)))
    return false;

  ShiftAmount = N->getConstantOperandVal(1);
  Src = N->getOperand(0);
  return true;
}

/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
/// with an EXTR. Can't quite be done in TableGen because the two immediates
/// aren't independent.
static SDValue tryCombineToEXTR(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  assert(N->getOpcode() == ISD::OR && "Unexpected root");

  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  SDValue LHS;
  uint32_t ShiftLHS = 0;
  bool LHSFromHi = false;
  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
    return SDValue();

  SDValue RHS;
  uint32_t ShiftRHS = 0;
  bool RHSFromHi = false;
  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
    return SDValue();

  // If they're both trying to come from the high part of the register, they're
  // not really an EXTR.
  if (LHSFromHi == RHSFromHi)
    return SDValue();

  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
    return SDValue();

  if (LHSFromHi) {
    std::swap(LHS, RHS);
    std::swap(ShiftLHS, ShiftRHS);
  }

  return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
                     DAG.getConstant(ShiftRHS, DL, MVT::i64));
}

static SDValue tryCombineToBSL(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI) {
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  if (!VT.isVector())
    return SDValue();

  SDValue N0 = N->getOperand(0);
  if (N0.getOpcode() != ISD::AND)
    return SDValue();

  SDValue N1 = N->getOperand(1);
  if (N1.getOpcode() != ISD::AND)
    return SDValue();

  // We only have to look for constant vectors here since the general, variable
  // case can be handled in TableGen.
  unsigned Bits = VT.getScalarSizeInBits();
  uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
  for (int i = 1; i >= 0; --i)
    for (int j = 1; j >= 0; --j) {
      BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
      if (!BVN0 || !BVN1)
        continue;

      bool FoundMatch = true;
      for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
        ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
        ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
        if (!CN0 || !CN1 ||
            CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
          FoundMatch = false;
          break;
        }
      }

      if (FoundMatch)
        return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
                           N0->getOperand(1 - i), N1->getOperand(1 - j));
    }

  return SDValue();
}

static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                                const AArch64Subtarget *Subtarget) {
  // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  if (SDValue Res = tryCombineToEXTR(N, DCI))
    return Res;

  if (SDValue Res = tryCombineToBSL(N, DCI))
    return Res;

  return SDValue();
}

static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
  if (!MemVT.getVectorElementType().isSimple())
    return false;

  uint64_t MaskForTy = 0ull;
  switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
  case MVT::i8:
    MaskForTy = 0xffull;
    break;
  case MVT::i16:
    MaskForTy = 0xffffull;
    break;
  case MVT::i32:
    MaskForTy = 0xffffffffull;
    break;
  default:
    return false;
    break;
  }

  if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
    if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
      return Op0->getAPIntValue().getLimitedValue() == MaskForTy;

  return false;
}

static SDValue performSVEAndCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue Src = N->getOperand(0);
  SDValue Mask = N->getOperand(1);

  if (!Src.hasOneUse())
    return SDValue();

  // GLD1* instructions perform an implicit zero-extend, which makes them
  // perfect candidates for combining.
  switch (Src->getOpcode()) {
  case AArch64ISD::GLD1:
  case AArch64ISD::GLD1_SCALED:
  case AArch64ISD::GLD1_SXTW:
  case AArch64ISD::GLD1_SXTW_SCALED:
  case AArch64ISD::GLD1_UXTW:
  case AArch64ISD::GLD1_UXTW_SCALED:
  case AArch64ISD::GLD1_IMM:
    break;
  default:
    return SDValue();
  }

  EVT MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();

  if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
    return Src;

  return SDValue();
}

static SDValue performANDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDValue LHS = N->getOperand(0);
  EVT VT = N->getValueType(0);
  if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  if (VT.isScalableVector())
    return performSVEAndCombine(N, DCI);

  BuildVectorSDNode *BVN =
      dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
  if (!BVN)
    return SDValue();

  // AND does not accept an immediate, so check if we can use a BIC immediate
  // instruction instead. We do this here instead of using a (and x, (mvni imm))
  // pattern in isel, because some immediates may be lowered to the preferred
  // (and x, (movi imm)) form, even though an mvni representation also exists.
  APInt DefBits(VT.getSizeInBits(), 0);
  APInt UndefBits(VT.getSizeInBits(), 0);
  if (resolveBuildVector(BVN, DefBits, UndefBits)) {
    SDValue NewOp;

    DefBits = ~DefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    DefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    DefBits, &LHS)))
      return NewOp;

    UndefBits = ~UndefBits;
    if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    UndefBits, &LHS)) ||
        (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
                                    UndefBits, &LHS)))
      return NewOp;
  }

  return SDValue();
}

static SDValue performSRLCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
  // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
  // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
  SDValue N0 = N->getOperand(0);
  if (N0.getOpcode() == ISD::BSWAP) {
    SDLoc DL(N);
    SDValue N1 = N->getOperand(1);
    SDValue N00 = N0.getOperand(0);
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
      uint64_t ShiftAmt = C->getZExtValue();
      if (VT == MVT::i32 && ShiftAmt == 16 &&
          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
      if (VT == MVT::i64 && ShiftAmt == 32 &&
          DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
        return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
    }
  }
  return SDValue();
}

static SDValue performConcatVectorsCombine(SDNode *N,
                                           TargetLowering::DAGCombinerInfo &DCI,
                                           SelectionDAG &DAG) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);

  // Optimize concat_vectors of truncated vectors, where the intermediate
  // type is illegal, to avoid said illegality,  e.g.,
  //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
  //                          (v2i16 (truncate (v2i64)))))
  // ->
  //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
  //                                    (v4i32 (bitcast (v2i64))),
  //                                    <0, 2, 4, 6>)))
  // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
  // on both input and result type, so we might generate worse code.
  // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
  if (N->getNumOperands() == 2 &&
      N0->getOpcode() == ISD::TRUNCATE &&
      N1->getOpcode() == ISD::TRUNCATE) {
    SDValue N00 = N0->getOperand(0);
    SDValue N10 = N1->getOperand(0);
    EVT N00VT = N00.getValueType();

    if (N00VT == N10.getValueType() &&
        (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
        N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
      MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
      SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
      for (size_t i = 0; i < Mask.size(); ++i)
        Mask[i] = i * 2;
      return DAG.getNode(ISD::TRUNCATE, dl, VT,
                         DAG.getVectorShuffle(
                             MidVT, dl,
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
                             DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
    }
  }

  // Wait 'til after everything is legalized to try this. That way we have
  // legal vector types and such.
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
  // splat. The indexed instructions are going to be expecting a DUPLANE64, so
  // canonicalise to that.
  if (N0 == N1 && VT.getVectorNumElements() == 2) {
    assert(VT.getScalarSizeInBits() == 64);
    return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
                       DAG.getConstant(0, dl, MVT::i64));
  }

  // Canonicalise concat_vectors so that the right-hand vector has as few
  // bit-casts as possible before its real operation. The primary matching
  // destination for these operations will be the narrowing "2" instructions,
  // which depend on the operation being performed on this right-hand vector.
  // For example,
  //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
  // becomes
  //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))

  if (N1->getOpcode() != ISD::BITCAST)
    return SDValue();
  SDValue RHS = N1->getOperand(0);
  MVT RHSTy = RHS.getValueType().getSimpleVT();
  // If the RHS is not a vector, this is not the pattern we're looking for.
  if (!RHSTy.isVector())
    return SDValue();

  LLVM_DEBUG(
      dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");

  MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
                                  RHSTy.getVectorNumElements() * 2);
  return DAG.getNode(ISD::BITCAST, dl, VT,
                     DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
                                 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
                                 RHS));
}

static SDValue tryCombineFixedPointConvert(SDNode *N,
                                           TargetLowering::DAGCombinerInfo &DCI,
                                           SelectionDAG &DAG) {
  // Wait until after everything is legalized to try this. That way we have
  // legal vector types and such.
  if (DCI.isBeforeLegalizeOps())
    return SDValue();
  // Transform a scalar conversion of a value from a lane extract into a
  // lane extract of a vector conversion. E.g., from foo1 to foo2:
  // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
  // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
  //
  // The second form interacts better with instruction selection and the
  // register allocator to avoid cross-class register copies that aren't
  // coalescable due to a lane reference.

  // Check the operand and see if it originates from a lane extract.
  SDValue Op1 = N->getOperand(1);
  if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
    // Yep, no additional predication needed. Perform the transform.
    SDValue IID = N->getOperand(0);
    SDValue Shift = N->getOperand(2);
    SDValue Vec = Op1.getOperand(0);
    SDValue Lane = Op1.getOperand(1);
    EVT ResTy = N->getValueType(0);
    EVT VecResTy;
    SDLoc DL(N);

    // The vector width should be 128 bits by the time we get here, even
    // if it started as 64 bits (the extract_vector handling will have
    // done so).
    assert(Vec.getValueSizeInBits() == 128 &&
           "unexpected vector size on extract_vector_elt!");
    if (Vec.getValueType() == MVT::v4i32)
      VecResTy = MVT::v4f32;
    else if (Vec.getValueType() == MVT::v2i64)
      VecResTy = MVT::v2f64;
    else
      llvm_unreachable("unexpected vector type!");

    SDValue Convert =
        DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
  }
  return SDValue();
}

// AArch64 high-vector "long" operations are formed by performing the non-high
// version on an extract_subvector of each operand which gets the high half:
//
//  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
//
// However, there are cases which don't have an extract_high explicitly, but
// have another operation that can be made compatible with one for free. For
// example:
//
//  (dupv64 scalar) --> (extract_high (dup128 scalar))
//
// This routine does the actual conversion of such DUPs, once outer routines
// have determined that everything else is in order.
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
// similarly here.
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
  switch (N.getOpcode()) {
  case AArch64ISD::DUP:
  case AArch64ISD::DUPLANE8:
  case AArch64ISD::DUPLANE16:
  case AArch64ISD::DUPLANE32:
  case AArch64ISD::DUPLANE64:
  case AArch64ISD::MOVI:
  case AArch64ISD::MOVIshift:
  case AArch64ISD::MOVIedit:
  case AArch64ISD::MOVImsl:
  case AArch64ISD::MVNIshift:
  case AArch64ISD::MVNImsl:
    break;
  default:
    // FMOV could be supported, but isn't very useful, as it would only occur
    // if you passed a bitcast' floating point immediate to an eligible long
    // integer op (addl, smull, ...).
    return SDValue();
  }

  MVT NarrowTy = N.getSimpleValueType();
  if (!NarrowTy.is64BitVector())
    return SDValue();

  MVT ElementTy = NarrowTy.getVectorElementType();
  unsigned NumElems = NarrowTy.getVectorNumElements();
  MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);

  SDLoc dl(N);
  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
                     DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
                     DAG.getConstant(NumElems, dl, MVT::i64));
}

static bool isEssentiallyExtractHighSubvector(SDValue N) {
  if (N.getOpcode() == ISD::BITCAST)
    N = N.getOperand(0);
  if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
    return false;
  return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
         N.getOperand(0).getValueType().getVectorNumElements() / 2;
}

/// Helper structure to keep track of ISD::SET_CC operands.
struct GenericSetCCInfo {
  const SDValue *Opnd0;
  const SDValue *Opnd1;
  ISD::CondCode CC;
};

/// Helper structure to keep track of a SET_CC lowered into AArch64 code.
struct AArch64SetCCInfo {
  const SDValue *Cmp;
  AArch64CC::CondCode CC;
};

/// Helper structure to keep track of SetCC information.
union SetCCInfo {
  GenericSetCCInfo Generic;
  AArch64SetCCInfo AArch64;
};

/// Helper structure to be able to read SetCC information.  If set to
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
/// GenericSetCCInfo.
struct SetCCInfoAndKind {
  SetCCInfo Info;
  bool IsAArch64;
};

/// Check whether or not \p Op is a SET_CC operation, either a generic or
/// an
/// AArch64 lowered one.
/// \p SetCCInfo is filled accordingly.
/// \post SetCCInfo is meanginfull only when this function returns true.
/// \return True when Op is a kind of SET_CC operation.
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
  // If this is a setcc, this is straight forward.
  if (Op.getOpcode() == ISD::SETCC) {
    SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
    SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
    SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    SetCCInfo.IsAArch64 = false;
    return true;
  }
  // Otherwise, check if this is a matching csel instruction.
  // In other words:
  // - csel 1, 0, cc
  // - csel 0, 1, !cc
  if (Op.getOpcode() != AArch64ISD::CSEL)
    return false;
  // Set the information about the operands.
  // TODO: we want the operands of the Cmp not the csel
  SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
  SetCCInfo.IsAArch64 = true;
  SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
      cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());

  // Check that the operands matches the constraints:
  // (1) Both operands must be constants.
  // (2) One must be 1 and the other must be 0.
  ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
  ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));

  // Check (1).
  if (!TValue || !FValue)
    return false;

  // Check (2).
  if (!TValue->isOne()) {
    // Update the comparison when we are interested in !cc.
    std::swap(TValue, FValue);
    SetCCInfo.Info.AArch64.CC =
        AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
  }
  return TValue->isOne() && FValue->isNullValue();
}

// Returns true if Op is setcc or zext of setcc.
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
  if (isSetCC(Op, Info))
    return true;
  return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
    isSetCC(Op->getOperand(0), Info));
}

// The folding we want to perform is:
// (add x, [zext] (setcc cc ...) )
//   -->
// (csel x, (add x, 1), !cc ...)
//
// The latter will get matched to a CSINC instruction.
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
  assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
  SDValue LHS = Op->getOperand(0);
  SDValue RHS = Op->getOperand(1);
  SetCCInfoAndKind InfoAndKind;

  // If neither operand is a SET_CC, give up.
  if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
    std::swap(LHS, RHS);
    if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
      return SDValue();
  }

  // FIXME: This could be generatized to work for FP comparisons.
  EVT CmpVT = InfoAndKind.IsAArch64
                  ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
                  : InfoAndKind.Info.Generic.Opnd0->getValueType();
  if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
    return SDValue();

  SDValue CCVal;
  SDValue Cmp;
  SDLoc dl(Op);
  if (InfoAndKind.IsAArch64) {
    CCVal = DAG.getConstant(
        AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
        MVT::i32);
    Cmp = *InfoAndKind.Info.AArch64.Cmp;
  } else
    Cmp = getAArch64Cmp(
        *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
        ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
        dl);

  EVT VT = Op->getValueType(0);
  LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
  return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
}

// The basic add/sub long vector instructions have variants with "2" on the end
// which act on the high-half of their inputs. They are normally matched by
// patterns like:
//
// (add (zeroext (extract_high LHS)),
//      (zeroext (extract_high RHS)))
// -> uaddl2 vD, vN, vM
//
// However, if one of the extracts is something like a duplicate, this
// instruction can still be used profitably. This function puts the DAG into a
// more appropriate form for those patterns to trigger.
static SDValue performAddSubLongCombine(SDNode *N,
                                        TargetLowering::DAGCombinerInfo &DCI,
                                        SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  MVT VT = N->getSimpleValueType(0);
  if (!VT.is128BitVector()) {
    if (N->getOpcode() == ISD::ADD)
      return performSetccAddFolding(N, DAG);
    return SDValue();
  }

  // Make sure both branches are extended in the same way.
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
       LHS.getOpcode() != ISD::SIGN_EXTEND) ||
      LHS.getOpcode() != RHS.getOpcode())
    return SDValue();

  unsigned ExtType = LHS.getOpcode();

  // It's not worth doing if at least one of the inputs isn't already an
  // extract, but we don't know which it'll be so we have to try both.
  if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
    RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
    if (!RHS.getNode())
      return SDValue();

    RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
  } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
    LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
    if (!LHS.getNode())
      return SDValue();

    LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
  }

  return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
}

// Massage DAGs which we can use the high-half "long" operations on into
// something isel will recognize better. E.g.
//
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
//   (aarch64_neon_umull (extract_high (v2i64 vec)))
//                     (extract_high (v2i64 (dup128 scalar)))))
//
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
                                       TargetLowering::DAGCombinerInfo &DCI,
                                       SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue LHS = N->getOperand(1);
  SDValue RHS = N->getOperand(2);
  assert(LHS.getValueType().is64BitVector() &&
         RHS.getValueType().is64BitVector() &&
         "unexpected shape for long operation");

  // Either node could be a DUP, but it's not worth doing both of them (you'd
  // just as well use the non-high version) so look for a corresponding extract
  // operation on the other "wing".
  if (isEssentiallyExtractHighSubvector(LHS)) {
    RHS = tryExtendDUPToExtractHigh(RHS, DAG);
    if (!RHS.getNode())
      return SDValue();
  } else if (isEssentiallyExtractHighSubvector(RHS)) {
    LHS = tryExtendDUPToExtractHigh(LHS, DAG);
    if (!LHS.getNode())
      return SDValue();
  }

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
                     N->getOperand(0), LHS, RHS);
}

static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
  MVT ElemTy = N->getSimpleValueType(0).getScalarType();
  unsigned ElemBits = ElemTy.getSizeInBits();

  int64_t ShiftAmount;
  if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
    APInt SplatValue, SplatUndef;
    unsigned SplatBitSize;
    bool HasAnyUndefs;
    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
                              HasAnyUndefs, ElemBits) ||
        SplatBitSize != ElemBits)
      return SDValue();

    ShiftAmount = SplatValue.getSExtValue();
  } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
    ShiftAmount = CVN->getSExtValue();
  } else
    return SDValue();

  unsigned Opcode;
  bool IsRightShift;
  switch (IID) {
  default:
    llvm_unreachable("Unknown shift intrinsic");
  case Intrinsic::aarch64_neon_sqshl:
    Opcode = AArch64ISD::SQSHL_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_uqshl:
    Opcode = AArch64ISD::UQSHL_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_srshl:
    Opcode = AArch64ISD::SRSHR_I;
    IsRightShift = true;
    break;
  case Intrinsic::aarch64_neon_urshl:
    Opcode = AArch64ISD::URSHR_I;
    IsRightShift = true;
    break;
  case Intrinsic::aarch64_neon_sqshlu:
    Opcode = AArch64ISD::SQSHLU_I;
    IsRightShift = false;
    break;
  case Intrinsic::aarch64_neon_sshl:
  case Intrinsic::aarch64_neon_ushl:
    // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
    // left shift for positive shift amounts. Below, we only replace the current
    // node with VSHL, if this condition is met.
    Opcode = AArch64ISD::VSHL;
    IsRightShift = false;
    break;
  }

  if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
    SDLoc dl(N);
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
                       DAG.getConstant(-ShiftAmount, dl, MVT::i32));
  } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
    SDLoc dl(N);
    return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
                       DAG.getConstant(ShiftAmount, dl, MVT::i32));
  }

  return SDValue();
}

// The CRC32[BH] instructions ignore the high bits of their data operand. Since
// the intrinsics must be legal and take an i32, this means there's almost
// certainly going to be a zext in the DAG which we can eliminate.
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
  SDValue AndN = N->getOperand(2);
  if (AndN.getOpcode() != ISD::AND)
    return SDValue();

  ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
  if (!CMask || CMask->getZExtValue() != Mask)
    return SDValue();

  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
                     N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
}

static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
                                           SelectionDAG &DAG) {
  SDLoc dl(N);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
                     DAG.getNode(Opc, dl,
                                 N->getOperand(1).getSimpleValueType(),
                                 N->getOperand(1)),
                     DAG.getConstant(0, dl, MVT::i64));
}

static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc,
                                    SelectionDAG &DAG) {
  SDLoc dl(N);
  LLVMContext &Ctx = *DAG.getContext();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  EVT VT = N->getValueType(0);
  SDValue Pred = N->getOperand(1);
  SDValue Data = N->getOperand(2);
  EVT DataVT = Data.getValueType();

  if (DataVT.getVectorElementType().isScalarInteger() &&
      (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) {
    if (!TLI.isTypeLegal(DataVT))
      return SDValue();

    EVT OutputVT = EVT::getVectorVT(Ctx, VT,
      AArch64::NeonBitsPerVector / VT.getSizeInBits());
    SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data);
    SDValue Zero = DAG.getConstant(0, dl, MVT::i64);
    SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero);

    return Result;
  }

  return SDValue();
}

static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
  SDLoc dl(N);
  LLVMContext &Ctx = *DAG.getContext();
  EVT VT = N->getValueType(0);

  assert(VT.isScalableVector() && "Expected a scalable vector.");

  // Current lowering only supports the SVE-ACLE types.
  if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
    return SDValue();

  unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
  unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8;
  EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true });

  // Convert everything to the domain of EXT (i.e bytes).
  SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
  SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
  SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
                            DAG.getConstant(ElemSize, dl, MVT::i32));

  SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
}

static SDValue tryConvertSVEWideCompare(SDNode *N, unsigned ReplacementIID,
                                        bool Invert,
                                        TargetLowering::DAGCombinerInfo &DCI,
                                        SelectionDAG &DAG) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  SDValue Comparator = N->getOperand(3);
  if (Comparator.getOpcode() == AArch64ISD::DUP ||
      Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
    unsigned IID = getIntrinsicID(N);
    EVT VT = N->getValueType(0);
    EVT CmpVT = N->getOperand(2).getValueType();
    SDValue Pred = N->getOperand(1);
    SDValue Imm;
    SDLoc DL(N);

    switch (IID) {
    default:
      llvm_unreachable("Called with wrong intrinsic!");
      break;

    // Signed comparisons
    case Intrinsic::aarch64_sve_cmpeq_wide:
    case Intrinsic::aarch64_sve_cmpne_wide:
    case Intrinsic::aarch64_sve_cmpge_wide:
    case Intrinsic::aarch64_sve_cmpgt_wide:
    case Intrinsic::aarch64_sve_cmplt_wide:
    case Intrinsic::aarch64_sve_cmple_wide: {
      if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
        int64_t ImmVal = CN->getSExtValue();
        if (ImmVal >= -16 && ImmVal <= 15)
          Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
        else
          return SDValue();
      }
      break;
    }
    // Unsigned comparisons
    case Intrinsic::aarch64_sve_cmphs_wide:
    case Intrinsic::aarch64_sve_cmphi_wide:
    case Intrinsic::aarch64_sve_cmplo_wide:
    case Intrinsic::aarch64_sve_cmpls_wide:  {
      if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
        uint64_t ImmVal = CN->getZExtValue();
        if (ImmVal <= 127)
          Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
        else
          return SDValue();
      }
      break;
    }
    }

    SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
    SDValue ID = DAG.getTargetConstant(ReplacementIID, DL, MVT::i64);
    SDValue Op0, Op1;
    if (Invert) {
      Op0 = Splat;
      Op1 = N->getOperand(2);
    } else {
      Op0 = N->getOperand(2);
      Op1 = Splat;
    }
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                       ID, Pred, Op0, Op1);
  }

  return SDValue();
}

static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
                        AArch64CC::CondCode Cond) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  SDLoc DL(Op);
  assert(Op.getValueType().isScalableVector() &&
         TLI.isTypeLegal(Op.getValueType()) &&
         "Expected legal scalable vector type!");

  // Ensure target specific opcodes are using legal type.
  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
  SDValue TVal = DAG.getConstant(1, DL, OutVT);
  SDValue FVal = DAG.getConstant(0, DL, OutVT);

  // Set condition code (CC) flags.
  SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op);

  // Convert CC to integer based on requested condition.
  // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
  SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
  SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
  return DAG.getZExtOrTrunc(Res, DL, VT);
}

static SDValue performIntrinsicCombine(SDNode *N,
                                       TargetLowering::DAGCombinerInfo &DCI,
                                       const AArch64Subtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  unsigned IID = getIntrinsicID(N);
  switch (IID) {
  default:
    break;
  case Intrinsic::aarch64_neon_vcvtfxs2fp:
  case Intrinsic::aarch64_neon_vcvtfxu2fp:
    return tryCombineFixedPointConvert(N, DCI, DAG);
  case Intrinsic::aarch64_neon_saddv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
  case Intrinsic::aarch64_neon_uaddv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
  case Intrinsic::aarch64_neon_sminv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
  case Intrinsic::aarch64_neon_uminv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
  case Intrinsic::aarch64_neon_smaxv:
    return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
  case Intrinsic::aarch64_neon_umaxv:
    return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
  case Intrinsic::aarch64_neon_fmax:
    return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fmin:
    return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fmaxnm:
    return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_fminnm:
    return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
                       N->getOperand(1), N->getOperand(2));
  case Intrinsic::aarch64_neon_smull:
  case Intrinsic::aarch64_neon_umull:
  case Intrinsic::aarch64_neon_pmull:
  case Intrinsic::aarch64_neon_sqdmull:
    return tryCombineLongOpWithDup(IID, N, DCI, DAG);
  case Intrinsic::aarch64_neon_sqshl:
  case Intrinsic::aarch64_neon_uqshl:
  case Intrinsic::aarch64_neon_sqshlu:
  case Intrinsic::aarch64_neon_srshl:
  case Intrinsic::aarch64_neon_urshl:
  case Intrinsic::aarch64_neon_sshl:
  case Intrinsic::aarch64_neon_ushl:
    return tryCombineShiftImm(IID, N, DAG);
  case Intrinsic::aarch64_crc32b:
  case Intrinsic::aarch64_crc32cb:
    return tryCombineCRC32(0xff, N, DAG);
  case Intrinsic::aarch64_crc32h:
  case Intrinsic::aarch64_crc32ch:
    return tryCombineCRC32(0xffff, N, DAG);
  case Intrinsic::aarch64_sve_smaxv:
    return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG);
  case Intrinsic::aarch64_sve_umaxv:
    return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG);
  case Intrinsic::aarch64_sve_sminv:
    return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG);
  case Intrinsic::aarch64_sve_uminv:
    return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG);
  case Intrinsic::aarch64_sve_orv:
    return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG);
  case Intrinsic::aarch64_sve_eorv:
    return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG);
  case Intrinsic::aarch64_sve_andv:
    return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG);
  case Intrinsic::aarch64_sve_ext:
    return LowerSVEIntrinsicEXT(N, DAG);
  case Intrinsic::aarch64_sve_cmpeq_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpeq,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpne_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpne,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpge_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmpgt_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmplt_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
                                    true, DCI, DAG);
  case Intrinsic::aarch64_sve_cmple_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
                                    true, DCI, DAG);
  case Intrinsic::aarch64_sve_cmphs_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmphi_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi,
                                    false, DCI, DAG);
  case Intrinsic::aarch64_sve_cmplo_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, true,
                                    DCI, DAG);
  case Intrinsic::aarch64_sve_cmpls_wide:
    return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, true,
                                    DCI, DAG);
  case Intrinsic::aarch64_sve_ptest_any:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::ANY_ACTIVE);
  case Intrinsic::aarch64_sve_ptest_first:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::FIRST_ACTIVE);
  case Intrinsic::aarch64_sve_ptest_last:
    return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
                    AArch64CC::LAST_ACTIVE);
  }
  return SDValue();
}

static SDValue performExtendCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG) {
  // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
  // we can convert that DUP into another extract_high (of a bigger DUP), which
  // helps the backend to decide that an sabdl2 would be useful, saving a real
  // extract_high operation.
  if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
      N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
    SDNode *ABDNode = N->getOperand(0).getNode();
    unsigned IID = getIntrinsicID(ABDNode);
    if (IID == Intrinsic::aarch64_neon_sabd ||
        IID == Intrinsic::aarch64_neon_uabd) {
      SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
      if (!NewABD.getNode())
        return SDValue();

      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
                         NewABD);
    }
  }

  // This is effectively a custom type legalization for AArch64.
  //
  // Type legalization will split an extend of a small, legal, type to a larger
  // illegal type by first splitting the destination type, often creating
  // illegal source types, which then get legalized in isel-confusing ways,
  // leading to really terrible codegen. E.g.,
  //   %result = v8i32 sext v8i8 %value
  // becomes
  //   %losrc = extract_subreg %value, ...
  //   %hisrc = extract_subreg %value, ...
  //   %lo = v4i32 sext v4i8 %losrc
  //   %hi = v4i32 sext v4i8 %hisrc
  // Things go rapidly downhill from there.
  //
  // For AArch64, the [sz]ext vector instructions can only go up one element
  // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
  // take two instructions.
  //
  // This implies that the most efficient way to do the extend from v8i8
  // to two v4i32 values is to first extend the v8i8 to v8i16, then do
  // the normal splitting to happen for the v8i16->v8i32.

  // This is pre-legalization to catch some cases where the default
  // type legalization will create ill-tempered code.
  if (!DCI.isBeforeLegalizeOps())
    return SDValue();

  // We're only interested in cleaning things up for non-legal vector types
  // here. If both the source and destination are legal, things will just
  // work naturally without any fiddling.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT ResVT = N->getValueType(0);
  if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
    return SDValue();
  // If the vector type isn't a simple VT, it's beyond the scope of what
  // we're  worried about here. Let legalization do its thing and hope for
  // the best.
  SDValue Src = N->getOperand(0);
  EVT SrcVT = Src->getValueType(0);
  if (!ResVT.isSimple() || !SrcVT.isSimple())
    return SDValue();

  // If the source VT is a 64-bit vector, we can play games and get the
  // better results we want.
  if (SrcVT.getSizeInBits() != 64)
    return SDValue();

  unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
  unsigned ElementCount = SrcVT.getVectorNumElements();
  SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
  SDLoc DL(N);
  Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);

  // Now split the rest of the operation into two halves, each with a 64
  // bit source.
  EVT LoVT, HiVT;
  SDValue Lo, Hi;
  unsigned NumElements = ResVT.getVectorNumElements();
  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
  LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
                                 ResVT.getVectorElementType(), NumElements / 2);

  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
                               LoVT.getVectorNumElements());
  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
                   DAG.getConstant(0, DL, MVT::i64));
  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
                   DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);

  // Now combine the parts back together so we still have a single result
  // like the combiner expects.
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
}

static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
                               SDValue SplatVal, unsigned NumVecElts) {
  assert(!St.isTruncatingStore() && "cannot split truncating vector store");
  unsigned OrigAlignment = St.getAlignment();
  unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;

  // Create scalar stores. This is at least as good as the code sequence for a
  // split unaligned store which is a dup.s, ext.b, and two stores.
  // Most of the time the three stores should be replaced by store pair
  // instructions (stp).
  SDLoc DL(&St);
  SDValue BasePtr = St.getBasePtr();
  uint64_t BaseOffset = 0;

  const MachinePointerInfo &PtrInfo = St.getPointerInfo();
  SDValue NewST1 =
      DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
                   OrigAlignment, St.getMemOperand()->getFlags());

  // As this in ISel, we will not merge this add which may degrade results.
  if (BasePtr->getOpcode() == ISD::ADD &&
      isa<ConstantSDNode>(BasePtr->getOperand(1))) {
    BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
    BasePtr = BasePtr->getOperand(0);
  }

  unsigned Offset = EltOffset;
  while (--NumVecElts) {
    unsigned Alignment = MinAlign(OrigAlignment, Offset);
    SDValue OffsetPtr =
        DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
                    DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
    NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
                          PtrInfo.getWithOffset(Offset), Alignment,
                          St.getMemOperand()->getFlags());
    Offset += EltOffset;
  }
  return NewST1;
}

static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  EVT PtrTy = N->getOperand(3).getValueType();

  EVT LoadVT = VT;
  if (VT.isFloatingPoint())
    LoadVT = VT.changeTypeToInteger();

  auto *MINode = cast<MemIntrinsicSDNode>(N);
  SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
  SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
                                MINode->getOperand(3), DAG.getUNDEF(PtrTy),
                                MINode->getOperand(2), PassThru,
                                MINode->getMemoryVT(), MINode->getMemOperand(),
                                ISD::UNINDEXED, ISD::NON_EXTLOAD, false);

   if (VT.isFloatingPoint()) {
     SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
     return DAG.getMergeValues(Ops, DL);
   }

  return L;
}

static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);

  SDValue Data = N->getOperand(2);
  EVT DataVT = Data.getValueType();
  EVT PtrTy = N->getOperand(4).getValueType();

  if (DataVT.isFloatingPoint())
    Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);

  auto *MINode = cast<MemIntrinsicSDNode>(N);
  return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
                            DAG.getUNDEF(PtrTy), MINode->getOperand(3),
                            MINode->getMemoryVT(), MINode->getMemOperand(),
                            ISD::UNINDEXED, false, false);
}

/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
/// load store optimizer pass will merge them to store pair stores.  This should
/// be better than a movi to create the vector zero followed by a vector store
/// if the zero constant is not re-used, since one instructions and one register
/// live range will be removed.
///
/// For example, the final generated code should be:
///
///   stp xzr, xzr, [x0]
///
/// instead of:
///
///   movi v0.2d, #0
///   str q0, [x0]
///
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
  SDValue StVal = St.getValue();
  EVT VT = StVal.getValueType();

  // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
  // 2, 3 or 4 i32 elements.
  int NumVecElts = VT.getVectorNumElements();
  if (!(((NumVecElts == 2 || NumVecElts == 3) &&
         VT.getVectorElementType().getSizeInBits() == 64) ||
        ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
         VT.getVectorElementType().getSizeInBits() == 32)))
    return SDValue();

  if (StVal.getOpcode() != ISD::BUILD_VECTOR)
    return SDValue();

  // If the zero constant has more than one use then the vector store could be
  // better since the constant mov will be amortized and stp q instructions
  // should be able to be formed.
  if (!StVal.hasOneUse())
    return SDValue();

  // If the store is truncating then it's going down to i16 or smaller, which
  // means it can be implemented in a single store anyway.
  if (St.isTruncatingStore())
    return SDValue();

  // If the immediate offset of the address operand is too large for the stp
  // instruction, then bail out.
  if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
    int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
    if (Offset < -512 || Offset > 504)
      return SDValue();
  }

  for (int I = 0; I < NumVecElts; ++I) {
    SDValue EltVal = StVal.getOperand(I);
    if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
      return SDValue();
  }

  // Use a CopyFromReg WZR/XZR here to prevent
  // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
  SDLoc DL(&St);
  unsigned ZeroReg;
  EVT ZeroVT;
  if (VT.getVectorElementType().getSizeInBits() == 32) {
    ZeroReg = AArch64::WZR;
    ZeroVT = MVT::i32;
  } else {
    ZeroReg = AArch64::XZR;
    ZeroVT = MVT::i64;
  }
  SDValue SplatVal =
      DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}

/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
/// value. The load store optimizer pass will merge them to store pair stores.
/// This has better performance than a splat of the scalar followed by a split
/// vector store. Even if the stores are not merged it is four stores vs a dup,
/// followed by an ext.b and two stores.
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
  SDValue StVal = St.getValue();
  EVT VT = StVal.getValueType();

  // Don't replace floating point stores, they possibly won't be transformed to
  // stp because of the store pair suppress pass.
  if (VT.isFloatingPoint())
    return SDValue();

  // We can express a splat as store pair(s) for 2 or 4 elements.
  unsigned NumVecElts = VT.getVectorNumElements();
  if (NumVecElts != 4 && NumVecElts != 2)
    return SDValue();

  // If the store is truncating then it's going down to i16 or smaller, which
  // means it can be implemented in a single store anyway.
  if (St.isTruncatingStore())
    return SDValue();

  // Check that this is a splat.
  // Make sure that each of the relevant vector element locations are inserted
  // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
  std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
  SDValue SplatVal;
  for (unsigned I = 0; I < NumVecElts; ++I) {
    // Check for insert vector elements.
    if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
      return SDValue();

    // Check that same value is inserted at each vector element.
    if (I == 0)
      SplatVal = StVal.getOperand(1);
    else if (StVal.getOperand(1) != SplatVal)
      return SDValue();

    // Check insert element index.
    ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
    if (!CIndex)
      return SDValue();
    uint64_t IndexVal = CIndex->getZExtValue();
    if (IndexVal >= NumVecElts)
      return SDValue();
    IndexNotInserted.reset(IndexVal);

    StVal = StVal.getOperand(0);
  }
  // Check that all vector element locations were inserted to.
  if (IndexNotInserted.any())
      return SDValue();

  return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}

static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                           SelectionDAG &DAG,
                           const AArch64Subtarget *Subtarget) {

  StoreSDNode *S = cast<StoreSDNode>(N);
  if (S->isVolatile() || S->isIndexed())
    return SDValue();

  SDValue StVal = S->getValue();
  EVT VT = StVal.getValueType();
  if (!VT.isVector())
    return SDValue();

  // If we get a splat of zeros, convert this vector store to a store of
  // scalars. They will be merged into store pairs of xzr thereby removing one
  // instruction and one register.
  if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
    return ReplacedZeroSplat;

  // FIXME: The logic for deciding if an unaligned store should be split should
  // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
  // a call to that function here.

  if (!Subtarget->isMisaligned128StoreSlow())
    return SDValue();

  // Don't split at -Oz.
  if (DAG.getMachineFunction().getFunction().hasMinSize())
    return SDValue();

  // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
  // those up regresses performance on micro-benchmarks and olden/bh.
  if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
    return SDValue();

  // Split unaligned 16B stores. They are terrible for performance.
  // Don't split stores with alignment of 1 or 2. Code that uses clang vector
  // extensions can use this to mark that it does not want splitting to happen
  // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
  // eliminating alignment hazards is only 1 in 8 for alignment of 2.
  if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
      S->getAlignment() <= 2)
    return SDValue();

  // If we get a splat of a scalar convert this vector store to a store of
  // scalars. They will be merged into store pairs thereby removing two
  // instructions.
  if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
    return ReplacedSplat;

  SDLoc DL(S);

  // Split VT into two.
  EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
  unsigned NumElts = HalfVT.getVectorNumElements();
  SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
                                   DAG.getConstant(0, DL, MVT::i64));
  SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
                                   DAG.getConstant(NumElts, DL, MVT::i64));
  SDValue BasePtr = S->getBasePtr();
  SDValue NewST1 =
      DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
                   S->getAlignment(), S->getMemOperand()->getFlags());
  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
                                  DAG.getConstant(8, DL, MVT::i64));
  return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
                      S->getPointerInfo(), S->getAlignment(),
                      S->getMemOperand()->getFlags());
}

/// Target-specific DAG combine function for post-increment LD1 (lane) and
/// post-increment LD1R.
static SDValue performPostLD1Combine(SDNode *N,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     bool IsLaneOp) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  unsigned LoadIdx = IsLaneOp ? 1 : 0;
  SDNode *LD = N->getOperand(LoadIdx).getNode();
  // If it is not LOAD, can not do such combine.
  if (LD->getOpcode() != ISD::LOAD)
    return SDValue();

  // The vector lane must be a constant in the LD1LANE opcode.
  SDValue Lane;
  if (IsLaneOp) {
    Lane = N->getOperand(2);
    auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
    if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
      return SDValue();
  }

  LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
  EVT MemVT = LoadSDN->getMemoryVT();
  // Check if memory operand is the same type as the vector element.
  if (MemVT != VT.getVectorElementType())
    return SDValue();

  // Check if there are other uses. If so, do not combine as it will introduce
  // an extra load.
  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
       ++UI) {
    if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
      continue;
    if (*UI != N)
      return SDValue();
  }

  SDValue Addr = LD->getOperand(1);
  SDValue Vector = N->getOperand(0);
  // Search for a use of the address operand that is an increment.
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
       Addr.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() != ISD::ADD
        || UI.getUse().getResNo() != Addr.getResNo())
      continue;

    // If the increment is a constant, it must match the memory ref size.
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
      uint32_t IncVal = CInc->getZExtValue();
      unsigned NumBytes = VT.getScalarSizeInBits() / 8;
      if (IncVal != NumBytes)
        continue;
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
    }

    // To avoid cycle construction make sure that neither the load nor the add
    // are predecessors to each other or the Vector.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;
    Visited.insert(Addr.getNode());
    Worklist.push_back(User);
    Worklist.push_back(LD);
    Worklist.push_back(Vector.getNode());
    if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(User, Visited, Worklist))
      continue;

    SmallVector<SDValue, 8> Ops;
    Ops.push_back(LD->getOperand(0));  // Chain
    if (IsLaneOp) {
      Ops.push_back(Vector);           // The vector to be inserted
      Ops.push_back(Lane);             // The lane to be inserted in the vector
    }
    Ops.push_back(Addr);
    Ops.push_back(Inc);

    EVT Tys[3] = { VT, MVT::i64, MVT::Other };
    SDVTList SDTys = DAG.getVTList(Tys);
    unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
                                           MemVT,
                                           LoadSDN->getMemOperand());

    // Update the uses.
    SDValue NewResults[] = {
        SDValue(LD, 0),            // The result of load
        SDValue(UpdN.getNode(), 2) // Chain
    };
    DCI.CombineTo(LD, NewResults);
    DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
    DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register

    break;
  }
  return SDValue();
}

/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
/// address translation.
static bool performTBISimplification(SDValue Addr,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     SelectionDAG &DAG) {
  APInt DemandedMask = APInt::getLowBitsSet(64, 56);
  KnownBits Known;
  TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
                                        !DCI.isBeforeLegalizeOps());
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
    DCI.CommitTargetLoweringOpt(TLO);
    return true;
  }
  return false;
}

static SDValue performSTORECombine(SDNode *N,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   SelectionDAG &DAG,
                                   const AArch64Subtarget *Subtarget) {
  if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
    return Split;

  if (Subtarget->supportsAddressTopByteIgnored() &&
      performTBISimplification(N->getOperand(2), DCI, DAG))
    return SDValue(N, 0);

  return SDValue();
}


/// Target-specific DAG combine function for NEON load/store intrinsics
/// to merge base address updates.
static SDValue performNEONPostLDSTCombine(SDNode *N,
                                          TargetLowering::DAGCombinerInfo &DCI,
                                          SelectionDAG &DAG) {
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
    return SDValue();

  unsigned AddrOpIdx = N->getNumOperands() - 1;
  SDValue Addr = N->getOperand(AddrOpIdx);

  // Search for a use of the address operand that is an increment.
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() != ISD::ADD ||
        UI.getUse().getResNo() != Addr.getResNo())
      continue;

    // Check that the add is independent of the load/store.  Otherwise, folding
    // it would create a cycle.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;
    Visited.insert(Addr.getNode());
    Worklist.push_back(N);
    Worklist.push_back(User);
    if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(User, Visited, Worklist))
      continue;

    // Find the new opcode for the updating load/store.
    bool IsStore = false;
    bool IsLaneOp = false;
    bool IsDupOp = false;
    unsigned NewOpc = 0;
    unsigned NumVecs = 0;
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    switch (IntNo) {
    default: llvm_unreachable("unexpected intrinsic for Neon base update");
    case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
      NumVecs = 2; break;
    case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
      NumVecs = 3; break;
    case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
      NumVecs = 4; break;
    case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
      NumVecs = 2; IsStore = true; break;
    case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
      NumVecs = 3; IsStore = true; break;
    case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
      NumVecs = 4; IsStore = true; break;
    case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
      NumVecs = 2; break;
    case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
      NumVecs = 3; break;
    case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
      NumVecs = 4; break;
    case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
      NumVecs = 2; IsStore = true; break;
    case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
      NumVecs = 3; IsStore = true; break;
    case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
      NumVecs = 4; IsStore = true; break;
    case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
      NumVecs = 2; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
      NumVecs = 3; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
      NumVecs = 4; IsDupOp = true; break;
    case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
      NumVecs = 2; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
      NumVecs = 3; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
      NumVecs = 4; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
      NumVecs = 2; IsStore = true; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
      NumVecs = 3; IsStore = true; IsLaneOp = true; break;
    case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
      NumVecs = 4; IsStore = true; IsLaneOp = true; break;
    }

    EVT VecTy;
    if (IsStore)
      VecTy = N->getOperand(2).getValueType();
    else
      VecTy = N->getValueType(0);

    // If the increment is a constant, it must match the memory ref size.
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
      uint32_t IncVal = CInc->getZExtValue();
      unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
      if (IsLaneOp || IsDupOp)
        NumBytes /= VecTy.getVectorNumElements();
      if (IncVal != NumBytes)
        continue;
      Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
    }
    SmallVector<SDValue, 8> Ops;
    Ops.push_back(N->getOperand(0)); // Incoming chain
    // Load lane and store have vector list as input.
    if (IsLaneOp || IsStore)
      for (unsigned i = 2; i < AddrOpIdx; ++i)
        Ops.push_back(N->getOperand(i));
    Ops.push_back(Addr); // Base register
    Ops.push_back(Inc);

    // Return Types.
    EVT Tys[6];
    unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
    unsigned n;
    for (n = 0; n < NumResultVecs; ++n)
      Tys[n] = VecTy;
    Tys[n++] = MVT::i64;  // Type of write back register
    Tys[n] = MVT::Other;  // Type of the chain
    SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));

    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
                                           MemInt->getMemoryVT(),
                                           MemInt->getMemOperand());

    // Update the uses.
    std::vector<SDValue> NewResults;
    for (unsigned i = 0; i < NumResultVecs; ++i) {
      NewResults.push_back(SDValue(UpdN.getNode(), i));
    }
    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
    DCI.CombineTo(N, NewResults);
    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));

    break;
  }
  return SDValue();
}

// Checks to see if the value is the prescribed width and returns information
// about its extension mode.
static
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
  ExtType = ISD::NON_EXTLOAD;
  switch(V.getNode()->getOpcode()) {
  default:
    return false;
  case ISD::LOAD: {
    LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
    if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
       || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
      ExtType = LoadNode->getExtensionType();
      return true;
    }
    return false;
  }
  case ISD::AssertSext: {
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
      ExtType = ISD::SEXTLOAD;
      return true;
    }
    return false;
  }
  case ISD::AssertZext: {
    VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
    if ((TypeNode->getVT() == MVT::i8 && width == 8)
       || (TypeNode->getVT() == MVT::i16 && width == 16)) {
      ExtType = ISD::ZEXTLOAD;
      return true;
    }
    return false;
  }
  case ISD::Constant:
  case ISD::TargetConstant: {
    return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
           1LL << (width - 1);
  }
  }

  return true;
}

// This function does a whole lot of voodoo to determine if the tests are
// equivalent without and with a mask. Essentially what happens is that given a
// DAG resembling:
//
//  +-------------+ +-------------+ +-------------+ +-------------+
//  |    Input    | | AddConstant | | CompConstant| |     CC      |
//  +-------------+ +-------------+ +-------------+ +-------------+
//           |           |           |               |
//           V           V           |    +----------+
//          +-------------+  +----+  |    |
//          |     ADD     |  |0xff|  |    |
//          +-------------+  +----+  |    |
//                  |           |    |    |
//                  V           V    |    |
//                 +-------------+   |    |
//                 |     AND     |   |    |
//                 +-------------+   |    |
//                      |            |    |
//                      +-----+      |    |
//                            |      |    |
//                            V      V    V
//                           +-------------+
//                           |     CMP     |
//                           +-------------+
//
// The AND node may be safely removed for some combinations of inputs. In
// particular we need to take into account the extension type of the Input,
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
// width of the input (this can work for any width inputs, the above graph is
// specific to 8 bits.
//
// The specific equations were worked out by generating output tables for each
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
// problem was simplified by working with 4 bit inputs, which means we only
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
// patterns present in both extensions (0,7). For every distinct set of
// AddConstant and CompConstants bit patterns we can consider the masked and
// unmasked versions to be equivalent if the result of this function is true for
// all 16 distinct bit patterns of for the current extension type of Input (w0).
//
//   sub      w8, w0, w1
//   and      w10, w8, #0x0f
//   cmp      w8, w2
//   cset     w9, AArch64CC
//   cmp      w10, w2
//   cset     w11, AArch64CC
//   cmp      w9, w11
//   cset     w0, eq
//   ret
//
// Since the above function shows when the outputs are equivalent it defines
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
// would be expensive to run during compiles. The equations below were written
// in a test harness that confirmed they gave equivalent outputs to the above
// for all inputs function, so they can be used determine if the removal is
// legal instead.
//
// isEquivalentMaskless() is the code for testing if the AND can be removed
// factored out of the DAG recognition as the DAG can take several forms.

static bool isEquivalentMaskless(unsigned CC, unsigned width,
                                 ISD::LoadExtType ExtType, int AddConstant,
                                 int CompConstant) {
  // By being careful about our equations and only writing the in term
  // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
  // make them generally applicable to all bit widths.
  int MaxUInt = (1 << width);

  // For the purposes of these comparisons sign extending the type is
  // equivalent to zero extending the add and displacing it by half the integer
  // width. Provided we are careful and make sure our equations are valid over
  // the whole range we can just adjust the input and avoid writing equations
  // for sign extended inputs.
  if (ExtType == ISD::SEXTLOAD)
    AddConstant -= (1 << (width-1));

  switch(CC) {
  case AArch64CC::LE:
  case AArch64CC::GT:
    if ((AddConstant == 0) ||
        (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
        (AddConstant >= 0 && CompConstant < 0) ||
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
      return true;
    break;
  case AArch64CC::LT:
  case AArch64CC::GE:
    if ((AddConstant == 0) ||
        (AddConstant >= 0 && CompConstant <= 0) ||
        (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
      return true;
    break;
  case AArch64CC::HI:
  case AArch64CC::LS:
    if ((AddConstant >= 0 && CompConstant < 0) ||
       (AddConstant <= 0 && CompConstant >= -1 &&
        CompConstant < AddConstant + MaxUInt))
      return true;
   break;
  case AArch64CC::PL:
  case AArch64CC::MI:
    if ((AddConstant == 0) ||
        (AddConstant > 0 && CompConstant <= 0) ||
        (AddConstant < 0 && CompConstant <= AddConstant))
      return true;
    break;
  case AArch64CC::LO:
  case AArch64CC::HS:
    if ((AddConstant >= 0 && CompConstant <= 0) ||
        (AddConstant <= 0 && CompConstant >= 0 &&
         CompConstant <= AddConstant + MaxUInt))
      return true;
    break;
  case AArch64CC::EQ:
  case AArch64CC::NE:
    if ((AddConstant > 0 && CompConstant < 0) ||
        (AddConstant < 0 && CompConstant >= 0 &&
         CompConstant < AddConstant + MaxUInt) ||
        (AddConstant >= 0 && CompConstant >= 0 &&
         CompConstant >= AddConstant) ||
        (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
      return true;
    break;
  case AArch64CC::VS:
  case AArch64CC::VC:
  case AArch64CC::AL:
  case AArch64CC::NV:
    return true;
  case AArch64CC::Invalid:
    break;
  }

  return false;
}

static
SDValue performCONDCombine(SDNode *N,
                           TargetLowering::DAGCombinerInfo &DCI,
                           SelectionDAG &DAG, unsigned CCIndex,
                           unsigned CmpIndex) {
  unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
  SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
  unsigned CondOpcode = SubsNode->getOpcode();

  if (CondOpcode != AArch64ISD::SUBS)
    return SDValue();

  // There is a SUBS feeding this condition. Is it fed by a mask we can
  // use?

  SDNode *AndNode = SubsNode->getOperand(0).getNode();
  unsigned MaskBits = 0;

  if (AndNode->getOpcode() != ISD::AND)
    return SDValue();

  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
    uint32_t CNV = CN->getZExtValue();
    if (CNV == 255)
      MaskBits = 8;
    else if (CNV == 65535)
      MaskBits = 16;
  }

  if (!MaskBits)
    return SDValue();

  SDValue AddValue = AndNode->getOperand(0);

  if (AddValue.getOpcode() != ISD::ADD)
    return SDValue();

  // The basic dag structure is correct, grab the inputs and validate them.

  SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
  SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
  SDValue SubsInputValue = SubsNode->getOperand(1);

  // The mask is present and the provenance of all the values is a smaller type,
  // lets see if the mask is superfluous.

  if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
      !isa<ConstantSDNode>(SubsInputValue.getNode()))
    return SDValue();

  ISD::LoadExtType ExtType;

  if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
      !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
      !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
    return SDValue();

  if(!isEquivalentMaskless(CC, MaskBits, ExtType,
                cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
                cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
    return SDValue();

  // The AND is not necessary, remove it.

  SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
                               SubsNode->getValueType(1));
  SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };

  SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
  DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());

  return SDValue(N, 0);
}

// Optimize compare with zero and branch.
static SDValue performBRCONDCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
  // will not be produced, as they are conditional branch instructions that do
  // not set flags.
  if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
    return SDValue();

  if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
    N = NV.getNode();
  SDValue Chain = N->getOperand(0);
  SDValue Dest = N->getOperand(1);
  SDValue CCVal = N->getOperand(2);
  SDValue Cmp = N->getOperand(3);

  assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
  unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
    return SDValue();

  unsigned CmpOpc = Cmp.getOpcode();
  if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
    return SDValue();

  // Only attempt folding if there is only one use of the flag and no use of the
  // value.
  if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
    return SDValue();

  SDValue LHS = Cmp.getOperand(0);
  SDValue RHS = Cmp.getOperand(1);

  assert(LHS.getValueType() == RHS.getValueType() &&
         "Expected the value type to be the same for both operands!");
  if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
    return SDValue();

  if (isNullConstant(LHS))
    std::swap(LHS, RHS);

  if (!isNullConstant(RHS))
    return SDValue();

  if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
      LHS.getOpcode() == ISD::SRL)
    return SDValue();

  // Fold the compare into the branch instruction.
  SDValue BR;
  if (CC == AArch64CC::EQ)
    BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
  else
    BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);

  // Do not add new nodes to DAG combiner worklist.
  DCI.CombineTo(N, BR, false);

  return SDValue();
}

// Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
// as well as whether the test should be inverted.  This code is required to
// catch these cases (as opposed to standard dag combines) because
// AArch64ISD::TBZ is matched during legalization.
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
                                 SelectionDAG &DAG) {

  if (!Op->hasOneUse())
    return Op;

  // We don't handle undef/constant-fold cases below, as they should have
  // already been taken care of (e.g. and of 0, test of undefined shifted bits,
  // etc.)

  // (tbz (trunc x), b) -> (tbz x, b)
  // This case is just here to enable more of the below cases to be caught.
  if (Op->getOpcode() == ISD::TRUNCATE &&
      Bit < Op->getValueType(0).getSizeInBits()) {
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }

  // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
  if (Op->getOpcode() == ISD::ANY_EXTEND &&
      Bit < Op->getOperand(0).getValueSizeInBits()) {
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }

  if (Op->getNumOperands() != 2)
    return Op;

  auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
  if (!C)
    return Op;

  switch (Op->getOpcode()) {
  default:
    return Op;

  // (tbz (and x, m), b) -> (tbz x, b)
  case ISD::AND:
    if ((C->getZExtValue() >> Bit) & 1)
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    return Op;

  // (tbz (shl x, c), b) -> (tbz x, b-c)
  case ISD::SHL:
    if (C->getZExtValue() <= Bit &&
        (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
      Bit = Bit - C->getZExtValue();
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    }
    return Op;

  // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
  case ISD::SRA:
    Bit = Bit + C->getZExtValue();
    if (Bit >= Op->getValueType(0).getSizeInBits())
      Bit = Op->getValueType(0).getSizeInBits() - 1;
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);

  // (tbz (srl x, c), b) -> (tbz x, b+c)
  case ISD::SRL:
    if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
      Bit = Bit + C->getZExtValue();
      return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
    }
    return Op;

  // (tbz (xor x, -1), b) -> (tbnz x, b)
  case ISD::XOR:
    if ((C->getZExtValue() >> Bit) & 1)
      Invert = !Invert;
    return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
  }
}

// Optimize test single bit zero/non-zero and branch.
static SDValue performTBZCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 SelectionDAG &DAG) {
  unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
  bool Invert = false;
  SDValue TestSrc = N->getOperand(1);
  SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);

  if (TestSrc == NewTestSrc)
    return SDValue();

  unsigned NewOpc = N->getOpcode();
  if (Invert) {
    if (NewOpc == AArch64ISD::TBZ)
      NewOpc = AArch64ISD::TBNZ;
    else {
      assert(NewOpc == AArch64ISD::TBNZ);
      NewOpc = AArch64ISD::TBZ;
    }
  }

  SDLoc DL(N);
  return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
                     DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
}

// vselect (v1i1 setcc) ->
//     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
// such VSELECT.
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  EVT CCVT = N0.getValueType();

  if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
      CCVT.getVectorElementType() != MVT::i1)
    return SDValue();

  EVT ResVT = N->getValueType(0);
  EVT CmpVT = N0.getOperand(0).getValueType();
  // Only combine when the result type is of the same size as the compared
  // operands.
  if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
    return SDValue();

  SDValue IfTrue = N->getOperand(1);
  SDValue IfFalse = N->getOperand(2);
  SDValue SetCC =
      DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
                   N0.getOperand(0), N0.getOperand(1),
                   cast<CondCodeSDNode>(N0.getOperand(2))->get());
  return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
                     IfTrue, IfFalse);
}

/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
/// the compare-mask instructions rather than going via NZCV, even if LHS and
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
/// with a vector one followed by a DUP shuffle on the result.
static SDValue performSelectCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDValue N0 = N->getOperand(0);
  EVT ResVT = N->getValueType(0);

  if (N0.getOpcode() != ISD::SETCC)
    return SDValue();

  // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
  // scalar SetCCResultType. We also don't expect vectors, because we assume
  // that selects fed by vector SETCCs are canonicalized to VSELECT.
  assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
         "Scalar-SETCC feeding SELECT has unexpected result type!");

  // If NumMaskElts == 0, the comparison is larger than select result. The
  // largest real NEON comparison is 64-bits per lane, which means the result is
  // at most 32-bits and an illegal vector. Just bail out for now.
  EVT SrcVT = N0.getOperand(0).getValueType();

  // Don't try to do this optimization when the setcc itself has i1 operands.
  // There are no legal vectors of i1, so this would be pointless.
  if (SrcVT == MVT::i1)
    return SDValue();

  int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
  if (!ResVT.isVector() || NumMaskElts == 0)
    return SDValue();

  SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
  EVT CCVT = SrcVT.changeVectorElementTypeToInteger();

  // Also bail out if the vector CCVT isn't the same size as ResVT.
  // This can happen if the SETCC operand size doesn't divide the ResVT size
  // (e.g., f64 vs v3f32).
  if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
    return SDValue();

  // Make sure we didn't create illegal types, if we're not supposed to.
  assert(DCI.isBeforeLegalize() ||
         DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));

  // First perform a vector comparison, where lane 0 is the one we're interested
  // in.
  SDLoc DL(N0);
  SDValue LHS =
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
  SDValue RHS =
      DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
  SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));

  // Now duplicate the comparison mask we want across all other lanes.
  SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
  SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
  Mask = DAG.getNode(ISD::BITCAST, DL,
                     ResVT.changeVectorElementTypeToInteger(), Mask);

  return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
}

/// Get rid of unnecessary NVCASTs (that don't change the type).
static SDValue performNVCASTCombine(SDNode *N) {
  if (N->getValueType(0) == N->getOperand(0).getValueType())
    return N->getOperand(0);

  return SDValue();
}

// If all users of the globaladdr are of the form (globaladdr + constant), find
// the smallest constant, fold it into the globaladdr's offset and rewrite the
// globaladdr as (globaladdr + constant) - constant.
static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
                                           const AArch64Subtarget *Subtarget,
                                           const TargetMachine &TM) {
  auto *GN = cast<GlobalAddressSDNode>(N);
  if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
      AArch64II::MO_NO_FLAG)
    return SDValue();

  uint64_t MinOffset = -1ull;
  for (SDNode *N : GN->uses()) {
    if (N->getOpcode() != ISD::ADD)
      return SDValue();
    auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
    if (!C)
      C = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!C)
      return SDValue();
    MinOffset = std::min(MinOffset, C->getZExtValue());
  }
  uint64_t Offset = MinOffset + GN->getOffset();

  // Require that the new offset is larger than the existing one. Otherwise, we
  // can end up oscillating between two possible DAGs, for example,
  // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
  if (Offset <= uint64_t(GN->getOffset()))
    return SDValue();

  // Check whether folding this offset is legal. It must not go out of bounds of
  // the referenced object to avoid violating the code model, and must be
  // smaller than 2^21 because this is the largest offset expressible in all
  // object formats.
  //
  // This check also prevents us from folding negative offsets, which will end
  // up being treated in the same way as large positive ones. They could also
  // cause code model violations, and aren't really common enough to matter.
  if (Offset >= (1 << 21))
    return SDValue();

  const GlobalValue *GV = GN->getGlobal();
  Type *T = GV->getValueType();
  if (!T->isSized() ||
      Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
    return SDValue();

  SDLoc DL(GN);
  SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
  return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
                     DAG.getConstant(MinOffset, DL, MVT::i64));
}

// Returns an SVE type that ContentTy can be trivially sign or zero extended
// into.
static MVT getSVEContainerType(EVT ContentTy) {
  assert(ContentTy.isSimple() && "No SVE containers for extended types");

  switch (ContentTy.getSimpleVT().SimpleTy) {
  default:
    llvm_unreachable("No known SVE container for this MVT type");
  case MVT::nxv2i8:
  case MVT::nxv2i16:
  case MVT::nxv2i32:
  case MVT::nxv2i64:
  case MVT::nxv2f32:
  case MVT::nxv2f64:
    return MVT::nxv2i64;
  case MVT::nxv4i8:
  case MVT::nxv4i16:
  case MVT::nxv4i32:
  case MVT::nxv4f32:
    return MVT::nxv4i32;
  }
}

static SDValue performST1ScatterCombine(SDNode *N, SelectionDAG &DAG,
                                        unsigned Opcode,
                                        bool OnlyPackedOffsets = true) {
  const SDValue Src = N->getOperand(2);
  const EVT SrcVT = Src->getValueType(0);
  assert(SrcVT.isScalableVector() &&
         "Scatter stores are only possible for SVE vectors");

  SDLoc DL(N);
  MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();

  // Make sure that source data will fit into an SVE register
  if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
    return SDValue();

  // For FPs, ACLE only supports _packed_ single and double precision types.
  if (SrcElVT.isFloatingPoint())
    if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64))
      return SDValue();

  // Depending on the addressing mode, this is either a pointer or a vector of
  // pointers (that fits into one register)
  const SDValue Base = N->getOperand(4);
  // Depending on the addressing mode, this is either a single offset or a
  // vector of offsets  (that fits into one register)
  SDValue Offset = N->getOperand(5);

  auto &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(Base.getValueType()))
    return SDValue();

  // Some scatter store variants allow unpacked offsets, but only as nxv2i32
  // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
  // nxv2i64. Legalize accordingly.
  if (!OnlyPackedOffsets &&
      Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
    Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);

  if (!TLI.isTypeLegal(Offset.getValueType()))
    return SDValue();

  // Source value type that is representable in hardware
  EVT HwSrcVt = getSVEContainerType(SrcVT);

  // Keep the original type of the input data to store - this is needed to
  // differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the
  // integer equivalent, so just use HwSrcVt.
  SDValue InputVT = DAG.getValueType(SrcVT);
  if (SrcVT.isFloatingPoint())
    InputVT = DAG.getValueType(HwSrcVt);

  SDVTList VTs = DAG.getVTList(MVT::Other);
  SDValue SrcNew;

  if (Src.getValueType().isFloatingPoint())
    SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
  else
    SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);

  SDValue Ops[] = {N->getOperand(0), // Chain
                   SrcNew,
                   N->getOperand(3), // Pg
                   Base,
                   Offset,
                   InputVT};

  return DAG.getNode(Opcode, DL, VTs, Ops);
}

static SDValue performLD1GatherCombine(SDNode *N, SelectionDAG &DAG,
                                       unsigned Opcode,
                                       bool OnlyPackedOffsets = true) {
  EVT RetVT = N->getValueType(0);
  assert(RetVT.isScalableVector() &&
         "Gather loads are only possible for SVE vectors");
  SDLoc DL(N);

  if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
    return SDValue();

  // Depending on the addressing mode, this is either a pointer or a vector of
  // pointers (that fits into one register)
  const SDValue Base = N->getOperand(3);
  // Depending on the addressing mode, this is either a single offset or a
  // vector of offsets  (that fits into one register)
  SDValue Offset = N->getOperand(4);

  auto &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(Base.getValueType()))
    return SDValue();

  // Some gather load variants allow unpacked offsets, but only as nxv2i32
  // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
  // nxv2i64. Legalize accordingly.
  if (!OnlyPackedOffsets &&
      Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
    Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);

  // Return value type that is representable in hardware
  EVT HwRetVt = getSVEContainerType(RetVT);

  // Keep the original output value type around - this will better inform
  // optimisations (e.g. instruction folding when load is followed by
  // zext/sext). This will only be used for ints, so the value for FPs
  // doesn't matter.
  SDValue OutVT = DAG.getValueType(RetVT);
  if (RetVT.isFloatingPoint())
    OutVT = DAG.getValueType(HwRetVt);

  SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
  SDValue Ops[] = {N->getOperand(0), // Chain
                   N->getOperand(2), // Pg
                   Base, Offset, OutVT};

  SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
  SDValue LoadChain = SDValue(Load.getNode(), 1);

  if (RetVT.isInteger() && (RetVT != HwRetVt))
    Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));

  // If the original return value was FP, bitcast accordingly. Doing it here
  // means that we can avoid adding TableGen patterns for FPs.
  if (RetVT.isFloatingPoint())
    Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));

  return DAG.getMergeValues({Load, LoadChain}, DL);
}


static SDValue
performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
                              SelectionDAG &DAG) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue Src = N->getOperand(0);
  unsigned Opc = Src->getOpcode();

  // Gather load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
  // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
  unsigned NewOpc;
  switch (Opc) {
  case AArch64ISD::GLD1:
    NewOpc = AArch64ISD::GLD1S;
    break;
  case AArch64ISD::GLD1_SCALED:
    NewOpc = AArch64ISD::GLD1S_SCALED;
    break;
  case AArch64ISD::GLD1_SXTW:
    NewOpc = AArch64ISD::GLD1S_SXTW;
    break;
  case AArch64ISD::GLD1_SXTW_SCALED:
    NewOpc = AArch64ISD::GLD1S_SXTW_SCALED;
    break;
  case AArch64ISD::GLD1_UXTW:
    NewOpc = AArch64ISD::GLD1S_UXTW;
    break;
  case AArch64ISD::GLD1_UXTW_SCALED:
    NewOpc = AArch64ISD::GLD1S_UXTW_SCALED;
    break;
  case AArch64ISD::GLD1_IMM:
    NewOpc = AArch64ISD::GLD1S_IMM;
    break;
  default:
    return SDValue();
  }

  EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
  EVT GLD1SrcMemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();

  if ((SignExtSrcVT != GLD1SrcMemVT) || !Src.hasOneUse())
    return SDValue();

  EVT DstVT = N->getValueType(0);
  SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);
  SDValue Ops[] = {Src->getOperand(0), Src->getOperand(1), Src->getOperand(2),
                   Src->getOperand(3), Src->getOperand(4)};

  SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
  DCI.CombineTo(N, ExtLoad);
  DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));

  // Return N so it doesn't get rechecked
  return SDValue(N, 0);
}

SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
                                                 DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  switch (N->getOpcode()) {
  default:
    LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
    break;
  case ISD::ADD:
  case ISD::SUB:
    return performAddSubLongCombine(N, DCI, DAG);
  case ISD::XOR:
    return performXorCombine(N, DAG, DCI, Subtarget);
  case ISD::MUL:
    return performMulCombine(N, DAG, DCI, Subtarget);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    return performIntToFpCombine(N, DAG, Subtarget);
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    return performFpToIntCombine(N, DAG, DCI, Subtarget);
  case ISD::FDIV:
    return performFDivCombine(N, DAG, DCI, Subtarget);
  case ISD::OR:
    return performORCombine(N, DCI, Subtarget);
  case ISD::AND:
    return performANDCombine(N, DCI);
  case ISD::SRL:
    return performSRLCombine(N, DCI);
  case ISD::INTRINSIC_WO_CHAIN:
    return performIntrinsicCombine(N, DCI, Subtarget);
  case ISD::ANY_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::SIGN_EXTEND:
    return performExtendCombine(N, DCI, DAG);
  case ISD::SIGN_EXTEND_INREG:
    return performSignExtendInRegCombine(N, DCI, DAG);
  case ISD::CONCAT_VECTORS:
    return performConcatVectorsCombine(N, DCI, DAG);
  case ISD::SELECT:
    return performSelectCombine(N, DCI);
  case ISD::VSELECT:
    return performVSelectCombine(N, DCI.DAG);
  case ISD::LOAD:
    if (performTBISimplification(N->getOperand(1), DCI, DAG))
      return SDValue(N, 0);
    break;
  case ISD::STORE:
    return performSTORECombine(N, DCI, DAG, Subtarget);
  case AArch64ISD::BRCOND:
    return performBRCONDCombine(N, DCI, DAG);
  case AArch64ISD::TBNZ:
  case AArch64ISD::TBZ:
    return performTBZCombine(N, DCI, DAG);
  case AArch64ISD::CSEL:
    return performCONDCombine(N, DCI, DAG, 2, 3);
  case AArch64ISD::DUP:
    return performPostLD1Combine(N, DCI, false);
  case AArch64ISD::NVCAST:
    return performNVCASTCombine(N);
  case ISD::INSERT_VECTOR_ELT:
    return performPostLD1Combine(N, DCI, true);
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_W_CHAIN:
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
    case Intrinsic::aarch64_neon_ld2:
    case Intrinsic::aarch64_neon_ld3:
    case Intrinsic::aarch64_neon_ld4:
    case Intrinsic::aarch64_neon_ld1x2:
    case Intrinsic::aarch64_neon_ld1x3:
    case Intrinsic::aarch64_neon_ld1x4:
    case Intrinsic::aarch64_neon_ld2lane:
    case Intrinsic::aarch64_neon_ld3lane:
    case Intrinsic::aarch64_neon_ld4lane:
    case Intrinsic::aarch64_neon_ld2r:
    case Intrinsic::aarch64_neon_ld3r:
    case Intrinsic::aarch64_neon_ld4r:
    case Intrinsic::aarch64_neon_st2:
    case Intrinsic::aarch64_neon_st3:
    case Intrinsic::aarch64_neon_st4:
    case Intrinsic::aarch64_neon_st1x2:
    case Intrinsic::aarch64_neon_st1x3:
    case Intrinsic::aarch64_neon_st1x4:
    case Intrinsic::aarch64_neon_st2lane:
    case Intrinsic::aarch64_neon_st3lane:
    case Intrinsic::aarch64_neon_st4lane:
      return performNEONPostLDSTCombine(N, DCI, DAG);
    case Intrinsic::aarch64_sve_ldnt1:
      return performLDNT1Combine(N, DAG);
    case Intrinsic::aarch64_sve_stnt1:
      return performSTNT1Combine(N, DAG);
    case Intrinsic::aarch64_sve_ld1_gather:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1);
    case Intrinsic::aarch64_sve_ld1_gather_index:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SCALED);
    case Intrinsic::aarch64_sve_ld1_gather_sxtw:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_uxtw:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_ld1_gather_imm:
      return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_IMM);
    case Intrinsic::aarch64_sve_st1_scatter:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1);
    case Intrinsic::aarch64_sve_st1_scatter_index:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SCALED);
    case Intrinsic::aarch64_sve_st1_scatter_sxtw:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_uxtw:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED,
                                      /*OnlyPackedOffsets=*/false);
    case Intrinsic::aarch64_sve_st1_scatter_imm:
      return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_IMM);
    default:
      break;
    }
    break;
  case ISD::GlobalAddress:
    return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
  }
  return SDValue();
}

// Check if the return value is used as only a return value, as otherwise
// we can't perform a tail-call. In particular, we need to check for
// target ISD nodes that are returns and any other "odd" constructs
// that the generic analysis code won't necessarily catch.
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
                                               SDValue &Chain) const {
  if (N->getNumValues() != 1)
    return false;
  if (!N->hasNUsesOfValue(1, 0))
    return false;

  SDValue TCChain = Chain;
  SDNode *Copy = *N->use_begin();
  if (Copy->getOpcode() == ISD::CopyToReg) {
    // If the copy has a glue operand, we conservatively assume it isn't safe to
    // perform a tail call.
    if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
        MVT::Glue)
      return false;
    TCChain = Copy->getOperand(0);
  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
    return false;

  bool HasRet = false;
  for (SDNode *Node : Copy->uses()) {
    if (Node->getOpcode() != AArch64ISD::RET_FLAG)
      return false;
    HasRet = true;
  }

  if (!HasRet)
    return false;

  Chain = TCChain;
  return true;
}

// Return whether the an instruction can potentially be optimized to a tail
// call. This will cause the optimizers to attempt to move, or duplicate,
// return instructions to help enable tail call optimizations for this
// instruction.
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  return CI->isTailCall();
}

bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
                                                   SDValue &Offset,
                                                   ISD::MemIndexedMode &AM,
                                                   bool &IsInc,
                                                   SelectionDAG &DAG) const {
  if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
    return false;

  Base = Op->getOperand(0);
  // All of the indexed addressing mode instructions take a signed
  // 9 bit immediate offset.
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
    int64_t RHSC = RHS->getSExtValue();
    if (Op->getOpcode() == ISD::SUB)
      RHSC = -(uint64_t)RHSC;
    if (!isInt<9>(RHSC))
      return false;
    IsInc = (Op->getOpcode() == ISD::ADD);
    Offset = Op->getOperand(1);
    return true;
  }
  return false;
}

bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                                      SDValue &Offset,
                                                      ISD::MemIndexedMode &AM,
                                                      SelectionDAG &DAG) const {
  EVT VT;
  SDValue Ptr;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Ptr = LD->getBasePtr();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Ptr = ST->getBasePtr();
  } else
    return false;

  bool IsInc;
  if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
    return false;
  AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
  return true;
}

bool AArch64TargetLowering::getPostIndexedAddressParts(
    SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
    ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
  EVT VT;
  SDValue Ptr;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT = LD->getMemoryVT();
    Ptr = LD->getBasePtr();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT = ST->getMemoryVT();
    Ptr = ST->getBasePtr();
  } else
    return false;

  bool IsInc;
  if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
    return false;
  // Post-indexing updates the base, so it's not a valid transform
  // if that's not the same as the load's pointer.
  if (Ptr != Base)
    return false;
  AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
  return true;
}

static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                  SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Op = N->getOperand(0);

  if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
    return;

  Op = SDValue(
      DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
                         DAG.getUNDEF(MVT::i32), Op,
                         DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
      0);
  Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
  Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
}

static void ReplaceReductionResults(SDNode *N,
                                    SmallVectorImpl<SDValue> &Results,
                                    SelectionDAG &DAG, unsigned InterOp,
                                    unsigned AcrossOp) {
  EVT LoVT, HiVT;
  SDValue Lo, Hi;
  SDLoc dl(N);
  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
  std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
  SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
  SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
  Results.push_back(SplitVal);
}

static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
  SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
                           DAG.getNode(ISD::SRL, DL, MVT::i128, N,
                                       DAG.getConstant(64, DL, MVT::i64)));
  return std::make_pair(Lo, Hi);
}

// Create an even/odd pair of X registers holding integer value V.
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
  SDLoc dl(V.getNode());
  SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
  SDValue VHi = DAG.getAnyExtOrTrunc(
      DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
      dl, MVT::i64);
  if (DAG.getDataLayout().isBigEndian())
    std::swap (VLo, VHi);
  SDValue RegClass =
      DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
  SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
  SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
  const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
  return SDValue(
      DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}

static void ReplaceCMP_SWAP_128Results(SDNode *N,
                                       SmallVectorImpl<SDValue> &Results,
                                       SelectionDAG &DAG,
                                       const AArch64Subtarget *Subtarget) {
  assert(N->getValueType(0) == MVT::i128 &&
         "AtomicCmpSwap on types less than 128 should be legal");

  if (Subtarget->hasLSE()) {
    // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
    // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
    SDValue Ops[] = {
        createGPRPairNode(DAG, N->getOperand(2)), // Compare value
        createGPRPairNode(DAG, N->getOperand(3)), // Store value
        N->getOperand(1), // Ptr
        N->getOperand(0), // Chain in
    };

    MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();

    unsigned Opcode;
    switch (MemOp->getOrdering()) {
    case AtomicOrdering::Monotonic:
      Opcode = AArch64::CASPX;
      break;
    case AtomicOrdering::Acquire:
      Opcode = AArch64::CASPAX;
      break;
    case AtomicOrdering::Release:
      Opcode = AArch64::CASPLX;
      break;
    case AtomicOrdering::AcquireRelease:
    case AtomicOrdering::SequentiallyConsistent:
      Opcode = AArch64::CASPALX;
      break;
    default:
      llvm_unreachable("Unexpected ordering!");
    }

    MachineSDNode *CmpSwap = DAG.getMachineNode(
        Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
    DAG.setNodeMemRefs(CmpSwap, {MemOp});

    unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
    if (DAG.getDataLayout().isBigEndian())
      std::swap(SubReg1, SubReg2);
    Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
                                                 SDValue(CmpSwap, 0)));
    Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
                                                 SDValue(CmpSwap, 0)));
    Results.push_back(SDValue(CmpSwap, 1)); // Chain out
    return;
  }

  auto Desired = splitInt128(N->getOperand(2), DAG);
  auto New = splitInt128(N->getOperand(3), DAG);
  SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
                   New.first,        New.second,    N->getOperand(0)};
  SDNode *CmpSwap = DAG.getMachineNode(
      AArch64::CMP_SWAP_128, SDLoc(N),
      DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);

  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
  DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});

  Results.push_back(SDValue(CmpSwap, 0));
  Results.push_back(SDValue(CmpSwap, 1));
  Results.push_back(SDValue(CmpSwap, 3));
}

void AArch64TargetLowering::ReplaceNodeResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Don't know how to custom expand this");
  case ISD::BITCAST:
    ReplaceBITCASTResults(N, Results, DAG);
    return;
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
    Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
    return;

  case AArch64ISD::SADDV:
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
    return;
  case AArch64ISD::UADDV:
    ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
    return;
  case AArch64ISD::SMINV:
    ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
    return;
  case AArch64ISD::UMINV:
    ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
    return;
  case AArch64ISD::SMAXV:
    ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
    return;
  case AArch64ISD::UMAXV:
    ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
    return;
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT:
    assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
    // Let normal code take care of it by not adding anything to Results.
    return;
  case ISD::ATOMIC_CMP_SWAP:
    ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
    return;
  case ISD::LOAD: {
    assert(SDValue(N, 0).getValueType() == MVT::i128 &&
           "unexpected load's value type");
    LoadSDNode *LoadNode = cast<LoadSDNode>(N);
    if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) {
      // Non-volatile loads are optimized later in AArch64's load/store
      // optimizer.
      return;
    }

    SDValue Result = DAG.getMemIntrinsicNode(
        AArch64ISD::LDP, SDLoc(N),
        DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
        {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(),
        LoadNode->getMemOperand());

    SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
                               Result.getValue(0), Result.getValue(1));
    Results.append({Pair, Result.getValue(2) /* Chain */});
    return;
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    EVT VT = N->getValueType(0);
    assert((VT == MVT::i8 || VT == MVT::i16) &&
           "custom lowering for unexpected type");

    ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0));
    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
    switch (IntID) {
    default:
      return;
    case Intrinsic::aarch64_sve_clasta_n: {
      SDLoc DL(N);
      auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
      auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
                           N->getOperand(1), Op2, N->getOperand(3));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_clastb_n: {
      SDLoc DL(N);
      auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
      auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
                           N->getOperand(1), Op2, N->getOperand(3));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_lasta: {
      SDLoc DL(N);
      auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
                           N->getOperand(1), N->getOperand(2));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    case Intrinsic::aarch64_sve_lastb: {
      SDLoc DL(N);
      auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
                           N->getOperand(1), N->getOperand(2));
      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
      return;
    }
    }
  }
  }
}

bool AArch64TargetLowering::useLoadStackGuardNode() const {
  if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
    return TargetLowering::useLoadStackGuardNode();
  return true;
}

unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
  // reciprocal if there are three or more FDIVs.
  return 3;
}

TargetLoweringBase::LegalizeTypeAction
AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
  // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
  // v4i16, v2i32 instead of to promote.
  if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
      VT == MVT::v1f32)
    return TypeWidenVector;

  return TargetLoweringBase::getPreferredVectorAction(VT);
}

// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
  return Size == 128;
}

// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  unsigned Size = LI->getType()->getPrimitiveSizeInBits();
  return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
}

// For the real atomic operations, we have ldxr/stxr up to 128 bits,
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
  if (AI->isFloatingPointOperation())
    return AtomicExpansionKind::CmpXChg;

  unsigned Size = AI->getType()->getPrimitiveSizeInBits();
  if (Size > 128) return AtomicExpansionKind::None;
  // Nand not supported in LSE.
  if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
  // Leave 128 bits to LLSC.
  return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
}

TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
    AtomicCmpXchgInst *AI) const {
  // If subtarget has LSE, leave cmpxchg intact for codegen.
  if (Subtarget->hasLSE())
    return AtomicExpansionKind::None;
  // At -O0, fast-regalloc cannot cope with the live vregs necessary to
  // implement cmpxchg without spilling. If the address being exchanged is also
  // on the stack and close enough to the spill slot, this can lead to a
  // situation where the monitor always gets cleared and the atomic operation
  // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
  if (getTargetMachine().getOptLevel() == 0)
    return AtomicExpansionKind::None;
  return AtomicExpansionKind::LLSC;
}

Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
                                             AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
  bool IsAcquire = isAcquireOrStronger(Ord);

  // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
  // intrinsic must return {i64, i64} and we have to recombine them into a
  // single i128 here.
  if (ValTy->getPrimitiveSizeInBits() == 128) {
    Intrinsic::ID Int =
        IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
    Function *Ldxr = Intrinsic::getDeclaration(M, Int);

    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");

    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
    return Builder.CreateOr(
        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
  }

  Type *Tys[] = { Addr->getType() };
  Intrinsic::ID Int =
      IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
  Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);

  Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();

  const DataLayout &DL = M->getDataLayout();
  IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
  Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);

  return Builder.CreateBitCast(Trunc, EltTy);
}

void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
    IRBuilder<> &Builder) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
}

Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
                                                   Value *Val, Value *Addr,
                                                   AtomicOrdering Ord) const {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  bool IsRelease = isReleaseOrStronger(Ord);

  // Since the intrinsics must have legal type, the i128 intrinsics take two
  // parameters: "i64, i64". We must marshal Val into the appropriate form
  // before the call.
  if (Val->getType()->getPrimitiveSizeInBits() == 128) {
    Intrinsic::ID Int =
        IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
    Function *Stxr = Intrinsic::getDeclaration(M, Int);
    Type *Int64Ty = Type::getInt64Ty(M->getContext());

    Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
    return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
  }

  Intrinsic::ID Int =
      IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
  Type *Tys[] = { Addr->getType() };
  Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);

  const DataLayout &DL = M->getDataLayout();
  IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
  Val = Builder.CreateBitCast(Val, IntValTy);

  return Builder.CreateCall(Stxr,
                            {Builder.CreateZExtOrBitCast(
                                 Val, Stxr->getFunctionType()->getParamType(0)),
                             Addr});
}

bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
  return Ty->isArrayTy();
}

bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
                                                            EVT) const {
  return false;
}

static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  Function *ThreadPointerFunc =
      Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
  return IRB.CreatePointerCast(
      IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
                             Offset),
      IRB.getInt8PtrTy()->getPointerTo(0));
}

Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
  // Android provides a fixed TLS slot for the stack cookie. See the definition
  // of TLS_SLOT_STACK_GUARD in
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
  if (Subtarget->isTargetAndroid())
    return UseTlsOffset(IRB, 0x28);

  // Fuchsia is similar.
  // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
  if (Subtarget->isTargetFuchsia())
    return UseTlsOffset(IRB, -0x10);

  return TargetLowering::getIRStackGuard(IRB);
}

void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
  // MSVC CRT provides functionalities for stack protection.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
    // MSVC CRT has a global variable holding security cookie.
    M.getOrInsertGlobal("__security_cookie",
                        Type::getInt8PtrTy(M.getContext()));

    // MSVC CRT has a function to validate security cookie.
    FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
        "__security_check_cookie", Type::getVoidTy(M.getContext()),
        Type::getInt8PtrTy(M.getContext()));
    if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
      F->setCallingConv(CallingConv::Win64);
      F->addAttribute(1, Attribute::AttrKind::InReg);
    }
    return;
  }
  TargetLowering::insertSSPDeclarations(M);
}

Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
  // MSVC CRT has a global variable holding security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getGlobalVariable("__security_cookie");
  return TargetLowering::getSDagStackGuard(M);
}

Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
  // MSVC CRT has a function to validate security cookie.
  if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
    return M.getFunction("__security_check_cookie");
  return TargetLowering::getSSPStackGuardCheck(M);
}

Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
  // Android provides a fixed TLS slot for the SafeStack pointer. See the
  // definition of TLS_SLOT_SAFESTACK in
  // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
  if (Subtarget->isTargetAndroid())
    return UseTlsOffset(IRB, 0x48);

  // Fuchsia is similar.
  // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
  if (Subtarget->isTargetFuchsia())
    return UseTlsOffset(IRB, -0x8);

  return TargetLowering::getSafeStackPointerLocation(IRB);
}

bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
    const Instruction &AndI) const {
  // Only sink 'and' mask to cmp use block if it is masking a single bit, since
  // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
  // may be beneficial to sink in other cases, but we would have to check that
  // the cmp would not get folded into the br to form a cbz for these to be
  // beneficial.
  ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
  if (!Mask)
    return false;
  return Mask->getValue().isPowerOf2();
}

bool AArch64TargetLowering::
    shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const {
  // Does baseline recommend not to perform the fold by default?
  if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
          X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
    return false;
  // Else, if this is a vector shift, prefer 'shl'.
  return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
}

bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
                                              SDNode *N) const {
  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
      !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
    return false;
  return true;
}

void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
  // Update IsSplitCSR in AArch64unctionInfo.
  AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
  AFI->setIsSplitCSR(true);
}

void AArch64TargetLowering::insertCopiesSplitCSR(
    MachineBasicBlock *Entry,
    const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
  const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
  if (!IStart)
    return;

  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
  MachineBasicBlock::iterator MBBI = Entry->begin();
  for (const MCPhysReg *I = IStart; *I; ++I) {
    const TargetRegisterClass *RC = nullptr;
    if (AArch64::GPR64RegClass.contains(*I))
      RC = &AArch64::GPR64RegClass;
    else if (AArch64::FPR64RegClass.contains(*I))
      RC = &AArch64::FPR64RegClass;
    else
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");

    Register NewVR = MRI->createVirtualRegister(RC);
    // Create copy from CSR to a virtual register.
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
    // nounwind. If we want to generalize this later, we may need to emit
    // CFI pseudo-instructions.
    assert(Entry->getParent()->getFunction().hasFnAttribute(
               Attribute::NoUnwind) &&
           "Function should be nounwind in insertCopiesSplitCSR!");
    Entry->addLiveIn(*I);
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
        .addReg(*I);

    // Insert the copy-back instructions right before the terminator.
    for (auto *Exit : Exits)
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
              TII->get(TargetOpcode::COPY), *I)
          .addReg(NewVR);
  }
}

bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
  // Integer division on AArch64 is expensive. However, when aggressively
  // optimizing for code size, we prefer to use a div instruction, as it is
  // usually smaller than the alternative sequence.
  // The exception to this is vector division. Since AArch64 doesn't have vector
  // integer division, leaving the division as-is is a loss even in terms of
  // size, because it will have to be scalarized, while the alternative code
  // sequence can be performed in vector form.
  bool OptSize =
      Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
  return OptSize && !VT.isVector();
}

bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
  // We want inc-of-add for scalars and sub-of-not for vectors.
  return VT.isScalarInteger();
}

bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
  return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
}

unsigned
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
  if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
    return getPointerTy(DL).getSizeInBits();

  return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
}

void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
  MF.getFrameInfo().computeMaxCallFrameSize(MF);
  TargetLoweringBase::finalizeLowering(MF);
}

// Unlike X86, we let frame lowering assign offsets to all catch objects.
bool AArch64TargetLowering::needsFixedCatchObjects() const {
  return false;
}