LiveVariables.cpp 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs ----------*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Live Variables analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>

using namespace clang;

namespace {

class DataflowWorklist {
  llvm::BitVector enqueuedBlocks;
  PostOrderCFGView *POV;
  llvm::PriorityQueue<const CFGBlock *, SmallVector<const CFGBlock *, 20>,
                      PostOrderCFGView::BlockOrderCompare> worklist;

public:
  DataflowWorklist(const CFG &cfg, AnalysisDeclContext &Ctx)
    : enqueuedBlocks(cfg.getNumBlockIDs()),
      POV(Ctx.getAnalysis<PostOrderCFGView>()),
      worklist(POV->getComparator()) {}

  void enqueueBlock(const CFGBlock *block);
  void enqueuePredecessors(const CFGBlock *block);

  const CFGBlock *dequeue();
};

}

void DataflowWorklist::enqueueBlock(const clang::CFGBlock *block) {
  if (block && !enqueuedBlocks[block->getBlockID()]) {
    enqueuedBlocks[block->getBlockID()] = true;
    worklist.push(block);
  }
}

void DataflowWorklist::enqueuePredecessors(const clang::CFGBlock *block) {
  for (CFGBlock::const_pred_iterator I = block->pred_begin(),
       E = block->pred_end(); I != E; ++I) {
    enqueueBlock(*I);
  }
}

const CFGBlock *DataflowWorklist::dequeue() {
  if (worklist.empty())
    return nullptr;
  const CFGBlock *b = worklist.top();
  worklist.pop();
  enqueuedBlocks[b->getBlockID()] = false;
  return b;
}

namespace {
class LiveVariablesImpl {
public:
  AnalysisDeclContext &analysisContext;
  llvm::ImmutableSet<const Stmt *>::Factory SSetFact;
  llvm::ImmutableSet<const VarDecl *>::Factory DSetFact;
  llvm::ImmutableSet<const BindingDecl *>::Factory BSetFact;
  llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksEndToLiveness;
  llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksBeginToLiveness;
  llvm::DenseMap<const Stmt *, LiveVariables::LivenessValues> stmtsToLiveness;
  llvm::DenseMap<const DeclRefExpr *, unsigned> inAssignment;
  const bool killAtAssign;

  LiveVariables::LivenessValues
  merge(LiveVariables::LivenessValues valsA,
        LiveVariables::LivenessValues valsB);

  LiveVariables::LivenessValues
  runOnBlock(const CFGBlock *block, LiveVariables::LivenessValues val,
             LiveVariables::Observer *obs = nullptr);

  void dumpBlockLiveness(const SourceManager& M);
  void dumpStmtLiveness(const SourceManager& M);

  LiveVariablesImpl(AnalysisDeclContext &ac, bool KillAtAssign)
    : analysisContext(ac),
      SSetFact(false), // Do not canonicalize ImmutableSets by default.
      DSetFact(false), // This is a *major* performance win.
      BSetFact(false),
      killAtAssign(KillAtAssign) {}
};
}

static LiveVariablesImpl &getImpl(void *x) {
  return *((LiveVariablesImpl *) x);
}

//===----------------------------------------------------------------------===//
// Operations and queries on LivenessValues.
//===----------------------------------------------------------------------===//

bool LiveVariables::LivenessValues::isLive(const Stmt *S) const {
  return liveStmts.contains(S);
}

bool LiveVariables::LivenessValues::isLive(const VarDecl *D) const {
  if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
    bool alive = false;
    for (const BindingDecl *BD : DD->bindings())
      alive |= liveBindings.contains(BD);
    return alive;
  }
  return liveDecls.contains(D);
}

namespace {
  template <typename SET>
  SET mergeSets(SET A, SET B) {
    if (A.isEmpty())
      return B;

    for (typename SET::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
      A = A.add(*it);
    }
    return A;
  }
}

void LiveVariables::Observer::anchor() { }

LiveVariables::LivenessValues
LiveVariablesImpl::merge(LiveVariables::LivenessValues valsA,
                         LiveVariables::LivenessValues valsB) {

  llvm::ImmutableSetRef<const Stmt *>
    SSetRefA(valsA.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory()),
    SSetRefB(valsB.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory());


  llvm::ImmutableSetRef<const VarDecl *>
    DSetRefA(valsA.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory()),
    DSetRefB(valsB.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory());

  llvm::ImmutableSetRef<const BindingDecl *>
    BSetRefA(valsA.liveBindings.getRootWithoutRetain(), BSetFact.getTreeFactory()),
    BSetRefB(valsB.liveBindings.getRootWithoutRetain(), BSetFact.getTreeFactory());

  SSetRefA = mergeSets(SSetRefA, SSetRefB);
  DSetRefA = mergeSets(DSetRefA, DSetRefB);
  BSetRefA = mergeSets(BSetRefA, BSetRefB);

  // asImmutableSet() canonicalizes the tree, allowing us to do an easy
  // comparison afterwards.
  return LiveVariables::LivenessValues(SSetRefA.asImmutableSet(),
                                       DSetRefA.asImmutableSet(),
                                       BSetRefA.asImmutableSet());
}

bool LiveVariables::LivenessValues::equals(const LivenessValues &V) const {
  return liveStmts == V.liveStmts && liveDecls == V.liveDecls;
}

//===----------------------------------------------------------------------===//
// Query methods.
//===----------------------------------------------------------------------===//

static bool isAlwaysAlive(const VarDecl *D) {
  return D->hasGlobalStorage();
}

bool LiveVariables::isLive(const CFGBlock *B, const VarDecl *D) {
  return isAlwaysAlive(D) || getImpl(impl).blocksEndToLiveness[B].isLive(D);
}

bool LiveVariables::isLive(const Stmt *S, const VarDecl *D) {
  return isAlwaysAlive(D) || getImpl(impl).stmtsToLiveness[S].isLive(D);
}

bool LiveVariables::isLive(const Stmt *Loc, const Stmt *S) {
  return getImpl(impl).stmtsToLiveness[Loc].isLive(S);
}

//===----------------------------------------------------------------------===//
// Dataflow computation.
//===----------------------------------------------------------------------===//

namespace {
class TransferFunctions : public StmtVisitor<TransferFunctions> {
  LiveVariablesImpl &LV;
  LiveVariables::LivenessValues &val;
  LiveVariables::Observer *observer;
  const CFGBlock *currentBlock;
public:
  TransferFunctions(LiveVariablesImpl &im,
                    LiveVariables::LivenessValues &Val,
                    LiveVariables::Observer *Observer,
                    const CFGBlock *CurrentBlock)
  : LV(im), val(Val), observer(Observer), currentBlock(CurrentBlock) {}

  void VisitBinaryOperator(BinaryOperator *BO);
  void VisitBlockExpr(BlockExpr *BE);
  void VisitDeclRefExpr(DeclRefExpr *DR);
  void VisitDeclStmt(DeclStmt *DS);
  void VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS);
  void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE);
  void VisitUnaryOperator(UnaryOperator *UO);
  void Visit(Stmt *S);
};
}

static const VariableArrayType *FindVA(QualType Ty) {
  const Type *ty = Ty.getTypePtr();
  while (const ArrayType *VT = dyn_cast<ArrayType>(ty)) {
    if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(VT))
      if (VAT->getSizeExpr())
        return VAT;

    ty = VT->getElementType().getTypePtr();
  }

  return nullptr;
}

static const Stmt *LookThroughStmt(const Stmt *S) {
  while (S) {
    if (const Expr *Ex = dyn_cast<Expr>(S))
      S = Ex->IgnoreParens();
    if (const FullExpr *FE = dyn_cast<FullExpr>(S)) {
      S = FE->getSubExpr();
      continue;
    }
    if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(S)) {
      S = OVE->getSourceExpr();
      continue;
    }
    break;
  }
  return S;
}

static void AddLiveStmt(llvm::ImmutableSet<const Stmt *> &Set,
                        llvm::ImmutableSet<const Stmt *>::Factory &F,
                        const Stmt *S) {
  Set = F.add(Set, LookThroughStmt(S));
}

void TransferFunctions::Visit(Stmt *S) {
  if (observer)
    observer->observeStmt(S, currentBlock, val);

  StmtVisitor<TransferFunctions>::Visit(S);

  if (isa<Expr>(S)) {
    val.liveStmts = LV.SSetFact.remove(val.liveStmts, S);
  }

  // Mark all children expressions live.

  switch (S->getStmtClass()) {
    default:
      break;
    case Stmt::StmtExprClass: {
      // For statement expressions, look through the compound statement.
      S = cast<StmtExpr>(S)->getSubStmt();
      break;
    }
    case Stmt::CXXMemberCallExprClass: {
      // Include the implicit "this" pointer as being live.
      CXXMemberCallExpr *CE = cast<CXXMemberCallExpr>(S);
      if (Expr *ImplicitObj = CE->getImplicitObjectArgument()) {
        AddLiveStmt(val.liveStmts, LV.SSetFact, ImplicitObj);
      }
      break;
    }
    case Stmt::ObjCMessageExprClass: {
      // In calls to super, include the implicit "self" pointer as being live.
      ObjCMessageExpr *CE = cast<ObjCMessageExpr>(S);
      if (CE->getReceiverKind() == ObjCMessageExpr::SuperInstance)
        val.liveDecls = LV.DSetFact.add(val.liveDecls,
                                        LV.analysisContext.getSelfDecl());
      break;
    }
    case Stmt::DeclStmtClass: {
      const DeclStmt *DS = cast<DeclStmt>(S);
      if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) {
        for (const VariableArrayType* VA = FindVA(VD->getType());
             VA != nullptr; VA = FindVA(VA->getElementType())) {
          AddLiveStmt(val.liveStmts, LV.SSetFact, VA->getSizeExpr());
        }
      }
      break;
    }
    case Stmt::PseudoObjectExprClass: {
      // A pseudo-object operation only directly consumes its result
      // expression.
      Expr *child = cast<PseudoObjectExpr>(S)->getResultExpr();
      if (!child) return;
      if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(child))
        child = OV->getSourceExpr();
      child = child->IgnoreParens();
      val.liveStmts = LV.SSetFact.add(val.liveStmts, child);
      return;
    }

    // FIXME: These cases eventually shouldn't be needed.
    case Stmt::ExprWithCleanupsClass: {
      S = cast<ExprWithCleanups>(S)->getSubExpr();
      break;
    }
    case Stmt::CXXBindTemporaryExprClass: {
      S = cast<CXXBindTemporaryExpr>(S)->getSubExpr();
      break;
    }
    case Stmt::UnaryExprOrTypeTraitExprClass: {
      // No need to unconditionally visit subexpressions.
      return;
    }
    case Stmt::IfStmtClass: {
      // If one of the branches is an expression rather than a compound
      // statement, it will be bad if we mark it as live at the terminator
      // of the if-statement (i.e., immediately after the condition expression).
      AddLiveStmt(val.liveStmts, LV.SSetFact, cast<IfStmt>(S)->getCond());
      return;
    }
    case Stmt::WhileStmtClass: {
      // If the loop body is an expression rather than a compound statement,
      // it will be bad if we mark it as live at the terminator of the loop
      // (i.e., immediately after the condition expression).
      AddLiveStmt(val.liveStmts, LV.SSetFact, cast<WhileStmt>(S)->getCond());
      return;
    }
    case Stmt::DoStmtClass: {
      // If the loop body is an expression rather than a compound statement,
      // it will be bad if we mark it as live at the terminator of the loop
      // (i.e., immediately after the condition expression).
      AddLiveStmt(val.liveStmts, LV.SSetFact, cast<DoStmt>(S)->getCond());
      return;
    }
    case Stmt::ForStmtClass: {
      // If the loop body is an expression rather than a compound statement,
      // it will be bad if we mark it as live at the terminator of the loop
      // (i.e., immediately after the condition expression).
      AddLiveStmt(val.liveStmts, LV.SSetFact, cast<ForStmt>(S)->getCond());
      return;
    }

  }

  for (Stmt *Child : S->children()) {
    if (Child)
      AddLiveStmt(val.liveStmts, LV.SSetFact, Child);
  }
}

static bool writeShouldKill(const VarDecl *VD) {
  return VD && !VD->getType()->isReferenceType() &&
    !isAlwaysAlive(VD);
}

void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) {
  if (B->isAssignmentOp()) {
    if (!LV.killAtAssign)
      return;

    // Assigning to a variable?
    Expr *LHS = B->getLHS()->IgnoreParens();

    if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
      const Decl* D = DR->getDecl();
      bool Killed = false;

      if (const BindingDecl* BD = dyn_cast<BindingDecl>(D)) {
        Killed = !BD->getType()->isReferenceType();
        if (Killed)
          val.liveBindings = LV.BSetFact.remove(val.liveBindings, BD);
      } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
        Killed = writeShouldKill(VD);
        if (Killed)
          val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);

      }

      if (Killed && observer)
        observer->observerKill(DR);
    }
  }
}

void TransferFunctions::VisitBlockExpr(BlockExpr *BE) {
  for (const VarDecl *VD :
       LV.analysisContext.getReferencedBlockVars(BE->getBlockDecl())) {
    if (isAlwaysAlive(VD))
      continue;
    val.liveDecls = LV.DSetFact.add(val.liveDecls, VD);
  }
}

void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *DR) {
  const Decl* D = DR->getDecl();
  bool InAssignment = LV.inAssignment[DR];
  if (const auto *BD = dyn_cast<BindingDecl>(D)) {
    if (!InAssignment)
      val.liveBindings = LV.BSetFact.add(val.liveBindings, BD);
  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
    if (!InAssignment && !isAlwaysAlive(VD))
      val.liveDecls = LV.DSetFact.add(val.liveDecls, VD);
  }
}

void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
  for (const auto *DI : DS->decls()) {
    if (const auto *DD = dyn_cast<DecompositionDecl>(DI)) {
      for (const auto *BD : DD->bindings())
        val.liveBindings = LV.BSetFact.remove(val.liveBindings, BD);
    } else if (const auto *VD = dyn_cast<VarDecl>(DI)) {
      if (!isAlwaysAlive(VD))
        val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
    }
  }
}

void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS) {
  // Kill the iteration variable.
  DeclRefExpr *DR = nullptr;
  const VarDecl *VD = nullptr;

  Stmt *element = OS->getElement();
  if (DeclStmt *DS = dyn_cast<DeclStmt>(element)) {
    VD = cast<VarDecl>(DS->getSingleDecl());
  }
  else if ((DR = dyn_cast<DeclRefExpr>(cast<Expr>(element)->IgnoreParens()))) {
    VD = cast<VarDecl>(DR->getDecl());
  }

  if (VD) {
    val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD);
    if (observer && DR)
      observer->observerKill(DR);
  }
}

void TransferFunctions::
VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE)
{
  // While sizeof(var) doesn't technically extend the liveness of 'var', it
  // does extent the liveness of metadata if 'var' is a VariableArrayType.
  // We handle that special case here.
  if (UE->getKind() != UETT_SizeOf || UE->isArgumentType())
    return;

  const Expr *subEx = UE->getArgumentExpr();
  if (subEx->getType()->isVariableArrayType()) {
    assert(subEx->isLValue());
    val.liveStmts = LV.SSetFact.add(val.liveStmts, subEx->IgnoreParens());
  }
}

void TransferFunctions::VisitUnaryOperator(UnaryOperator *UO) {
  // Treat ++/-- as a kill.
  // Note we don't actually have to do anything if we don't have an observer,
  // since a ++/-- acts as both a kill and a "use".
  if (!observer)
    return;

  switch (UO->getOpcode()) {
  default:
    return;
  case UO_PostInc:
  case UO_PostDec:
  case UO_PreInc:
  case UO_PreDec:
    break;
  }

  if (auto *DR = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
    const Decl *D = DR->getDecl();
    if (isa<VarDecl>(D) || isa<BindingDecl>(D)) {
      // Treat ++/-- as a kill.
      observer->observerKill(DR);
    }
  }
}

LiveVariables::LivenessValues
LiveVariablesImpl::runOnBlock(const CFGBlock *block,
                              LiveVariables::LivenessValues val,
                              LiveVariables::Observer *obs) {

  TransferFunctions TF(*this, val, obs, block);

  // Visit the terminator (if any).
  if (const Stmt *term = block->getTerminatorStmt())
    TF.Visit(const_cast<Stmt*>(term));

  // Apply the transfer function for all Stmts in the block.
  for (CFGBlock::const_reverse_iterator it = block->rbegin(),
       ei = block->rend(); it != ei; ++it) {
    const CFGElement &elem = *it;

    if (Optional<CFGAutomaticObjDtor> Dtor =
            elem.getAs<CFGAutomaticObjDtor>()) {
      val.liveDecls = DSetFact.add(val.liveDecls, Dtor->getVarDecl());
      continue;
    }

    if (!elem.getAs<CFGStmt>())
      continue;

    const Stmt *S = elem.castAs<CFGStmt>().getStmt();
    TF.Visit(const_cast<Stmt*>(S));
    stmtsToLiveness[S] = val;
  }
  return val;
}

void LiveVariables::runOnAllBlocks(LiveVariables::Observer &obs) {
  const CFG *cfg = getImpl(impl).analysisContext.getCFG();
  for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it)
    getImpl(impl).runOnBlock(*it, getImpl(impl).blocksEndToLiveness[*it], &obs);
}

LiveVariables::LiveVariables(void *im) : impl(im) {}

LiveVariables::~LiveVariables() {
  delete (LiveVariablesImpl*) impl;
}

LiveVariables *
LiveVariables::computeLiveness(AnalysisDeclContext &AC,
                                 bool killAtAssign) {

  // No CFG?  Bail out.
  CFG *cfg = AC.getCFG();
  if (!cfg)
    return nullptr;

  // The analysis currently has scalability issues for very large CFGs.
  // Bail out if it looks too large.
  if (cfg->getNumBlockIDs() > 300000)
    return nullptr;

  LiveVariablesImpl *LV = new LiveVariablesImpl(AC, killAtAssign);

  // Construct the dataflow worklist.  Enqueue the exit block as the
  // start of the analysis.
  DataflowWorklist worklist(*cfg, AC);
  llvm::BitVector everAnalyzedBlock(cfg->getNumBlockIDs());

  // FIXME: we should enqueue using post order.
  for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) {
    const CFGBlock *block = *it;
    worklist.enqueueBlock(block);

    // FIXME: Scan for DeclRefExprs using in the LHS of an assignment.
    // We need to do this because we lack context in the reverse analysis
    // to determine if a DeclRefExpr appears in such a context, and thus
    // doesn't constitute a "use".
    if (killAtAssign)
      for (CFGBlock::const_iterator bi = block->begin(), be = block->end();
           bi != be; ++bi) {
        if (Optional<CFGStmt> cs = bi->getAs<CFGStmt>()) {
          const Stmt* stmt = cs->getStmt();
          if (const auto *BO = dyn_cast<BinaryOperator>(stmt)) {
            if (BO->getOpcode() == BO_Assign) {
              if (const auto *DR =
                    dyn_cast<DeclRefExpr>(BO->getLHS()->IgnoreParens())) {
                LV->inAssignment[DR] = 1;
              }
            }
          }
        }
      }
  }

  while (const CFGBlock *block = worklist.dequeue()) {
    // Determine if the block's end value has changed.  If not, we
    // have nothing left to do for this block.
    LivenessValues &prevVal = LV->blocksEndToLiveness[block];

    // Merge the values of all successor blocks.
    LivenessValues val;
    for (CFGBlock::const_succ_iterator it = block->succ_begin(),
                                       ei = block->succ_end(); it != ei; ++it) {
      if (const CFGBlock *succ = *it) {
        val = LV->merge(val, LV->blocksBeginToLiveness[succ]);
      }
    }

    if (!everAnalyzedBlock[block->getBlockID()])
      everAnalyzedBlock[block->getBlockID()] = true;
    else if (prevVal.equals(val))
      continue;

    prevVal = val;

    // Update the dataflow value for the start of this block.
    LV->blocksBeginToLiveness[block] = LV->runOnBlock(block, val);

    // Enqueue the value to the predecessors.
    worklist.enqueuePredecessors(block);
  }

  return new LiveVariables(LV);
}

void LiveVariables::dumpBlockLiveness(const SourceManager &M) {
  getImpl(impl).dumpBlockLiveness(M);
}

void LiveVariablesImpl::dumpBlockLiveness(const SourceManager &M) {
  std::vector<const CFGBlock *> vec;
  for (llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues>::iterator
       it = blocksEndToLiveness.begin(), ei = blocksEndToLiveness.end();
       it != ei; ++it) {
    vec.push_back(it->first);
  }
  llvm::sort(vec, [](const CFGBlock *A, const CFGBlock *B) {
    return A->getBlockID() < B->getBlockID();
  });

  std::vector<const VarDecl*> declVec;

  for (std::vector<const CFGBlock *>::iterator
        it = vec.begin(), ei = vec.end(); it != ei; ++it) {
    llvm::errs() << "\n[ B" << (*it)->getBlockID()
                 << " (live variables at block exit) ]\n";

    LiveVariables::LivenessValues vals = blocksEndToLiveness[*it];
    declVec.clear();

    for (llvm::ImmutableSet<const VarDecl *>::iterator si =
          vals.liveDecls.begin(),
          se = vals.liveDecls.end(); si != se; ++si) {
      declVec.push_back(*si);
    }

    llvm::sort(declVec, [](const Decl *A, const Decl *B) {
      return A->getBeginLoc() < B->getBeginLoc();
    });

    for (std::vector<const VarDecl*>::iterator di = declVec.begin(),
         de = declVec.end(); di != de; ++di) {
      llvm::errs() << " " << (*di)->getDeclName().getAsString()
                   << " <";
      (*di)->getLocation().print(llvm::errs(), M);
      llvm::errs() << ">\n";
    }
  }
  llvm::errs() << "\n";
}

void LiveVariables::dumpStmtLiveness(const SourceManager &M) {
  getImpl(impl).dumpStmtLiveness(M);
}

void LiveVariablesImpl::dumpStmtLiveness(const SourceManager &M) {
  // Don't iterate over blockEndsToLiveness directly because it's not sorted.
  for (auto I : *analysisContext.getCFG()) {

    llvm::errs() << "\n[ B" << I->getBlockID()
                 << " (live statements at block exit) ]\n";
    for (auto S : blocksEndToLiveness[I].liveStmts) {
      llvm::errs() << "\n";
      S->dump();
    }
    llvm::errs() << "\n";
  }
}

const void *LiveVariables::getTag() { static int x; return &x; }
const void *RelaxedLiveVariables::getTag() { static int x; return &x; }