clc_rootn.cl 12.6 KB
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <clc/clc.h>

#include "config.h"
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"

// compute pow using log and exp
// x^y = exp(y * log(x))
//
// we take care not to lose precision in the intermediate steps
//
// When computing log, calculate it in splits,
//
// r = f * (p_invead + p_inv_tail)
// r = rh + rt
//
// calculate log polynomial using r, in end addition, do
// poly = poly + ((rh-r) + rt)
//
// lth = -r
// ltt = ((xexp * log2_t) - poly) + logT
// lt = lth + ltt
//
// lh = (xexp * log2_h) + logH
// l = lh + lt
//
// Calculate final log answer as gh and gt,
// gh = l & higher-half bits
// gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
//
// yh = y & higher-half bits
// yt = y - yh
//
// Before entering computation of exp,
// vs = ((yt*gt + yt*gh) + yh*gt)
// v = vs + yh*gh
// vt = ((yh*gh - v) + vs)
//
// In calculation of exp, add vt to r that is used for poly
// At the end of exp, do
// ((((expT * poly) + expT) + expH*poly) + expH)

_CLC_DEF _CLC_OVERLOAD float __clc_rootn(float x, int ny)
{
    float y = MATH_RECIP((float)ny);

    int ix = as_int(x);
    int ax = ix & EXSIGNBIT_SP32;
    int xpos = ix == ax;

    int iy = as_int(y);
    int ay = iy & EXSIGNBIT_SP32;
    int ypos = iy == ay;

    // Extra precise log calculation
    // First handle case that x is close to 1
    float r = 1.0f - as_float(ax);
    int near1 = fabs(r) < 0x1.0p-4f;
    float r2 = r*r;

    // Coefficients are just 1/3, 1/4, 1/5 and 1/6
    float poly = mad(r,
                     mad(r,
                         mad(r,
                             mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
                             0x1.99999ap-3f),
                         0x1.000000p-2f),
                     0x1.555556p-2f);

    poly *= r2*r;

    float lth_near1 = -r2 * 0.5f;
    float ltt_near1 = -poly;
    float lt_near1 = lth_near1 + ltt_near1;
    float lh_near1 = -r;
    float l_near1 = lh_near1 + lt_near1;

    // Computations for x not near 1
    int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
    float mf = (float)m;
    int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
    float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
    int c = m == -127;
    int ixn = c ? ixs : ax;
    float mfn = c ? mfs : mf;

    int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);

    // F - Y
    float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));

    indx = indx >> 16;
    float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
    float rh = f * tv.s0;
    float rt = f * tv.s1;
    r = rh + rt;

    poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
    poly += (rh - r) + rt;

    const float LOG2_HEAD = 0x1.62e000p-1f;  // 0.693115234
    const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
    tv = USE_TABLE(loge_tbl, indx);
    float lth = -r;
    float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
    float lt = lth + ltt;
    float lh = mad(mfn, LOG2_HEAD, tv.s0);
    float l = lh + lt;

    // Select near 1 or not
    lth = near1 ? lth_near1 : lth;
    ltt = near1 ? ltt_near1 : ltt;
    lt = near1 ? lt_near1 : lt;
    lh = near1 ? lh_near1 : lh;
    l = near1 ? l_near1 : l;

    float gh = as_float(as_int(l) & 0xfffff000);
    float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);

    float yh = as_float(iy & 0xfffff000);

    float fny = (float)ny;
    float fnyh = as_float(as_int(fny) & 0xfffff000);
    float fnyt = (float)(ny - (int)fnyh);
    float yt = MATH_DIVIDE(mad(-fnyt, yh, mad(-fnyh, yh, 1.0f)), fny);

    float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
    float ylogx = mad(yh, gh, ylogx_s);
    float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;

    // Extra precise exp of ylogx
    const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657
    int n = convert_int(ylogx * R_64_BY_LOG2);
    float nf = (float) n;

    int j = n & 0x3f;
    m = n >> 6;
    int m2 = m << EXPSHIFTBITS_SP32;

    const float R_LOG2_BY_64_LD = 0x1.620000p-7f;  // log2/64 lead: 0.0108032227
    const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388
    r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;

    // Truncated Taylor series for e^r
    poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);

    tv = USE_TABLE(exp_tbl_ep, j);

    float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
    float sexpylogx = __clc_fp32_subnormals_supported() ? expylogx * as_float(0x1 << (m + 149)) : 0.0f;

    float texpylogx = as_float(as_int(expylogx) + m2);
    expylogx = m < -125 ? sexpylogx : texpylogx;

    // Result is +-Inf if (ylogx + ylogx_t) > 128*log2
    expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx;

    // Result is 0 if ylogx < -149*log2
    expylogx = ylogx <  -0x1.9d1da0p+6f ? 0.0f : expylogx;

    // Classify y:
    //   inty = 0 means not an integer.
    //   inty = 1 means odd integer.
    //   inty = 2 means even integer.

    int inty = 2 - (ny & 1);

    float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
    expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
    int ret = as_int(expylogx);

    // Corner case handling
    ret = (!xpos & (inty == 2)) ? QNANBITPATT_SP32 : ret;
    int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
    ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
    ret = ((ax == 0) & !ypos & (inty == 2)) ? PINFBITPATT_SP32 : ret;
    ret = ((ax == 0) & ypos & (inty == 2)) ? 0 : ret;
    int xzero = xpos ? 0 : 0x80000000;
    ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
    ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
    ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
    ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
    ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
    ret = ax > PINFBITPATT_SP32 ? ix : ret;
    ret = ny == 0 ? QNANBITPATT_SP32 : ret;

    return as_float(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_rootn, float, int)

#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_rootn(double x, int ny)
{
    const double real_log2_tail = 5.76999904754328540596e-08;
    const double real_log2_lead = 6.93147122859954833984e-01;

    double dny = (double)ny;
    double y = 1.0 / dny;

    long ux = as_long(x);
    long ax = ux & (~SIGNBIT_DP64);
    int xpos = ax == ux;

    long uy = as_long(y);
    long ay = uy & (~SIGNBIT_DP64);
    int ypos = ay == uy;

    // Extended precision log
    double v, vt;
    {
        int exp = (int)(ax >> 52) - 1023;
        int mask_exp_1023 = exp == -1023;
        double xexp = (double) exp;
        long mantissa = ax & 0x000FFFFFFFFFFFFFL;

        long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
        exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
        double xexp1 = (double) exp;
        long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;

        xexp = mask_exp_1023 ? xexp1 : xexp;
        mantissa = mask_exp_1023 ? mantissa1 : mantissa;

        long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
        int index = rax >> 44;

        double F = as_double(rax | 0x3FE0000000000000L);
        double Y = as_double(mantissa | 0x3FE0000000000000L);
        double f = F - Y;
        double2 tv = USE_TABLE(log_f_inv_tbl, index);
        double log_h = tv.s0;
        double log_t = tv.s1;
        double f_inv = (log_h + log_t) * f;
        double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
        double r2 = fma(-F, r1, f) * (log_h + log_t);
        double r = r1 + r2;

        double poly = fma(r,
                          fma(r,
                              fma(r,
                                  fma(r, 1.0/7.0, 1.0/6.0),
                                  1.0/5.0),
                              1.0/4.0),
                          1.0/3.0);
        poly = poly * r * r * r;

        double hr1r1 = 0.5*r1*r1;
        double poly0h = r1 + hr1r1;
        double poly0t = r1 - poly0h + hr1r1;
        poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;

        tv = USE_TABLE(powlog_tbl, index);
        log_h = tv.s0;
        log_t = tv.s1;

        double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
        double resT = resT_t - poly0h;
        double resH = fma(xexp, real_log2_lead, log_h);
        double resT_h = poly0h;

        double H = resT + resH;
        double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
        double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
        H = H_h;

        double y_head = as_double(uy & 0xfffffffff8000000L);
        double y_tail = y - y_head;

        double fnyh = as_double(as_long(dny) & 0xfffffffffff00000);
        double fnyt = (double)(ny - (int)fnyh);
        y_tail = fma(-fnyt, y_head, fma(-fnyh, y_head, 1.0))/ dny;

        double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
        v = fma(y_head, H, temp);
        vt = fma(y_head, H, -v) + temp;
    }

    // Now calculate exp of (v,vt)

    double expv;
    {
        const double max_exp_arg = 709.782712893384;
        const double min_exp_arg = -745.1332191019411;
        const double sixtyfour_by_lnof2 = 92.33248261689366;
        const double lnof2_by_64_head = 0.010830424260348081;
        const double lnof2_by_64_tail = -4.359010638708991e-10;

        double temp = v * sixtyfour_by_lnof2;
        int n = (int)temp;
        double dn = (double)n;
        int j = n & 0x0000003f;
        int m = n >> 6;

        double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
        double f1 = tv.s0;
        double f2 = tv.s1;
        double f = f1 + f2;

        double r1 = fma(dn, -lnof2_by_64_head, v);
        double r2 = dn * lnof2_by_64_tail;
        double r = (r1 + r2) + vt;

        double q = fma(r,
                       fma(r,
                           fma(r,
                               fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
                               4.16666666662260795726e-02),
                           1.66666666665260878863e-01),
                       5.00000000000000008883e-01);
        q = fma(r*r, q, r);

        expv = fma(f, q, f2) + f1;
	      expv = ldexp(expv, m);

        expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
        expv = v < min_exp_arg ? 0.0 : expv;
    }

    // See whether y is an integer.
    // inty = 0 means not an integer.
    // inty = 1 means odd integer.
    // inty = 2 means even integer.

    int inty = 2 - (ny & 1);

    expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0;

    long ret = as_long(expv);

    // Now all the edge cases
    ret = (!xpos & (inty == 2)) ? QNANBITPATT_DP64 : ret;
    long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
    ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
    ret = ((ax == 0L) & !ypos & (inty == 2)) ? PINFBITPATT_DP64 : ret;
    ret = ((ax == 0L) & ypos & (inty == 2)) ? 0L : ret;
    long xzero = xpos ? 0L : 0x8000000000000000L;
    ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
    ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
    ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
    ret = ((ux == PINFBITPATT_DP64) & !ypos) ? 0L : ret;
    ret = ((ux == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret;
    ret = ax > PINFBITPATT_DP64 ? ux : ret;
    ret = ny == 0 ? QNANBITPATT_DP64 : ret;
    return as_double(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_rootn, double, int)
#endif