InstrProf.cpp 45.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
//===- InstrProf.cpp - Instrumented profiling format support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's instrumentation based PGO and
// coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SwapByteOrder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;

static cl::opt<bool> StaticFuncFullModulePrefix(
    "static-func-full-module-prefix", cl::init(true), cl::Hidden,
    cl::desc("Use full module build paths in the profile counter names for "
             "static functions."));

// This option is tailored to users that have different top-level directory in
// profile-gen and profile-use compilation. Users need to specific the number
// of levels to strip. A value larger than the number of directories in the
// source file will strip all the directory names and only leave the basename.
//
// Note current ThinLTO module importing for the indirect-calls assumes
// the source directory name not being stripped. A non-zero option value here
// can potentially prevent some inter-module indirect-call-promotions.
static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
    "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
    cl::desc("Strip specified level of directory name from source path in "
             "the profile counter name for static functions."));

static std::string getInstrProfErrString(instrprof_error Err) {
  switch (Err) {
  case instrprof_error::success:
    return "Success";
  case instrprof_error::eof:
    return "End of File";
  case instrprof_error::unrecognized_format:
    return "Unrecognized instrumentation profile encoding format";
  case instrprof_error::bad_magic:
    return "Invalid instrumentation profile data (bad magic)";
  case instrprof_error::bad_header:
    return "Invalid instrumentation profile data (file header is corrupt)";
  case instrprof_error::unsupported_version:
    return "Unsupported instrumentation profile format version";
  case instrprof_error::unsupported_hash_type:
    return "Unsupported instrumentation profile hash type";
  case instrprof_error::too_large:
    return "Too much profile data";
  case instrprof_error::truncated:
    return "Truncated profile data";
  case instrprof_error::malformed:
    return "Malformed instrumentation profile data";
  case instrprof_error::unknown_function:
    return "No profile data available for function";
  case instrprof_error::hash_mismatch:
    return "Function control flow change detected (hash mismatch)";
  case instrprof_error::count_mismatch:
    return "Function basic block count change detected (counter mismatch)";
  case instrprof_error::counter_overflow:
    return "Counter overflow";
  case instrprof_error::value_site_count_mismatch:
    return "Function value site count change detected (counter mismatch)";
  case instrprof_error::compress_failed:
    return "Failed to compress data (zlib)";
  case instrprof_error::uncompress_failed:
    return "Failed to uncompress data (zlib)";
  case instrprof_error::empty_raw_profile:
    return "Empty raw profile file";
  case instrprof_error::zlib_unavailable:
    return "Profile uses zlib compression but the profile reader was built without zlib support";
  }
  llvm_unreachable("A value of instrprof_error has no message.");
}

namespace {

// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class InstrProfErrorCategoryType : public std::error_category {
  const char *name() const noexcept override { return "llvm.instrprof"; }

  std::string message(int IE) const override {
    return getInstrProfErrString(static_cast<instrprof_error>(IE));
  }
};

} // end anonymous namespace

static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;

const std::error_category &llvm::instrprof_category() {
  return *ErrorCategory;
}

namespace {

const char *InstrProfSectNameCommon[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  SectNameCommon,
#include "llvm/ProfileData/InstrProfData.inc"
};

const char *InstrProfSectNameCoff[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  SectNameCoff,
#include "llvm/ProfileData/InstrProfData.inc"
};

const char *InstrProfSectNamePrefix[] = {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
  Prefix,
#include "llvm/ProfileData/InstrProfData.inc"
};

} // namespace

namespace llvm {

std::string getInstrProfSectionName(InstrProfSectKind IPSK,
                                    Triple::ObjectFormatType OF,
                                    bool AddSegmentInfo) {
  std::string SectName;

  if (OF == Triple::MachO && AddSegmentInfo)
    SectName = InstrProfSectNamePrefix[IPSK];

  if (OF == Triple::COFF)
    SectName += InstrProfSectNameCoff[IPSK];
  else
    SectName += InstrProfSectNameCommon[IPSK];

  if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
    SectName += ",regular,live_support";

  return SectName;
}

void SoftInstrProfErrors::addError(instrprof_error IE) {
  if (IE == instrprof_error::success)
    return;

  if (FirstError == instrprof_error::success)
    FirstError = IE;

  switch (IE) {
  case instrprof_error::hash_mismatch:
    ++NumHashMismatches;
    break;
  case instrprof_error::count_mismatch:
    ++NumCountMismatches;
    break;
  case instrprof_error::counter_overflow:
    ++NumCounterOverflows;
    break;
  case instrprof_error::value_site_count_mismatch:
    ++NumValueSiteCountMismatches;
    break;
  default:
    llvm_unreachable("Not a soft error");
  }
}

std::string InstrProfError::message() const {
  return getInstrProfErrString(Err);
}

char InstrProfError::ID = 0;

std::string getPGOFuncName(StringRef RawFuncName,
                           GlobalValue::LinkageTypes Linkage,
                           StringRef FileName,
                           uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
  return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
}

// Strip NumPrefix level of directory name from PathNameStr. If the number of
// directory separators is less than NumPrefix, strip all the directories and
// leave base file name only.
static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
  uint32_t Count = NumPrefix;
  uint32_t Pos = 0, LastPos = 0;
  for (auto & CI : PathNameStr) {
    ++Pos;
    if (llvm::sys::path::is_separator(CI)) {
      LastPos = Pos;
      --Count;
    }
    if (Count == 0)
      break;
  }
  return PathNameStr.substr(LastPos);
}

// Return the PGOFuncName. This function has some special handling when called
// in LTO optimization. The following only applies when calling in LTO passes
// (when \c InLTO is true): LTO's internalization privatizes many global linkage
// symbols. This happens after value profile annotation, but those internal
// linkage functions should not have a source prefix.
// Additionally, for ThinLTO mode, exported internal functions are promoted
// and renamed. We need to ensure that the original internal PGO name is
// used when computing the GUID that is compared against the profiled GUIDs.
// To differentiate compiler generated internal symbols from original ones,
// PGOFuncName meta data are created and attached to the original internal
// symbols in the value profile annotation step
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
// data, its original linkage must be non-internal.
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
  if (!InLTO) {
    StringRef FileName(F.getParent()->getSourceFileName());
    uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
    if (StripLevel < StaticFuncStripDirNamePrefix)
      StripLevel = StaticFuncStripDirNamePrefix;
    if (StripLevel)
      FileName = stripDirPrefix(FileName, StripLevel);
    return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
  }

  // In LTO mode (when InLTO is true), first check if there is a meta data.
  if (MDNode *MD = getPGOFuncNameMetadata(F)) {
    StringRef S = cast<MDString>(MD->getOperand(0))->getString();
    return S.str();
  }

  // If there is no meta data, the function must be a global before the value
  // profile annotation pass. Its current linkage may be internal if it is
  // internalized in LTO mode.
  return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
}

StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
  if (FileName.empty())
    return PGOFuncName;
  // Drop the file name including ':'. See also getPGOFuncName.
  if (PGOFuncName.startswith(FileName))
    PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
  return PGOFuncName;
}

// \p FuncName is the string used as profile lookup key for the function. A
// symbol is created to hold the name. Return the legalized symbol name.
std::string getPGOFuncNameVarName(StringRef FuncName,
                                  GlobalValue::LinkageTypes Linkage) {
  std::string VarName = getInstrProfNameVarPrefix();
  VarName += FuncName;

  if (!GlobalValue::isLocalLinkage(Linkage))
    return VarName;

  // Now fix up illegal chars in local VarName that may upset the assembler.
  const char *InvalidChars = "-:<>/\"'";
  size_t found = VarName.find_first_of(InvalidChars);
  while (found != std::string::npos) {
    VarName[found] = '_';
    found = VarName.find_first_of(InvalidChars, found + 1);
  }
  return VarName;
}

GlobalVariable *createPGOFuncNameVar(Module &M,
                                     GlobalValue::LinkageTypes Linkage,
                                     StringRef PGOFuncName) {
  // We generally want to match the function's linkage, but available_externally
  // and extern_weak both have the wrong semantics, and anything that doesn't
  // need to link across compilation units doesn't need to be visible at all.
  if (Linkage == GlobalValue::ExternalWeakLinkage)
    Linkage = GlobalValue::LinkOnceAnyLinkage;
  else if (Linkage == GlobalValue::AvailableExternallyLinkage)
    Linkage = GlobalValue::LinkOnceODRLinkage;
  else if (Linkage == GlobalValue::InternalLinkage ||
           Linkage == GlobalValue::ExternalLinkage)
    Linkage = GlobalValue::PrivateLinkage;

  auto *Value =
      ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
  auto FuncNameVar =
      new GlobalVariable(M, Value->getType(), true, Linkage, Value,
                         getPGOFuncNameVarName(PGOFuncName, Linkage));

  // Hide the symbol so that we correctly get a copy for each executable.
  if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
    FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);

  return FuncNameVar;
}

GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
  return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
}

Error InstrProfSymtab::create(Module &M, bool InLTO) {
  for (Function &F : M) {
    // Function may not have a name: like using asm("") to overwrite the name.
    // Ignore in this case.
    if (!F.hasName())
      continue;
    const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
    if (Error E = addFuncName(PGOFuncName))
      return E;
    MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
    // In ThinLTO, local function may have been promoted to global and have
    // suffix added to the function name. We need to add the stripped function
    // name to the symbol table so that we can find a match from profile.
    if (InLTO) {
      auto pos = PGOFuncName.find('.');
      if (pos != std::string::npos) {
        const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
        if (Error E = addFuncName(OtherFuncName))
          return E;
        MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
      }
    }
  }
  Sorted = false;
  finalizeSymtab();
  return Error::success();
}

uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
  finalizeSymtab();
  auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
    return A.first < Address;
  });
  // Raw function pointer collected by value profiler may be from
  // external functions that are not instrumented. They won't have
  // mapping data to be used by the deserializer. Force the value to
  // be 0 in this case.
  if (It != AddrToMD5Map.end() && It->first == Address)
    return (uint64_t)It->second;
  return 0;
}

Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
                                bool doCompression, std::string &Result) {
  assert(!NameStrs.empty() && "No name data to emit");

  uint8_t Header[16], *P = Header;
  std::string UncompressedNameStrings =
      join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());

  assert(StringRef(UncompressedNameStrings)
                 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
         "PGO name is invalid (contains separator token)");

  unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
  P += EncLen;

  auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
    EncLen = encodeULEB128(CompressedLen, P);
    P += EncLen;
    char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
    unsigned HeaderLen = P - &Header[0];
    Result.append(HeaderStr, HeaderLen);
    Result += InputStr;
    return Error::success();
  };

  if (!doCompression) {
    return WriteStringToResult(0, UncompressedNameStrings);
  }

  SmallString<128> CompressedNameStrings;
  Error E = zlib::compress(StringRef(UncompressedNameStrings),
                           CompressedNameStrings, zlib::BestSizeCompression);
  if (E) {
    consumeError(std::move(E));
    return make_error<InstrProfError>(instrprof_error::compress_failed);
  }

  return WriteStringToResult(CompressedNameStrings.size(),
                             CompressedNameStrings);
}

StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
  auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
  StringRef NameStr =
      Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
  return NameStr;
}

Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
                                std::string &Result, bool doCompression) {
  std::vector<std::string> NameStrs;
  for (auto *NameVar : NameVars) {
    NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
  }
  return collectPGOFuncNameStrings(
      NameStrs, zlib::isAvailable() && doCompression, Result);
}

Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
  const uint8_t *P = NameStrings.bytes_begin();
  const uint8_t *EndP = NameStrings.bytes_end();
  while (P < EndP) {
    uint32_t N;
    uint64_t UncompressedSize = decodeULEB128(P, &N);
    P += N;
    uint64_t CompressedSize = decodeULEB128(P, &N);
    P += N;
    bool isCompressed = (CompressedSize != 0);
    SmallString<128> UncompressedNameStrings;
    StringRef NameStrings;
    if (isCompressed) {
      if (!llvm::zlib::isAvailable())
        return make_error<InstrProfError>(instrprof_error::zlib_unavailable);

      StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
                                      CompressedSize);
      if (Error E =
              zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
                               UncompressedSize)) {
        consumeError(std::move(E));
        return make_error<InstrProfError>(instrprof_error::uncompress_failed);
      }
      P += CompressedSize;
      NameStrings = StringRef(UncompressedNameStrings.data(),
                              UncompressedNameStrings.size());
    } else {
      NameStrings =
          StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
      P += UncompressedSize;
    }
    // Now parse the name strings.
    SmallVector<StringRef, 0> Names;
    NameStrings.split(Names, getInstrProfNameSeparator());
    for (StringRef &Name : Names)
      if (Error E = Symtab.addFuncName(Name))
        return E;

    while (P < EndP && *P == 0)
      P++;
  }
  return Error::success();
}

void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
  uint64_t FuncSum = 0;
  Sum.NumEntries += Counts.size();
  for (size_t F = 0, E = Counts.size(); F < E; ++F)
    FuncSum += Counts[F];
  Sum.CountSum += FuncSum;

  for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
    uint64_t KindSum = 0;
    uint32_t NumValueSites = getNumValueSites(VK);
    for (size_t I = 0; I < NumValueSites; ++I) {
      uint32_t NV = getNumValueDataForSite(VK, I);
      std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
      for (uint32_t V = 0; V < NV; V++)
        KindSum += VD[V].Count;
    }
    Sum.ValueCounts[VK] += KindSum;
  }
}

void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
                                       uint32_t ValueKind,
                                       OverlapStats &Overlap,
                                       OverlapStats &FuncLevelOverlap) {
  this->sortByTargetValues();
  Input.sortByTargetValues();
  double Score = 0.0f, FuncLevelScore = 0.0f;
  auto I = ValueData.begin();
  auto IE = ValueData.end();
  auto J = Input.ValueData.begin();
  auto JE = Input.ValueData.end();
  while (I != IE && J != JE) {
    if (I->Value == J->Value) {
      Score += OverlapStats::score(I->Count, J->Count,
                                   Overlap.Base.ValueCounts[ValueKind],
                                   Overlap.Test.ValueCounts[ValueKind]);
      FuncLevelScore += OverlapStats::score(
          I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
          FuncLevelOverlap.Test.ValueCounts[ValueKind]);
      ++I;
    } else if (I->Value < J->Value) {
      ++I;
      continue;
    }
    ++J;
  }
  Overlap.Overlap.ValueCounts[ValueKind] += Score;
  FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
}

// Return false on mismatch.
void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
                                           InstrProfRecord &Other,
                                           OverlapStats &Overlap,
                                           OverlapStats &FuncLevelOverlap) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
  if (!ThisNumValueSites)
    return;

  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getOrCreateValueSitesForKind(ValueKind);
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
      Other.getValueSitesForKind(ValueKind);
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
                               FuncLevelOverlap);
}

void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
                              OverlapStats &FuncLevelOverlap,
                              uint64_t ValueCutoff) {
  // FuncLevel CountSum for other should already computed and nonzero.
  assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
  accumulateCounts(FuncLevelOverlap.Base);
  bool Mismatch = (Counts.size() != Other.Counts.size());

  // Check if the value profiles mismatch.
  if (!Mismatch) {
    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
      uint32_t ThisNumValueSites = getNumValueSites(Kind);
      uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
      if (ThisNumValueSites != OtherNumValueSites) {
        Mismatch = true;
        break;
      }
    }
  }
  if (Mismatch) {
    Overlap.addOneMismatch(FuncLevelOverlap.Test);
    return;
  }

  // Compute overlap for value counts.
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);

  double Score = 0.0;
  uint64_t MaxCount = 0;
  // Compute overlap for edge counts.
  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
    Score += OverlapStats::score(Counts[I], Other.Counts[I],
                                 Overlap.Base.CountSum, Overlap.Test.CountSum);
    MaxCount = std::max(Other.Counts[I], MaxCount);
  }
  Overlap.Overlap.CountSum += Score;
  Overlap.Overlap.NumEntries += 1;

  if (MaxCount >= ValueCutoff) {
    double FuncScore = 0.0;
    for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
      FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
                                       FuncLevelOverlap.Base.CountSum,
                                       FuncLevelOverlap.Test.CountSum);
    FuncLevelOverlap.Overlap.CountSum = FuncScore;
    FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
    FuncLevelOverlap.Valid = true;
  }
}

void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
                                     uint64_t Weight,
                                     function_ref<void(instrprof_error)> Warn) {
  this->sortByTargetValues();
  Input.sortByTargetValues();
  auto I = ValueData.begin();
  auto IE = ValueData.end();
  for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
       ++J) {
    while (I != IE && I->Value < J->Value)
      ++I;
    if (I != IE && I->Value == J->Value) {
      bool Overflowed;
      I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
      if (Overflowed)
        Warn(instrprof_error::counter_overflow);
      ++I;
      continue;
    }
    ValueData.insert(I, *J);
  }
}

void InstrProfValueSiteRecord::scale(uint64_t Weight,
                                     function_ref<void(instrprof_error)> Warn) {
  for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
    bool Overflowed;
    I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }
}

// Merge Value Profile data from Src record to this record for ValueKind.
// Scale merged value counts by \p Weight.
void InstrProfRecord::mergeValueProfData(
    uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
    function_ref<void(instrprof_error)> Warn) {
  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
  uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
  if (ThisNumValueSites != OtherNumValueSites) {
    Warn(instrprof_error::value_site_count_mismatch);
    return;
  }
  if (!ThisNumValueSites)
    return;
  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
      getOrCreateValueSitesForKind(ValueKind);
  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
      Src.getValueSitesForKind(ValueKind);
  for (uint32_t I = 0; I < ThisNumValueSites; I++)
    ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
}

void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
                            function_ref<void(instrprof_error)> Warn) {
  // If the number of counters doesn't match we either have bad data
  // or a hash collision.
  if (Counts.size() != Other.Counts.size()) {
    Warn(instrprof_error::count_mismatch);
    return;
  }

  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
    bool Overflowed;
    Counts[I] =
        SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }

  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    mergeValueProfData(Kind, Other, Weight, Warn);
}

void InstrProfRecord::scaleValueProfData(
    uint32_t ValueKind, uint64_t Weight,
    function_ref<void(instrprof_error)> Warn) {
  for (auto &R : getValueSitesForKind(ValueKind))
    R.scale(Weight, Warn);
}

void InstrProfRecord::scale(uint64_t Weight,
                            function_ref<void(instrprof_error)> Warn) {
  for (auto &Count : this->Counts) {
    bool Overflowed;
    Count = SaturatingMultiply(Count, Weight, &Overflowed);
    if (Overflowed)
      Warn(instrprof_error::counter_overflow);
  }
  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    scaleValueProfData(Kind, Weight, Warn);
}

// Map indirect call target name hash to name string.
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
                                     InstrProfSymtab *SymTab) {
  if (!SymTab)
    return Value;

  if (ValueKind == IPVK_IndirectCallTarget)
    return SymTab->getFunctionHashFromAddress(Value);

  return Value;
}

void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
                                   InstrProfValueData *VData, uint32_t N,
                                   InstrProfSymtab *ValueMap) {
  for (uint32_t I = 0; I < N; I++) {
    VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
  }
  std::vector<InstrProfValueSiteRecord> &ValueSites =
      getOrCreateValueSitesForKind(ValueKind);
  if (N == 0)
    ValueSites.emplace_back();
  else
    ValueSites.emplace_back(VData, VData + N);
}

#define INSTR_PROF_COMMON_API_IMPL
#include "llvm/ProfileData/InstrProfData.inc"

/*!
 * ValueProfRecordClosure Interface implementation for  InstrProfRecord
 *  class. These C wrappers are used as adaptors so that C++ code can be
 *  invoked as callbacks.
 */
uint32_t getNumValueKindsInstrProf(const void *Record) {
  return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
}

uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueSites(VKind);
}

uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
  return reinterpret_cast<const InstrProfRecord *>(Record)
      ->getNumValueData(VKind);
}

uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
                                         uint32_t S) {
  return reinterpret_cast<const InstrProfRecord *>(R)
      ->getNumValueDataForSite(VK, S);
}

void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
                              uint32_t K, uint32_t S) {
  reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
}

ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
  ValueProfData *VD =
      (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
  memset(VD, 0, TotalSizeInBytes);
  return VD;
}

static ValueProfRecordClosure InstrProfRecordClosure = {
    nullptr,
    getNumValueKindsInstrProf,
    getNumValueSitesInstrProf,
    getNumValueDataInstrProf,
    getNumValueDataForSiteInstrProf,
    nullptr,
    getValueForSiteInstrProf,
    allocValueProfDataInstrProf};

// Wrapper implementation using the closure mechanism.
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
  auto Closure = InstrProfRecordClosure;
  Closure.Record = &Record;
  return getValueProfDataSize(&Closure);
}

// Wrapper implementation using the closure mechanism.
std::unique_ptr<ValueProfData>
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
  InstrProfRecordClosure.Record = &Record;

  std::unique_ptr<ValueProfData> VPD(
      serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
  return VPD;
}

void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
                                    InstrProfSymtab *SymTab) {
  Record.reserveSites(Kind, NumValueSites);

  InstrProfValueData *ValueData = getValueProfRecordValueData(this);
  for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
    uint8_t ValueDataCount = this->SiteCountArray[VSite];
    Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
    ValueData += ValueDataCount;
  }
}

// For writing/serializing,  Old is the host endianness, and  New is
// byte order intended on disk. For Reading/deserialization, Old
// is the on-disk source endianness, and New is the host endianness.
void ValueProfRecord::swapBytes(support::endianness Old,
                                support::endianness New) {
  using namespace support;

  if (Old == New)
    return;

  if (getHostEndianness() != Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
  uint32_t ND = getValueProfRecordNumValueData(this);
  InstrProfValueData *VD = getValueProfRecordValueData(this);

  // No need to swap byte array: SiteCountArrray.
  for (uint32_t I = 0; I < ND; I++) {
    sys::swapByteOrder<uint64_t>(VD[I].Value);
    sys::swapByteOrder<uint64_t>(VD[I].Count);
  }
  if (getHostEndianness() == Old) {
    sys::swapByteOrder<uint32_t>(NumValueSites);
    sys::swapByteOrder<uint32_t>(Kind);
  }
}

void ValueProfData::deserializeTo(InstrProfRecord &Record,
                                  InstrProfSymtab *SymTab) {
  if (NumValueKinds == 0)
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->deserializeTo(Record, SymTab);
    VR = getValueProfRecordNext(VR);
  }
}

template <class T>
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
  using namespace support;

  if (Orig == little)
    return endian::readNext<T, little, unaligned>(D);
  else
    return endian::readNext<T, big, unaligned>(D);
}

static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
  return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
                                            ValueProfData());
}

Error ValueProfData::checkIntegrity() {
  if (NumValueKinds > IPVK_Last + 1)
    return make_error<InstrProfError>(instrprof_error::malformed);
  // Total size needs to be mulltiple of quadword size.
  if (TotalSize % sizeof(uint64_t))
    return make_error<InstrProfError>(instrprof_error::malformed);

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < this->NumValueKinds; K++) {
    if (VR->Kind > IPVK_Last)
      return make_error<InstrProfError>(instrprof_error::malformed);
    VR = getValueProfRecordNext(VR);
    if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
      return make_error<InstrProfError>(instrprof_error::malformed);
  }
  return Error::success();
}

Expected<std::unique_ptr<ValueProfData>>
ValueProfData::getValueProfData(const unsigned char *D,
                                const unsigned char *const BufferEnd,
                                support::endianness Endianness) {
  using namespace support;

  if (D + sizeof(ValueProfData) > BufferEnd)
    return make_error<InstrProfError>(instrprof_error::truncated);

  const unsigned char *Header = D;
  uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
  if (D + TotalSize > BufferEnd)
    return make_error<InstrProfError>(instrprof_error::too_large);

  std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
  memcpy(VPD.get(), D, TotalSize);
  // Byte swap.
  VPD->swapBytesToHost(Endianness);

  Error E = VPD->checkIntegrity();
  if (E)
    return std::move(E);

  return std::move(VPD);
}

void ValueProfData::swapBytesToHost(support::endianness Endianness) {
  using namespace support;

  if (Endianness == getHostEndianness())
    return;

  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    VR->swapBytes(Endianness, getHostEndianness());
    VR = getValueProfRecordNext(VR);
  }
}

void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
  using namespace support;

  if (Endianness == getHostEndianness())
    return;

  ValueProfRecord *VR = getFirstValueProfRecord(this);
  for (uint32_t K = 0; K < NumValueKinds; K++) {
    ValueProfRecord *NVR = getValueProfRecordNext(VR);
    VR->swapBytes(getHostEndianness(), Endianness);
    VR = NVR;
  }
  sys::swapByteOrder<uint32_t>(TotalSize);
  sys::swapByteOrder<uint32_t>(NumValueKinds);
}

void annotateValueSite(Module &M, Instruction &Inst,
                       const InstrProfRecord &InstrProfR,
                       InstrProfValueKind ValueKind, uint32_t SiteIdx,
                       uint32_t MaxMDCount) {
  uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
  if (!NV)
    return;

  uint64_t Sum = 0;
  std::unique_ptr<InstrProfValueData[]> VD =
      InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);

  ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
  annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
}

void annotateValueSite(Module &M, Instruction &Inst,
                       ArrayRef<InstrProfValueData> VDs,
                       uint64_t Sum, InstrProfValueKind ValueKind,
                       uint32_t MaxMDCount) {
  LLVMContext &Ctx = M.getContext();
  MDBuilder MDHelper(Ctx);
  SmallVector<Metadata *, 3> Vals;
  // Tag
  Vals.push_back(MDHelper.createString("VP"));
  // Value Kind
  Vals.push_back(MDHelper.createConstant(
      ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
  // Total Count
  Vals.push_back(
      MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));

  // Value Profile Data
  uint32_t MDCount = MaxMDCount;
  for (auto &VD : VDs) {
    Vals.push_back(MDHelper.createConstant(
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
    Vals.push_back(MDHelper.createConstant(
        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
    if (--MDCount == 0)
      break;
  }
  Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
}

bool getValueProfDataFromInst(const Instruction &Inst,
                              InstrProfValueKind ValueKind,
                              uint32_t MaxNumValueData,
                              InstrProfValueData ValueData[],
                              uint32_t &ActualNumValueData, uint64_t &TotalC) {
  MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
  if (!MD)
    return false;

  unsigned NOps = MD->getNumOperands();

  if (NOps < 5)
    return false;

  // Operand 0 is a string tag "VP":
  MDString *Tag = cast<MDString>(MD->getOperand(0));
  if (!Tag)
    return false;

  if (!Tag->getString().equals("VP"))
    return false;

  // Now check kind:
  ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
  if (!KindInt)
    return false;
  if (KindInt->getZExtValue() != ValueKind)
    return false;

  // Get total count
  ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
  if (!TotalCInt)
    return false;
  TotalC = TotalCInt->getZExtValue();

  ActualNumValueData = 0;

  for (unsigned I = 3; I < NOps; I += 2) {
    if (ActualNumValueData >= MaxNumValueData)
      break;
    ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
    ConstantInt *Count =
        mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
    if (!Value || !Count)
      return false;
    ValueData[ActualNumValueData].Value = Value->getZExtValue();
    ValueData[ActualNumValueData].Count = Count->getZExtValue();
    ActualNumValueData++;
  }
  return true;
}

MDNode *getPGOFuncNameMetadata(const Function &F) {
  return F.getMetadata(getPGOFuncNameMetadataName());
}

void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
  // Only for internal linkage functions.
  if (PGOFuncName == F.getName())
      return;
  // Don't create duplicated meta-data.
  if (getPGOFuncNameMetadata(F))
    return;
  LLVMContext &C = F.getContext();
  MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
  F.setMetadata(getPGOFuncNameMetadataName(), N);
}

bool needsComdatForCounter(const Function &F, const Module &M) {
  if (F.hasComdat())
    return true;

  if (!Triple(M.getTargetTriple()).supportsCOMDAT())
    return false;

  // See createPGOFuncNameVar for more details. To avoid link errors, profile
  // counters for function with available_externally linkage needs to be changed
  // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
  // created. Without using comdat, duplicate entries won't be removed by the
  // linker leading to increased data segement size and raw profile size. Even
  // worse, since the referenced counter from profile per-function data object
  // will be resolved to the common strong definition, the profile counts for
  // available_externally functions will end up being duplicated in raw profile
  // data. This can result in distorted profile as the counts of those dups
  // will be accumulated by the profile merger.
  GlobalValue::LinkageTypes Linkage = F.getLinkage();
  if (Linkage != GlobalValue::ExternalWeakLinkage &&
      Linkage != GlobalValue::AvailableExternallyLinkage)
    return false;

  return true;
}

// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
bool isIRPGOFlagSet(const Module *M) {
  auto IRInstrVar =
      M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
  if (!IRInstrVar || IRInstrVar->isDeclaration() ||
      IRInstrVar->hasLocalLinkage())
    return false;

  // Check if the flag is set.
  if (!IRInstrVar->hasInitializer())
    return false;

  auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
  if (!InitVal)
    return false;
  return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
}

// Check if we can safely rename this Comdat function.
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
  if (F.getName().empty())
    return false;
  if (!needsComdatForCounter(F, *(F.getParent())))
    return false;
  // Unsafe to rename the address-taken function (which can be used in
  // function comparison).
  if (CheckAddressTaken && F.hasAddressTaken())
    return false;
  // Only safe to do if this function may be discarded if it is not used
  // in the compilation unit.
  if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
    return false;

  // For AvailableExternallyLinkage functions.
  if (!F.hasComdat()) {
    assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
    return true;
  }
  return true;
}

// Parse the value profile options.
void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
                                 int64_t &RangeLast) {
  static const int64_t DefaultMemOPSizeRangeStart = 0;
  static const int64_t DefaultMemOPSizeRangeLast = 8;
  RangeStart = DefaultMemOPSizeRangeStart;
  RangeLast = DefaultMemOPSizeRangeLast;

  if (!MemOPSizeRange.empty()) {
    auto Pos = MemOPSizeRange.find(':');
    if (Pos != std::string::npos) {
      if (Pos > 0)
        MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
      if (Pos < MemOPSizeRange.size() - 1)
        MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
    } else
      MemOPSizeRange.getAsInteger(10, RangeLast);
  }
  assert(RangeLast >= RangeStart);
}

// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
// aware this is an ir_level profile so it can set the version flag.
void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
  const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
  Type *IntTy64 = Type::getInt64Ty(M.getContext());
  uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
  if (IsCS)
    ProfileVersion |= VARIANT_MASK_CSIR_PROF;
  auto IRLevelVersionVariable = new GlobalVariable(
      M, IntTy64, true, GlobalValue::WeakAnyLinkage,
      Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
  IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
  Triple TT(M.getTargetTriple());
  if (TT.supportsCOMDAT()) {
    IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
    IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
  }
}

// Create the variable for the profile file name.
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
  if (InstrProfileOutput.empty())
    return;
  Constant *ProfileNameConst =
      ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
  GlobalVariable *ProfileNameVar = new GlobalVariable(
      M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
      ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
  Triple TT(M.getTargetTriple());
  if (TT.supportsCOMDAT()) {
    ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
    ProfileNameVar->setComdat(M.getOrInsertComdat(
        StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
  }
}

Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
                                     const std::string &TestFilename,
                                     bool IsCS) {
  auto getProfileSum = [IsCS](const std::string &Filename,
                              CountSumOrPercent &Sum) -> Error {
    auto ReaderOrErr = InstrProfReader::create(Filename);
    if (Error E = ReaderOrErr.takeError()) {
      return E;
    }
    auto Reader = std::move(ReaderOrErr.get());
    Reader->accumulateCounts(Sum, IsCS);
    return Error::success();
  };
  auto Ret = getProfileSum(BaseFilename, Base);
  if (Ret)
    return Ret;
  Ret = getProfileSum(TestFilename, Test);
  if (Ret)
    return Ret;
  this->BaseFilename = &BaseFilename;
  this->TestFilename = &TestFilename;
  Valid = true;
  return Error::success();
}

void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
  Mismatch.NumEntries += 1;
  Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Test.ValueCounts[I] >= 1.0f)
      Mismatch.ValueCounts[I] +=
          MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
  }
}

void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
  Unique.NumEntries += 1;
  Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Test.ValueCounts[I] >= 1.0f)
      Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
  }
}

void OverlapStats::dump(raw_fd_ostream &OS) const {
  if (!Valid)
    return;

  const char *EntryName =
      (Level == ProgramLevel ? "functions" : "edge counters");
  if (Level == ProgramLevel) {
    OS << "Profile overlap infomation for base_profile: " << *BaseFilename
       << " and test_profile: " << *TestFilename << "\nProgram level:\n";
  } else {
    OS << "Function level:\n"
       << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
  }

  OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
  if (Mismatch.NumEntries)
    OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
       << "\n";
  if (Unique.NumEntries)
    OS << "  # of " << EntryName
       << " only in test_profile: " << Unique.NumEntries << "\n";

  OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
     << "\n";
  if (Mismatch.NumEntries)
    OS << "  Mismatched count percentage (Edge): "
       << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
  if (Unique.NumEntries)
    OS << "  Percentage of Edge profile only in test_profile: "
       << format("%.3f%%", Unique.CountSum * 100) << "\n";
  OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
     << "\n"
     << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
     << "\n";

  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
    if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
      continue;
    char ProfileKindName[20];
    switch (I) {
    case IPVK_IndirectCallTarget:
      strncpy(ProfileKindName, "IndirectCall", 19);
      break;
    case IPVK_MemOPSize:
      strncpy(ProfileKindName, "MemOP", 19);
      break;
    default:
      snprintf(ProfileKindName, 19, "VP[%d]", I);
      break;
    }
    OS << "  " << ProfileKindName
       << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
       << "\n";
    if (Mismatch.NumEntries)
      OS << "  Mismatched count percentage (" << ProfileKindName
         << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
    if (Unique.NumEntries)
      OS << "  Percentage of " << ProfileKindName
         << " profile only in test_profile: "
         << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
    OS << "  " << ProfileKindName
       << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
       << "\n"
       << "  " << ProfileKindName
       << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
       << "\n";
  }
}

} // end namespace llvm