SHA1.cpp
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//====- SHA1.cpp - Private copy of the SHA1 implementation ---*- C++ -* ======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This code is taken from public domain
// (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c and
// http://cvsweb.netbsd.org/bsdweb.cgi/src/common/lib/libc/hash/sha1/sha1.c?rev=1.6)
// and modified by wrapping it in a C++ interface for LLVM,
// and removing unnecessary code.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/SHA1.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Host.h"
using namespace llvm;
#include <stdint.h>
#include <string.h>
#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN
#define SHA_BIG_ENDIAN
#endif
static inline uint32_t rol(uint32_t Number, int Bits) {
return (Number << Bits) | (Number >> (32 - Bits));
}
static inline uint32_t blk0(uint32_t *Buf, int I) { return Buf[I]; }
static inline uint32_t blk(uint32_t *Buf, int I) {
Buf[I & 15] = rol(Buf[(I + 13) & 15] ^ Buf[(I + 8) & 15] ^ Buf[(I + 2) & 15] ^
Buf[I & 15],
1);
return Buf[I & 15];
}
static inline void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
uint32_t &E, int I, uint32_t *Buf) {
E += ((B & (C ^ D)) ^ D) + blk0(Buf, I) + 0x5A827999 + rol(A, 5);
B = rol(B, 30);
}
static inline void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
uint32_t &E, int I, uint32_t *Buf) {
E += ((B & (C ^ D)) ^ D) + blk(Buf, I) + 0x5A827999 + rol(A, 5);
B = rol(B, 30);
}
static inline void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
uint32_t &E, int I, uint32_t *Buf) {
E += (B ^ C ^ D) + blk(Buf, I) + 0x6ED9EBA1 + rol(A, 5);
B = rol(B, 30);
}
static inline void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
uint32_t &E, int I, uint32_t *Buf) {
E += (((B | C) & D) | (B & C)) + blk(Buf, I) + 0x8F1BBCDC + rol(A, 5);
B = rol(B, 30);
}
static inline void r4(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D,
uint32_t &E, int I, uint32_t *Buf) {
E += (B ^ C ^ D) + blk(Buf, I) + 0xCA62C1D6 + rol(A, 5);
B = rol(B, 30);
}
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
#define SEED_0 0x67452301
#define SEED_1 0xefcdab89
#define SEED_2 0x98badcfe
#define SEED_3 0x10325476
#define SEED_4 0xc3d2e1f0
void SHA1::init() {
InternalState.State[0] = SEED_0;
InternalState.State[1] = SEED_1;
InternalState.State[2] = SEED_2;
InternalState.State[3] = SEED_3;
InternalState.State[4] = SEED_4;
InternalState.ByteCount = 0;
InternalState.BufferOffset = 0;
}
void SHA1::hashBlock() {
uint32_t A = InternalState.State[0];
uint32_t B = InternalState.State[1];
uint32_t C = InternalState.State[2];
uint32_t D = InternalState.State[3];
uint32_t E = InternalState.State[4];
// 4 rounds of 20 operations each. Loop unrolled.
r0(A, B, C, D, E, 0, InternalState.Buffer.L);
r0(E, A, B, C, D, 1, InternalState.Buffer.L);
r0(D, E, A, B, C, 2, InternalState.Buffer.L);
r0(C, D, E, A, B, 3, InternalState.Buffer.L);
r0(B, C, D, E, A, 4, InternalState.Buffer.L);
r0(A, B, C, D, E, 5, InternalState.Buffer.L);
r0(E, A, B, C, D, 6, InternalState.Buffer.L);
r0(D, E, A, B, C, 7, InternalState.Buffer.L);
r0(C, D, E, A, B, 8, InternalState.Buffer.L);
r0(B, C, D, E, A, 9, InternalState.Buffer.L);
r0(A, B, C, D, E, 10, InternalState.Buffer.L);
r0(E, A, B, C, D, 11, InternalState.Buffer.L);
r0(D, E, A, B, C, 12, InternalState.Buffer.L);
r0(C, D, E, A, B, 13, InternalState.Buffer.L);
r0(B, C, D, E, A, 14, InternalState.Buffer.L);
r0(A, B, C, D, E, 15, InternalState.Buffer.L);
r1(E, A, B, C, D, 16, InternalState.Buffer.L);
r1(D, E, A, B, C, 17, InternalState.Buffer.L);
r1(C, D, E, A, B, 18, InternalState.Buffer.L);
r1(B, C, D, E, A, 19, InternalState.Buffer.L);
r2(A, B, C, D, E, 20, InternalState.Buffer.L);
r2(E, A, B, C, D, 21, InternalState.Buffer.L);
r2(D, E, A, B, C, 22, InternalState.Buffer.L);
r2(C, D, E, A, B, 23, InternalState.Buffer.L);
r2(B, C, D, E, A, 24, InternalState.Buffer.L);
r2(A, B, C, D, E, 25, InternalState.Buffer.L);
r2(E, A, B, C, D, 26, InternalState.Buffer.L);
r2(D, E, A, B, C, 27, InternalState.Buffer.L);
r2(C, D, E, A, B, 28, InternalState.Buffer.L);
r2(B, C, D, E, A, 29, InternalState.Buffer.L);
r2(A, B, C, D, E, 30, InternalState.Buffer.L);
r2(E, A, B, C, D, 31, InternalState.Buffer.L);
r2(D, E, A, B, C, 32, InternalState.Buffer.L);
r2(C, D, E, A, B, 33, InternalState.Buffer.L);
r2(B, C, D, E, A, 34, InternalState.Buffer.L);
r2(A, B, C, D, E, 35, InternalState.Buffer.L);
r2(E, A, B, C, D, 36, InternalState.Buffer.L);
r2(D, E, A, B, C, 37, InternalState.Buffer.L);
r2(C, D, E, A, B, 38, InternalState.Buffer.L);
r2(B, C, D, E, A, 39, InternalState.Buffer.L);
r3(A, B, C, D, E, 40, InternalState.Buffer.L);
r3(E, A, B, C, D, 41, InternalState.Buffer.L);
r3(D, E, A, B, C, 42, InternalState.Buffer.L);
r3(C, D, E, A, B, 43, InternalState.Buffer.L);
r3(B, C, D, E, A, 44, InternalState.Buffer.L);
r3(A, B, C, D, E, 45, InternalState.Buffer.L);
r3(E, A, B, C, D, 46, InternalState.Buffer.L);
r3(D, E, A, B, C, 47, InternalState.Buffer.L);
r3(C, D, E, A, B, 48, InternalState.Buffer.L);
r3(B, C, D, E, A, 49, InternalState.Buffer.L);
r3(A, B, C, D, E, 50, InternalState.Buffer.L);
r3(E, A, B, C, D, 51, InternalState.Buffer.L);
r3(D, E, A, B, C, 52, InternalState.Buffer.L);
r3(C, D, E, A, B, 53, InternalState.Buffer.L);
r3(B, C, D, E, A, 54, InternalState.Buffer.L);
r3(A, B, C, D, E, 55, InternalState.Buffer.L);
r3(E, A, B, C, D, 56, InternalState.Buffer.L);
r3(D, E, A, B, C, 57, InternalState.Buffer.L);
r3(C, D, E, A, B, 58, InternalState.Buffer.L);
r3(B, C, D, E, A, 59, InternalState.Buffer.L);
r4(A, B, C, D, E, 60, InternalState.Buffer.L);
r4(E, A, B, C, D, 61, InternalState.Buffer.L);
r4(D, E, A, B, C, 62, InternalState.Buffer.L);
r4(C, D, E, A, B, 63, InternalState.Buffer.L);
r4(B, C, D, E, A, 64, InternalState.Buffer.L);
r4(A, B, C, D, E, 65, InternalState.Buffer.L);
r4(E, A, B, C, D, 66, InternalState.Buffer.L);
r4(D, E, A, B, C, 67, InternalState.Buffer.L);
r4(C, D, E, A, B, 68, InternalState.Buffer.L);
r4(B, C, D, E, A, 69, InternalState.Buffer.L);
r4(A, B, C, D, E, 70, InternalState.Buffer.L);
r4(E, A, B, C, D, 71, InternalState.Buffer.L);
r4(D, E, A, B, C, 72, InternalState.Buffer.L);
r4(C, D, E, A, B, 73, InternalState.Buffer.L);
r4(B, C, D, E, A, 74, InternalState.Buffer.L);
r4(A, B, C, D, E, 75, InternalState.Buffer.L);
r4(E, A, B, C, D, 76, InternalState.Buffer.L);
r4(D, E, A, B, C, 77, InternalState.Buffer.L);
r4(C, D, E, A, B, 78, InternalState.Buffer.L);
r4(B, C, D, E, A, 79, InternalState.Buffer.L);
InternalState.State[0] += A;
InternalState.State[1] += B;
InternalState.State[2] += C;
InternalState.State[3] += D;
InternalState.State[4] += E;
}
void SHA1::addUncounted(uint8_t Data) {
#ifdef SHA_BIG_ENDIAN
InternalState.Buffer.C[InternalState.BufferOffset] = Data;
#else
InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data;
#endif
InternalState.BufferOffset++;
if (InternalState.BufferOffset == BLOCK_LENGTH) {
hashBlock();
InternalState.BufferOffset = 0;
}
}
void SHA1::writebyte(uint8_t Data) {
++InternalState.ByteCount;
addUncounted(Data);
}
void SHA1::update(ArrayRef<uint8_t> Data) {
InternalState.ByteCount += Data.size();
// Finish the current block.
if (InternalState.BufferOffset > 0) {
const size_t Remainder = std::min<size_t>(
Data.size(), BLOCK_LENGTH - InternalState.BufferOffset);
for (size_t I = 0; I < Remainder; ++I)
addUncounted(Data[I]);
Data = Data.drop_front(Remainder);
}
// Fast buffer filling for large inputs.
while (Data.size() >= BLOCK_LENGTH) {
assert(InternalState.BufferOffset == 0);
assert(BLOCK_LENGTH % 4 == 0);
constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4;
for (size_t I = 0; I < BLOCK_LENGTH_32; ++I)
InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]);
hashBlock();
Data = Data.drop_front(BLOCK_LENGTH);
}
// Finish the remainder.
for (uint8_t C : Data)
addUncounted(C);
}
void SHA1::pad() {
// Implement SHA-1 padding (fips180-2 5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
addUncounted(0x80);
while (InternalState.BufferOffset != 56)
addUncounted(0x00);
// Append length in the last 8 bytes
addUncounted(0); // We're only using 32 bit lengths
addUncounted(0); // But SHA-1 supports 64 bit lengths
addUncounted(0); // So zero pad the top bits
addUncounted(InternalState.ByteCount >> 29); // Shifting to multiply by 8
addUncounted(InternalState.ByteCount >>
21); // as SHA-1 supports bitstreams as well as
addUncounted(InternalState.ByteCount >> 13); // byte.
addUncounted(InternalState.ByteCount >> 5);
addUncounted(InternalState.ByteCount << 3);
}
StringRef SHA1::final() {
// Pad to complete the last block
pad();
#ifdef SHA_BIG_ENDIAN
// Just copy the current state
for (int i = 0; i < 5; i++) {
HashResult[i] = InternalState.State[i];
}
#else
// Swap byte order back
for (int i = 0; i < 5; i++) {
HashResult[i] = (((InternalState.State[i]) << 24) & 0xff000000) |
(((InternalState.State[i]) << 8) & 0x00ff0000) |
(((InternalState.State[i]) >> 8) & 0x0000ff00) |
(((InternalState.State[i]) >> 24) & 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return StringRef((char *)HashResult, HASH_LENGTH);
}
StringRef SHA1::result() {
auto StateToRestore = InternalState;
auto Hash = final();
// Restore the state
InternalState = StateToRestore;
// Return pointer to hash (20 characters)
return Hash;
}
std::array<uint8_t, 20> SHA1::hash(ArrayRef<uint8_t> Data) {
SHA1 Hash;
Hash.update(Data);
StringRef S = Hash.final();
std::array<uint8_t, 20> Arr;
memcpy(Arr.data(), S.data(), S.size());
return Arr;
}