IRSymtab.cpp 13.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Object/IRSymtab.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VCSRevision.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace irsymtab;

static const char *LibcallRoutineNames[] = {
#define HANDLE_LIBCALL(code, name) name,
#include "llvm/IR/RuntimeLibcalls.def"
#undef HANDLE_LIBCALL
};

namespace {

const char *getExpectedProducerName() {
  static char DefaultName[] = LLVM_VERSION_STRING
#ifdef LLVM_REVISION
      " " LLVM_REVISION
#endif
      ;
  // Allows for testing of the irsymtab writer and upgrade mechanism. This
  // environment variable should not be set by users.
  if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
    return OverrideName;
  return DefaultName;
}

const char *kExpectedProducerName = getExpectedProducerName();

/// Stores the temporary state that is required to build an IR symbol table.
struct Builder {
  SmallVector<char, 0> &Symtab;
  StringTableBuilder &StrtabBuilder;
  StringSaver Saver;

  // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
  // The StringTableBuilder does not create a copy of any strings added to it,
  // so this provides somewhere to store any strings that we create.
  Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
          BumpPtrAllocator &Alloc)
      : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}

  DenseMap<const Comdat *, int> ComdatMap;
  Mangler Mang;
  Triple TT;

  std::vector<storage::Comdat> Comdats;
  std::vector<storage::Module> Mods;
  std::vector<storage::Symbol> Syms;
  std::vector<storage::Uncommon> Uncommons;

  std::string COFFLinkerOpts;
  raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};

  std::vector<storage::Str> DependentLibraries;

  void setStr(storage::Str &S, StringRef Value) {
    S.Offset = StrtabBuilder.add(Value);
    S.Size = Value.size();
  }

  template <typename T>
  void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
    R.Offset = Symtab.size();
    R.Size = Objs.size();
    Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
                  reinterpret_cast<const char *>(Objs.data() + Objs.size()));
  }

  Expected<int> getComdatIndex(const Comdat *C, const Module *M);

  Error addModule(Module *M);
  Error addSymbol(const ModuleSymbolTable &Msymtab,
                  const SmallPtrSet<GlobalValue *, 8> &Used,
                  ModuleSymbolTable::Symbol Sym);

  Error build(ArrayRef<Module *> Mods);
};

Error Builder::addModule(Module *M) {
  if (M->getDataLayoutStr().empty())
    return make_error<StringError>("input module has no datalayout",
                                   inconvertibleErrorCode());

  SmallPtrSet<GlobalValue *, 8> Used;
  collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);

  ModuleSymbolTable Msymtab;
  Msymtab.addModule(M);

  storage::Module Mod;
  Mod.Begin = Syms.size();
  Mod.End = Syms.size() + Msymtab.symbols().size();
  Mod.UncBegin = Uncommons.size();
  Mods.push_back(Mod);

  if (TT.isOSBinFormatCOFF()) {
    if (auto E = M->materializeMetadata())
      return E;
    if (NamedMDNode *LinkerOptions =
            M->getNamedMetadata("llvm.linker.options")) {
      for (MDNode *MDOptions : LinkerOptions->operands())
        for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
          COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
    }
  }

  if (TT.isOSBinFormatELF()) {
    if (auto E = M->materializeMetadata())
      return E;
    if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
      for (MDNode *MDOptions : N->operands()) {
        const auto OperandStr =
            cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
        storage::Str Specifier;
        setStr(Specifier, OperandStr);
        DependentLibraries.emplace_back(Specifier);
      }
    }
  }

  for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
    if (Error Err = addSymbol(Msymtab, Used, Msym))
      return Err;

  return Error::success();
}

Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
  auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
  if (P.second) {
    std::string Name;
    if (TT.isOSBinFormatCOFF()) {
      const GlobalValue *GV = M->getNamedValue(C->getName());
      if (!GV)
        return make_error<StringError>("Could not find leader",
                                       inconvertibleErrorCode());
      // Internal leaders do not affect symbol resolution, therefore they do not
      // appear in the symbol table.
      if (GV->hasLocalLinkage()) {
        P.first->second = -1;
        return -1;
      }
      llvm::raw_string_ostream OS(Name);
      Mang.getNameWithPrefix(OS, GV, false);
    } else {
      Name = C->getName();
    }

    storage::Comdat Comdat;
    setStr(Comdat.Name, Saver.save(Name));
    Comdats.push_back(Comdat);
  }

  return P.first->second;
}

Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
                         const SmallPtrSet<GlobalValue *, 8> &Used,
                         ModuleSymbolTable::Symbol Msym) {
  Syms.emplace_back();
  storage::Symbol &Sym = Syms.back();
  Sym = {};

  storage::Uncommon *Unc = nullptr;
  auto Uncommon = [&]() -> storage::Uncommon & {
    if (Unc)
      return *Unc;
    Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
    Uncommons.emplace_back();
    Unc = &Uncommons.back();
    *Unc = {};
    setStr(Unc->COFFWeakExternFallbackName, "");
    setStr(Unc->SectionName, "");
    return *Unc;
  };

  SmallString<64> Name;
  {
    raw_svector_ostream OS(Name);
    Msymtab.printSymbolName(OS, Msym);
  }
  setStr(Sym.Name, Saver.save(StringRef(Name)));

  auto Flags = Msymtab.getSymbolFlags(Msym);
  if (Flags & object::BasicSymbolRef::SF_Undefined)
    Sym.Flags |= 1 << storage::Symbol::FB_undefined;
  if (Flags & object::BasicSymbolRef::SF_Weak)
    Sym.Flags |= 1 << storage::Symbol::FB_weak;
  if (Flags & object::BasicSymbolRef::SF_Common)
    Sym.Flags |= 1 << storage::Symbol::FB_common;
  if (Flags & object::BasicSymbolRef::SF_Indirect)
    Sym.Flags |= 1 << storage::Symbol::FB_indirect;
  if (Flags & object::BasicSymbolRef::SF_Global)
    Sym.Flags |= 1 << storage::Symbol::FB_global;
  if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
    Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
  if (Flags & object::BasicSymbolRef::SF_Executable)
    Sym.Flags |= 1 << storage::Symbol::FB_executable;

  Sym.ComdatIndex = -1;
  auto *GV = Msym.dyn_cast<GlobalValue *>();
  if (!GV) {
    // Undefined module asm symbols act as GC roots and are implicitly used.
    if (Flags & object::BasicSymbolRef::SF_Undefined)
      Sym.Flags |= 1 << storage::Symbol::FB_used;
    setStr(Sym.IRName, "");
    return Error::success();
  }

  setStr(Sym.IRName, GV->getName());

  bool IsBuiltinFunc = false;

  for (const char *LibcallName : LibcallRoutineNames)
    if (GV->getName() == LibcallName)
      IsBuiltinFunc = true;

  if (Used.count(GV) || IsBuiltinFunc)
    Sym.Flags |= 1 << storage::Symbol::FB_used;
  if (GV->isThreadLocal())
    Sym.Flags |= 1 << storage::Symbol::FB_tls;
  if (GV->hasGlobalUnnamedAddr())
    Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
  if (GV->canBeOmittedFromSymbolTable())
    Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
  Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;

  if (Flags & object::BasicSymbolRef::SF_Common) {
    Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
        GV->getType()->getElementType());
    Uncommon().CommonAlign = GV->getAlignment();
  }

  const GlobalObject *Base = GV->getBaseObject();
  if (!Base)
    return make_error<StringError>("Unable to determine comdat of alias!",
                                   inconvertibleErrorCode());
  if (const Comdat *C = Base->getComdat()) {
    Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
    if (!ComdatIndexOrErr)
      return ComdatIndexOrErr.takeError();
    Sym.ComdatIndex = *ComdatIndexOrErr;
  }

  if (TT.isOSBinFormatCOFF()) {
    emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);

    if ((Flags & object::BasicSymbolRef::SF_Weak) &&
        (Flags & object::BasicSymbolRef::SF_Indirect)) {
      auto *Fallback = dyn_cast<GlobalValue>(
          cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
      if (!Fallback)
        return make_error<StringError>("Invalid weak external",
                                       inconvertibleErrorCode());
      std::string FallbackName;
      raw_string_ostream OS(FallbackName);
      Msymtab.printSymbolName(OS, Fallback);
      OS.flush();
      setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
    }
  }

  if (!Base->getSection().empty())
    setStr(Uncommon().SectionName, Saver.save(Base->getSection()));

  return Error::success();
}

Error Builder::build(ArrayRef<Module *> IRMods) {
  storage::Header Hdr;

  assert(!IRMods.empty());
  Hdr.Version = storage::Header::kCurrentVersion;
  setStr(Hdr.Producer, kExpectedProducerName);
  setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
  setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
  TT = Triple(IRMods[0]->getTargetTriple());

  for (auto *M : IRMods)
    if (Error Err = addModule(M))
      return Err;

  COFFLinkerOptsOS.flush();
  setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));

  // We are about to fill in the header's range fields, so reserve space for it
  // and copy it in afterwards.
  Symtab.resize(sizeof(storage::Header));
  writeRange(Hdr.Modules, Mods);
  writeRange(Hdr.Comdats, Comdats);
  writeRange(Hdr.Symbols, Syms);
  writeRange(Hdr.Uncommons, Uncommons);
  writeRange(Hdr.DependentLibraries, DependentLibraries);
  *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
  return Error::success();
}

} // end anonymous namespace

Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
                      StringTableBuilder &StrtabBuilder,
                      BumpPtrAllocator &Alloc) {
  return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
}

// Upgrade a vector of bitcode modules created by an old version of LLVM by
// creating an irsymtab for them in the current format.
static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
  FileContents FC;

  LLVMContext Ctx;
  std::vector<Module *> Mods;
  std::vector<std::unique_ptr<Module>> OwnedMods;
  for (auto BM : BMs) {
    Expected<std::unique_ptr<Module>> MOrErr =
        BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
                         /*IsImporting*/ false);
    if (!MOrErr)
      return MOrErr.takeError();

    Mods.push_back(MOrErr->get());
    OwnedMods.push_back(std::move(*MOrErr));
  }

  StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
  BumpPtrAllocator Alloc;
  if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
    return std::move(E);

  StrtabBuilder.finalizeInOrder();
  FC.Strtab.resize(StrtabBuilder.getSize());
  StrtabBuilder.write((uint8_t *)FC.Strtab.data());

  FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
                  {FC.Strtab.data(), FC.Strtab.size()}};
  return std::move(FC);
}

Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
  if (BFC.Mods.empty())
    return make_error<StringError>("Bitcode file does not contain any modules",
                                   inconvertibleErrorCode());

  if (BFC.StrtabForSymtab.empty() ||
      BFC.Symtab.size() < sizeof(storage::Header))
    return upgrade(BFC.Mods);

  // We cannot use the regular reader to read the version and producer, because
  // it will expect the header to be in the current format. The only thing we
  // can rely on is that the version and producer will be present as the first
  // struct elements.
  auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
  unsigned Version = Hdr->Version;
  StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
  if (Version != storage::Header::kCurrentVersion ||
      Producer != kExpectedProducerName)
    return upgrade(BFC.Mods);

  FileContents FC;
  FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
                  {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};

  // Finally, make sure that the number of modules in the symbol table matches
  // the number of modules in the bitcode file. If they differ, it may mean that
  // the bitcode file was created by binary concatenation, so we need to create
  // a new symbol table from scratch.
  if (FC.TheReader.getNumModules() != BFC.Mods.size())
    return upgrade(std::move(BFC.Mods));

  return std::move(FC);
}