ARMErrataFix.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
//===- ARMErrataFix.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around the
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
// can result in an incorrect instruction fetch or processor deadlock." The
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
// Cortex-A8. A high level description of the patching technique is given in
// the opening comment of AArch64ErrataFix.cpp.
//===----------------------------------------------------------------------===//

#include "ARMErrataFix.h"

#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

namespace lld {
namespace elf {

// The documented title for Erratum 657417 is:
// "A 32bit branch instruction that spans two 4K regions can result in an
// incorrect instruction fetch or processor deadlock". Graphically using a
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
// xxxxxx000 // Memory region 1 start
// target:
// ...
// xxxxxxffe f7fe // First halfword of branch to target:
// xxxxxx000 // Memory region 2 start
// xxxxxx002 bfff // Second halfword of branch to target:
//
// The specific trigger conditions that can be detected at link time are:
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
//   xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
//   second 2 bytes are in region 2.
// - The branch instruction is one of BLX, BL, B.w BCC.w
// - The instruction preceding the branch is a 32-bit non-branch instruction.
// - The target of the branch is in region 1.
//
// The linker mitigation for the fix is to redirect any branch that meets the
// erratum conditions to a patch section containing a branch to the target.
//
// As adding patch sections may move branches onto region boundaries the patch
// must iterate until no more patches are added.
//
// Example, before:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.W func   // 32-bit branch spanning 2 regions, dest in 1st.
// Example, after:
// 00000FFA func: NOP.w      // 32-bit Thumb function
// 00000FFE       B.w __CortexA8657417_00000FFE
// 00001002       2 - bytes padding
// 00001004 __CortexA8657417_00000FFE: B.w func

class Patch657417Section : public SyntheticSection {
public:
  Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);

  void writeTo(uint8_t *buf) override;

  size_t getSize() const override { return 4; }

  // Get the virtual address of the branch instruction at patcheeOffset.
  uint64_t getBranchAddr() const;

  static bool classof(const SectionBase *d) {
    return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
  }

  // The Section we are patching.
  const InputSection *patchee;
  // The offset of the instruction in the Patchee section we are patching.
  uint64_t patcheeOffset;
  // A label for the start of the Patch that we can use as a relocation target.
  Symbol *patchSym;
  // A decoding of the branch instruction at patcheeOffset.
  uint32_t instr;
  // True If the patch is to be written in ARM state, otherwise the patch will
  // be written in Thumb state.
  bool isARM;
};

// Return true if the half-word, when taken as the first of a pair of halfwords
// is the first half of a 32-bit instruction.
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3: 32-bit Thumb instruction encoding
// |             HW1                   |               HW2                |
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op|           x (15)              |
// With op1 == 0b00, a 16-bit instruction is encoded.
//
// We test only the first halfword, looking for op != 0b00.
static bool is32bitInstruction(uint16_t hw) {
  return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
}

// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
// section A6.3.4 Branches and miscellaneous control.
// |             HW1              |               HW2                |
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
// op1 == 0x1               | Branch (B.W)
// op1 == 1x0               | Branch with Link and Exchange (BLX.w)
// op1 == 1x1               | Branch with Link (BL.W)

static bool isBcc(uint32_t instr) {
  return (instr & 0xf800d000) == 0xf0008000 &&
         (instr & 0x03800000) != 0x03800000;
}

static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }

static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }

static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }

static bool is32bitBranch(uint32_t instr) {
  return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
}

Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
                                       uint32_t instr, bool isARM)
    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
                       ".text.patch"),
      patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
  parent = p->getParent();
  patchSym = addSyntheticLocal(
      saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
      isARM ? 0 : 1, getSize(), *this);
  addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
}

uint64_t Patch657417Section::getBranchAddr() const {
  return patchee->getVA(patcheeOffset);
}

// Given a branch instruction instr at sourceAddr work out its destination
// address. This is only used when the branch instruction has no relocation.
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
  uint8_t buf[4];
  write16le(buf, instr >> 16);
  write16le(buf + 2, instr & 0x0000ffff);
  int64_t offset;
  if (isBcc(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
  else if (isB(instr))
    offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
  else
    offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
  return sourceAddr + offset + 4;
}

void Patch657417Section::writeTo(uint8_t *buf) {
  // The base instruction of the patch is always a 32-bit unconditional branch.
  if (isARM)
    write32le(buf, 0xea000000);
  else
    write32le(buf, 0x9000f000);
  // If we have a relocation then apply it. For a SyntheticSection buf already
  // has outSecOff added, but relocateAlloc also adds outSecOff so we need to
  // subtract to avoid double counting.
  if (!relocations.empty()) {
    relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
    return;
  }

  // If we don't have a relocation then we must calculate and write the offset
  // ourselves.
  // Get the destination offset from the addend in the branch instruction.
  // We cannot use the instruction in the patchee section as this will have
  // been altered to point to us!
  uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
  uint64_t p = getVA(4);
  target->relocateOne(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
}

// Given a branch instruction spanning two 4KiB regions, at offset off from the
// start of isec, return true if the destination of the branch is within the
// first of the two 4Kib regions.
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
                                    uint32_t instr, const Relocation *r) {
  uint64_t sourceAddr = isec->getVA(0) + off;
  assert((sourceAddr & 0xfff) == 0xffe);
  uint64_t destAddr = sourceAddr;
  // If there is a branch relocation at the same offset we must use this to
  // find the destination address as the branch could be indirected via a thunk
  // or the PLT.
  if (r) {
    uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
    // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
    destAddr = dst + r->addend + 4;
  } else {
    // If there is no relocation, we must have an intra-section branch
    // We must extract the offset from the addend manually.
    destAddr = getThumbDestAddr(sourceAddr, instr);
  }

  return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
}

// Return true if a branch can reach a patch section placed after isec.
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
static bool patchInRange(const InputSection *isec, uint64_t off,
                         uint32_t instr) {

  // We need the branch at source to reach a patch section placed immediately
  // after isec. As there can be more than one patch in the patch section we
  // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
  // for a 1 MiB range.
  return target->inBranchRange(
      isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
      isec->getVA() + isec->getSize() + 0x100);
}

struct ScanResult {
  // Offset of branch within its InputSection.
  uint64_t off;
  // Cached decoding of the branch instruction.
  uint32_t instr;
  // Branch relocation at off. Will be nullptr if no relocation exists.
  Relocation *rel;
};

// Detect the erratum sequence, returning the offset of the branch instruction
// and a decoding of the branch. If the erratum sequence is not found then
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
// as there must be at least one 32-bit non-branch instruction before the
// branch so the minimum offset for a patch is 4.
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
                                           uint64_t limit) {
  uint64_t isecAddr = isec->getVA(0);
  // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
  // need to check for a 32-bit instruction immediately before a 32-bit branch
  // at 0xffe modulo 0x1000.
  off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
  if (off >= limit || limit - off < 8) {
    // Need at least 2 4-byte sized instructions to trigger erratum.
    off = limit;
    return {0, 0, nullptr};
  }

  ScanResult scanRes = {0, 0, nullptr};
  const uint8_t *buf = isec->data().begin();
  // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
  // little-endian halfwords.
  const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
  uint16_t hw11 = *instBuf++;
  uint16_t hw12 = *instBuf++;
  uint16_t hw21 = *instBuf++;
  uint16_t hw22 = *instBuf++;
  if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
    uint32_t instr1 = (hw11 << 16) | hw12;
    uint32_t instr2 = (hw21 << 16) | hw22;
    if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
      // Find a relocation for the branch if it exists. This will be used
      // to determine the target.
      uint64_t branchOff = off + 4;
      auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
        return r.offset == branchOff &&
               (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
                r.type == R_ARM_THM_CALL);
      });
      if (relIt != isec->relocations.end())
        scanRes.rel = &(*relIt);
      if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
        if (patchInRange(isec, branchOff, instr2)) {
          scanRes.off = branchOff;
          scanRes.instr = instr2;
        } else {
          warn(toString(isec->file) +
               ": skipping cortex-a8 657417 erratum sequence, section " +
               isec->name + " is too large to patch");
        }
      }
    }
  }
  off += 0x1000;
  return scanRes;
}

void ARMErr657417Patcher::init() {
  // The Arm ABI permits a mix of ARM, Thumb and Data in the same
  // InputSection. We must only scan Thumb instructions to avoid false
  // matches. We use the mapping symbols in the InputObjects to identify this
  // data, caching the results in sectionMap so we don't have to recalculate
  // it each pass.

  // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
  // half open intervals [Symbol Value, Next Symbol Value) of code and data
  // within sections. If there is no next symbol then the half open interval is
  // [Symbol Value, End of section). The type, code or data, is determined by
  // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
  auto isArmMapSymbol = [](const Symbol *s) {
    return s->getName() == "$a" || s->getName().startswith("$a.");
  };
  auto isThumbMapSymbol = [](const Symbol *s) {
    return s->getName() == "$t" || s->getName().startswith("$t.");
  };
  auto isDataMapSymbol = [](const Symbol *s) {
    return s->getName() == "$d" || s->getName().startswith("$d.");
  };

  // Collect mapping symbols for every executable InputSection.
  for (InputFile *file : objectFiles) {
    auto *f = cast<ObjFile<ELF32LE>>(file);
    for (Symbol *s : f->getLocalSymbols()) {
      auto *def = dyn_cast<Defined>(s);
      if (!def)
        continue;
      if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
          !isDataMapSymbol(def))
        continue;
      if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
        if (sec->flags & SHF_EXECINSTR)
          sectionMap[sec].push_back(def);
    }
  }
  // For each InputSection make sure the mapping symbols are in sorted in
  // ascending order and are in alternating Thumb, non-Thumb order.
  for (auto &kv : sectionMap) {
    std::vector<const Defined *> &mapSyms = kv.second;
    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
      return a->value < b->value;
    });
    mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
                              [=](const Defined *a, const Defined *b) {
                                return (isThumbMapSymbol(a) ==
                                        isThumbMapSymbol(b));
                              }),
                  mapSyms.end());
    // Always start with a Thumb Mapping Symbol
    if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
      mapSyms.erase(mapSyms.begin());
  }
  initialized = true;
}

void ARMErr657417Patcher::insertPatches(
    InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
  uint64_t spacing = 0x100000 - 0x7500;
  uint64_t isecLimit;
  uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
  uint64_t patchUpperBound = prevIsecLimit + spacing;
  uint64_t outSecAddr = isd.sections.front()->getParent()->addr;

  // Set the outSecOff of patches to the place where we want to insert them.
  // We use a similar strategy to initial thunk placement, using 1 MiB as the
  // range of the Thumb-2 conditional branch with a contingency accounting for
  // thunk generation.
  auto patchIt = patches.begin();
  auto patchEnd = patches.end();
  for (const InputSection *isec : isd.sections) {
    isecLimit = isec->outSecOff + isec->getSize();
    if (isecLimit > patchUpperBound) {
      for (; patchIt != patchEnd; ++patchIt) {
        if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
          break;
        (*patchIt)->outSecOff = prevIsecLimit;
      }
      patchUpperBound = prevIsecLimit + spacing;
    }
    prevIsecLimit = isecLimit;
  }
  for (; patchIt != patchEnd; ++patchIt)
    (*patchIt)->outSecOff = isecLimit;

  // Merge all patch sections. We use the outSecOff assigned above to
  // determine the insertion point. This is ok as we only merge into an
  // InputSectionDescription once per pass, and at the end of the pass
  // assignAddresses() will recalculate all the outSecOff values.
  std::vector<InputSection *> tmp;
  tmp.reserve(isd.sections.size() + patches.size());
  auto mergeCmp = [](const InputSection *a, const InputSection *b) {
    if (a->outSecOff != b->outSecOff)
      return a->outSecOff < b->outSecOff;
    return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
  };
  std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
             patches.end(), std::back_inserter(tmp), mergeCmp);
  isd.sections = std::move(tmp);
}

// Given a branch instruction described by ScanRes redirect it to a patch
// section containing an unconditional branch instruction to the target.
// Ensure that this patch section is 4-byte aligned so that the branch cannot
// span two 4 KiB regions. Place the patch section so that it is always after
// isec so the branch we are patching always goes forwards.
static void implementPatch(ScanResult sr, InputSection *isec,
                           std::vector<Patch657417Section *> &patches) {

  log("detected cortex-a8-657419 erratum sequence starting at " +
      utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
  Patch657417Section *psec;
  // We have two cases to deal with.
  // Case 1. There is a relocation at patcheeOffset to a symbol. The
  // unconditional branch in the patch must have a relocation so that any
  // further redirection via the PLT or a Thunk happens as normal. At
  // patcheeOffset we redirect the existing relocation to a Symbol defined at
  // the start of the patch section.
  //
  // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
  // a symbol that we can use as a target for a relocation in the patch section.
  // Luckily we know that the destination cannot be indirected via the PLT or
  // a Thunk so we can just write the destination directly.
  if (sr.rel) {
    // Case 1. We have an existing relocation to redirect to patch and a
    // Symbol target.

    // Create a branch relocation for the unconditional branch in the patch.
    // This can be redirected via the PLT or Thunks.
    RelType patchRelType = R_ARM_THM_JUMP24;
    int64_t patchRelAddend = sr.rel->addend;
    bool destIsARM = false;
    if (isBL(sr.instr) || isBLX(sr.instr)) {
      // The final target of the branch may be ARM or Thumb, if the target
      // is ARM then we write the patch in ARM state to avoid a state change
      // Thunk from the patch to the target.
      uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
                                                       : sr.rel->sym->getVA();
      destIsARM = (dstSymAddr & 1) == 0;
    }
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
    if (destIsARM) {
      // The patch will be in ARM state. Use an ARM relocation and account for
      // the larger ARM PC-bias of 8 rather than Thumb's 4.
      patchRelType = R_ARM_JUMP24;
      patchRelAddend -= 4;
    }
    psec->relocations.push_back(
        Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
    // Redirect the existing branch relocation to the patch.
    sr.rel->expr = R_PC;
    sr.rel->addend = -4;
    sr.rel->sym = psec->patchSym;
  } else {
    // Case 2. We do not have a relocation to the patch. Add a relocation of the
    // appropriate type to the patch at patcheeOffset.

    // The destination is ARM if we have a BLX.
    psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
    RelType type;
    if (isBcc(sr.instr))
      type = R_ARM_THM_JUMP19;
    else if (isB(sr.instr))
      type = R_ARM_THM_JUMP24;
    else
      type = R_ARM_THM_CALL;
    isec->relocations.push_back(
        Relocation{R_PC, type, sr.off, -4, psec->patchSym});
  }
  patches.push_back(psec);
}

// Scan all the instructions in InputSectionDescription, for each instance of
// the erratum sequence create a Patch657417Section. We return the list of
// Patch657417Sections that need to be applied to the InputSectionDescription.
std::vector<Patch657417Section *>
ARMErr657417Patcher::patchInputSectionDescription(
    InputSectionDescription &isd) {
  std::vector<Patch657417Section *> patches;
  for (InputSection *isec : isd.sections) {
    // LLD doesn't use the erratum sequence in SyntheticSections.
    if (isa<SyntheticSection>(isec))
      continue;
    // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
    // data. We have already sorted mapSyms in ascending order and removed
    // consecutive mapping symbols of the same type. Our range of executable
    // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
    // or [thumbSym->value, section size).
    std::vector<const Defined *> &mapSyms = sectionMap[isec];

    auto thumbSym = mapSyms.begin();
    while (thumbSym != mapSyms.end()) {
      auto nonThumbSym = std::next(thumbSym);
      uint64_t off = (*thumbSym)->value;
      uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
                                                      : (*nonThumbSym)->value;

      while (off < limit) {
        ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
        if (sr.off)
          implementPatch(sr, isec, patches);
      }
      if (nonThumbSym == mapSyms.end())
        break;
      thumbSym = std::next(nonThumbSym);
    }
  }
  return patches;
}

bool ARMErr657417Patcher::createFixes() {
  if (!initialized)
    init();

  bool addressesChanged = false;
  for (OutputSection *os : outputSections) {
    if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *bc : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
        std::vector<Patch657417Section *> patches =
            patchInputSectionDescription(*isd);
        if (!patches.empty()) {
          insertPatches(*isd, patches);
          addressesChanged = true;
        }
      }
  }
  return addressesChanged;
}

} // namespace elf
} // namespace lld