TailDuplicator.cpp 36.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
//===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This utility class duplicates basic blocks ending in unconditional branches
// into the tails of their predecessors.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "tailduplication"

STATISTIC(NumTails, "Number of tails duplicated");
STATISTIC(NumTailDups, "Number of tail duplicated blocks");
STATISTIC(NumTailDupAdded,
          "Number of instructions added due to tail duplication");
STATISTIC(NumTailDupRemoved,
          "Number of instructions removed due to tail duplication");
STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumAddedPHIs, "Number of phis added");

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDuplicateSize(
    "tail-dup-size",
    cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
    cl::Hidden);

static cl::opt<unsigned> TailDupIndirectBranchSize(
    "tail-dup-indirect-size",
    cl::desc("Maximum instructions to consider tail duplicating blocks that "
             "end with indirect branches."), cl::init(20),
    cl::Hidden);

static cl::opt<bool>
    TailDupVerify("tail-dup-verify",
                  cl::desc("Verify sanity of PHI instructions during taildup"),
                  cl::init(false), cl::Hidden);

static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
                                      cl::Hidden);

void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
                            const MachineBranchProbabilityInfo *MBPIin,
                            const MachineBlockFrequencyInfo *MBFIin,
                            ProfileSummaryInfo *PSIin,
                            bool LayoutModeIn, unsigned TailDupSizeIn) {
  MF = &MFin;
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  MRI = &MF->getRegInfo();
  MMI = &MF->getMMI();
  MBPI = MBPIin;
  MBFI = MBFIin;
  PSI = PSIin;
  TailDupSize = TailDupSizeIn;

  assert(MBPI != nullptr && "Machine Branch Probability Info required");

  LayoutMode = LayoutModeIn;
  this->PreRegAlloc = PreRegAlloc;
}

static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
  for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
    MachineBasicBlock *MBB = &*I;
    SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
                                                 MBB->pred_end());
    MachineBasicBlock::iterator MI = MBB->begin();
    while (MI != MBB->end()) {
      if (!MI->isPHI())
        break;
      for (MachineBasicBlock *PredBB : Preds) {
        bool Found = false;
        for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
          MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
          if (PHIBB == PredBB) {
            Found = true;
            break;
          }
        }
        if (!Found) {
          dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
                 << *MI;
          dbgs() << "  missing input from predecessor "
                 << printMBBReference(*PredBB) << '\n';
          llvm_unreachable(nullptr);
        }
      }

      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
        MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
        if (CheckExtra && !Preds.count(PHIBB)) {
          dbgs() << "Warning: malformed PHI in " << printMBBReference(*MBB)
                 << ": " << *MI;
          dbgs() << "  extra input from predecessor "
                 << printMBBReference(*PHIBB) << '\n';
          llvm_unreachable(nullptr);
        }
        if (PHIBB->getNumber() < 0) {
          dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
                 << *MI;
          dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
          llvm_unreachable(nullptr);
        }
      }
      ++MI;
    }
  }
}

/// Tail duplicate the block and cleanup.
/// \p IsSimple - return value of isSimpleBB
/// \p MBB - block to be duplicated
/// \p ForcedLayoutPred - If non-null, treat this block as the layout
///     predecessor, instead of using the ordering in MF
/// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
///     all Preds that received a copy of \p MBB.
/// \p RemovalCallback - if non-null, called just before MBB is deleted.
bool TailDuplicator::tailDuplicateAndUpdate(
    bool IsSimple, MachineBasicBlock *MBB,
    MachineBasicBlock *ForcedLayoutPred,
    SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
    function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
  // Save the successors list.
  SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
                                               MBB->succ_end());

  SmallVector<MachineBasicBlock *, 8> TDBBs;
  SmallVector<MachineInstr *, 16> Copies;
  if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, TDBBs, Copies))
    return false;

  ++NumTails;

  SmallVector<MachineInstr *, 8> NewPHIs;
  MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);

  // TailBB's immediate successors are now successors of those predecessors
  // which duplicated TailBB. Add the predecessors as sources to the PHI
  // instructions.
  bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
  if (PreRegAlloc)
    updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);

  // If it is dead, remove it.
  if (isDead) {
    NumTailDupRemoved += MBB->size();
    removeDeadBlock(MBB, RemovalCallback);
    ++NumDeadBlocks;
  }

  // Update SSA form.
  if (!SSAUpdateVRs.empty()) {
    for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
      unsigned VReg = SSAUpdateVRs[i];
      SSAUpdate.Initialize(VReg);

      // If the original definition is still around, add it as an available
      // value.
      MachineInstr *DefMI = MRI->getVRegDef(VReg);
      MachineBasicBlock *DefBB = nullptr;
      if (DefMI) {
        DefBB = DefMI->getParent();
        SSAUpdate.AddAvailableValue(DefBB, VReg);
      }

      // Add the new vregs as available values.
      DenseMap<unsigned, AvailableValsTy>::iterator LI =
          SSAUpdateVals.find(VReg);
      for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
        MachineBasicBlock *SrcBB = LI->second[j].first;
        unsigned SrcReg = LI->second[j].second;
        SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
      }

      // Rewrite uses that are outside of the original def's block.
      MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
      while (UI != MRI->use_end()) {
        MachineOperand &UseMO = *UI;
        MachineInstr *UseMI = UseMO.getParent();
        ++UI;
        if (UseMI->isDebugValue()) {
          // SSAUpdate can replace the use with an undef. That creates
          // a debug instruction that is a kill.
          // FIXME: Should it SSAUpdate job to delete debug instructions
          // instead of replacing the use with undef?
          UseMI->eraseFromParent();
          continue;
        }
        if (UseMI->getParent() == DefBB && !UseMI->isPHI())
          continue;
        SSAUpdate.RewriteUse(UseMO);
      }
    }

    SSAUpdateVRs.clear();
    SSAUpdateVals.clear();
  }

  // Eliminate some of the copies inserted by tail duplication to maintain
  // SSA form.
  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    MachineInstr *Copy = Copies[i];
    if (!Copy->isCopy())
      continue;
    Register Dst = Copy->getOperand(0).getReg();
    Register Src = Copy->getOperand(1).getReg();
    if (MRI->hasOneNonDBGUse(Src) &&
        MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
      // Copy is the only use. Do trivial copy propagation here.
      MRI->replaceRegWith(Dst, Src);
      Copy->eraseFromParent();
    }
  }

  if (NewPHIs.size())
    NumAddedPHIs += NewPHIs.size();

  if (DuplicatedPreds)
    *DuplicatedPreds = std::move(TDBBs);

  return true;
}

/// Look for small blocks that are unconditionally branched to and do not fall
/// through. Tail-duplicate their instructions into their predecessors to
/// eliminate (dynamic) branches.
bool TailDuplicator::tailDuplicateBlocks() {
  bool MadeChange = false;

  if (PreRegAlloc && TailDupVerify) {
    LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
    VerifyPHIs(*MF, true);
  }

  for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
    MachineBasicBlock *MBB = &*I++;

    if (NumTails == TailDupLimit)
      break;

    bool IsSimple = isSimpleBB(MBB);

    if (!shouldTailDuplicate(IsSimple, *MBB))
      continue;

    MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
  }

  if (PreRegAlloc && TailDupVerify)
    VerifyPHIs(*MF, false);

  return MadeChange;
}

static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB,
                         const MachineRegisterInfo *MRI) {
  for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
    if (UseMI.isDebugValue())
      continue;
    if (UseMI.getParent() != BB)
      return true;
  }
  return false;
}

static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
    if (MI->getOperand(i + 1).getMBB() == SrcBB)
      return i;
  return 0;
}

// Remember which registers are used by phis in this block. This is
// used to determine which registers are liveout while modifying the
// block (which is why we need to copy the information).
static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
                              DenseSet<unsigned> *UsedByPhi) {
  for (const auto &MI : BB) {
    if (!MI.isPHI())
      break;
    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
      Register SrcReg = MI.getOperand(i).getReg();
      UsedByPhi->insert(SrcReg);
    }
  }
}

/// Add a definition and source virtual registers pair for SSA update.
void TailDuplicator::addSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
                                       MachineBasicBlock *BB) {
  DenseMap<unsigned, AvailableValsTy>::iterator LI =
      SSAUpdateVals.find(OrigReg);
  if (LI != SSAUpdateVals.end())
    LI->second.push_back(std::make_pair(BB, NewReg));
  else {
    AvailableValsTy Vals;
    Vals.push_back(std::make_pair(BB, NewReg));
    SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
    SSAUpdateVRs.push_back(OrigReg);
  }
}

/// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
/// source register that's contributed by PredBB and update SSA update map.
void TailDuplicator::processPHI(
    MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
    DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
    SmallVectorImpl<std::pair<unsigned, RegSubRegPair>> &Copies,
    const DenseSet<unsigned> &RegsUsedByPhi, bool Remove) {
  Register DefReg = MI->getOperand(0).getReg();
  unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
  assert(SrcOpIdx && "Unable to find matching PHI source?");
  Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
  unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
  const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
  LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));

  // Insert a copy from source to the end of the block. The def register is the
  // available value liveout of the block.
  Register NewDef = MRI->createVirtualRegister(RC);
  Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
  if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
    addSSAUpdateEntry(DefReg, NewDef, PredBB);

  if (!Remove)
    return;

  // Remove PredBB from the PHI node.
  MI->RemoveOperand(SrcOpIdx + 1);
  MI->RemoveOperand(SrcOpIdx);
  if (MI->getNumOperands() == 1)
    MI->eraseFromParent();
}

/// Duplicate a TailBB instruction to PredBB and update
/// the source operands due to earlier PHI translation.
void TailDuplicator::duplicateInstruction(
    MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
    DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
    const DenseSet<unsigned> &UsedByPhi) {
  // Allow duplication of CFI instructions.
  if (MI->isCFIInstruction()) {
    BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
      TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
      MI->getOperand(0).getCFIIndex());
    return;
  }
  MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
  if (PreRegAlloc) {
    for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = NewMI.getOperand(i);
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (!Register::isVirtualRegister(Reg))
        continue;
      if (MO.isDef()) {
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
        Register NewReg = MRI->createVirtualRegister(RC);
        MO.setReg(NewReg);
        LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
        if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
          addSSAUpdateEntry(Reg, NewReg, PredBB);
      } else {
        auto VI = LocalVRMap.find(Reg);
        if (VI != LocalVRMap.end()) {
          // Need to make sure that the register class of the mapped register
          // will satisfy the constraints of the class of the register being
          // replaced.
          auto *OrigRC = MRI->getRegClass(Reg);
          auto *MappedRC = MRI->getRegClass(VI->second.Reg);
          const TargetRegisterClass *ConstrRC;
          if (VI->second.SubReg != 0) {
            ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
                                                     VI->second.SubReg);
            if (ConstrRC) {
              // The actual constraining (as in "find appropriate new class")
              // is done by getMatchingSuperRegClass, so now we only need to
              // change the class of the mapped register.
              MRI->setRegClass(VI->second.Reg, ConstrRC);
            }
          } else {
            // For mapped registers that do not have sub-registers, simply
            // restrict their class to match the original one.
            ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
          }

          if (ConstrRC) {
            // If the class constraining succeeded, we can simply replace
            // the old register with the mapped one.
            MO.setReg(VI->second.Reg);
            // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
            // sub-register, we need to compose the sub-register indices.
            MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
                                                   VI->second.SubReg));
          } else {
            // The direct replacement is not possible, due to failing register
            // class constraints. An explicit COPY is necessary. Create one
            // that can be reused
            auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
            if (NewRC == nullptr)
              NewRC = OrigRC;
            Register NewReg = MRI->createVirtualRegister(NewRC);
            BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
                    TII->get(TargetOpcode::COPY), NewReg)
                .addReg(VI->second.Reg, 0, VI->second.SubReg);
            LocalVRMap.erase(VI);
            LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
            MO.setReg(NewReg);
            // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
            // is equivalent to the whole register Reg. Hence, Reg:subreg
            // is same as NewReg:subreg, so keep the sub-register index
            // unchanged.
          }
          // Clear any kill flags from this operand.  The new register could
          // have uses after this one, so kills are not valid here.
          MO.setIsKill(false);
        }
      }
    }
  }
}

/// After FromBB is tail duplicated into its predecessor blocks, the successors
/// have gained new predecessors. Update the PHI instructions in them
/// accordingly.
void TailDuplicator::updateSuccessorsPHIs(
    MachineBasicBlock *FromBB, bool isDead,
    SmallVectorImpl<MachineBasicBlock *> &TDBBs,
    SmallSetVector<MachineBasicBlock *, 8> &Succs) {
  for (MachineBasicBlock *SuccBB : Succs) {
    for (MachineInstr &MI : *SuccBB) {
      if (!MI.isPHI())
        break;
      MachineInstrBuilder MIB(*FromBB->getParent(), MI);
      unsigned Idx = 0;
      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
        MachineOperand &MO = MI.getOperand(i + 1);
        if (MO.getMBB() == FromBB) {
          Idx = i;
          break;
        }
      }

      assert(Idx != 0);
      MachineOperand &MO0 = MI.getOperand(Idx);
      Register Reg = MO0.getReg();
      if (isDead) {
        // Folded into the previous BB.
        // There could be duplicate phi source entries. FIXME: Should sdisel
        // or earlier pass fixed this?
        for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
          MachineOperand &MO = MI.getOperand(i + 1);
          if (MO.getMBB() == FromBB) {
            MI.RemoveOperand(i + 1);
            MI.RemoveOperand(i);
          }
        }
      } else
        Idx = 0;

      // If Idx is set, the operands at Idx and Idx+1 must be removed.
      // We reuse the location to avoid expensive RemoveOperand calls.

      DenseMap<unsigned, AvailableValsTy>::iterator LI =
          SSAUpdateVals.find(Reg);
      if (LI != SSAUpdateVals.end()) {
        // This register is defined in the tail block.
        for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
          MachineBasicBlock *SrcBB = LI->second[j].first;
          // If we didn't duplicate a bb into a particular predecessor, we
          // might still have added an entry to SSAUpdateVals to correcly
          // recompute SSA. If that case, avoid adding a dummy extra argument
          // this PHI.
          if (!SrcBB->isSuccessor(SuccBB))
            continue;

          unsigned SrcReg = LI->second[j].second;
          if (Idx != 0) {
            MI.getOperand(Idx).setReg(SrcReg);
            MI.getOperand(Idx + 1).setMBB(SrcBB);
            Idx = 0;
          } else {
            MIB.addReg(SrcReg).addMBB(SrcBB);
          }
        }
      } else {
        // Live in tail block, must also be live in predecessors.
        for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
          MachineBasicBlock *SrcBB = TDBBs[j];
          if (Idx != 0) {
            MI.getOperand(Idx).setReg(Reg);
            MI.getOperand(Idx + 1).setMBB(SrcBB);
            Idx = 0;
          } else {
            MIB.addReg(Reg).addMBB(SrcBB);
          }
        }
      }
      if (Idx != 0) {
        MI.RemoveOperand(Idx + 1);
        MI.RemoveOperand(Idx);
      }
    }
  }
}

/// Determine if it is profitable to duplicate this block.
bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
                                         MachineBasicBlock &TailBB) {
  // When doing tail-duplication during layout, the block ordering is in flux,
  // so canFallThrough returns a result based on incorrect information and
  // should just be ignored.
  if (!LayoutMode && TailBB.canFallThrough())
    return false;

  // Don't try to tail-duplicate single-block loops.
  if (TailBB.isSuccessor(&TailBB))
    return false;

  // Set the limit on the cost to duplicate. When optimizing for size,
  // duplicate only one, because one branch instruction can be eliminated to
  // compensate for the duplication.
  unsigned MaxDuplicateCount;
  bool OptForSize = MF->getFunction().hasOptSize() ||
                    llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
  if (TailDupSize == 0)
    MaxDuplicateCount = TailDuplicateSize;
  else
    MaxDuplicateCount = TailDupSize;
  if (OptForSize)
    MaxDuplicateCount = 1;

  // If the block to be duplicated ends in an unanalyzable fallthrough, don't
  // duplicate it.
  // A similar check is necessary in MachineBlockPlacement to make sure pairs of
  // blocks with unanalyzable fallthrough get layed out contiguously.
  MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
  SmallVector<MachineOperand, 4> PredCond;
  if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
      TailBB.canFallThrough())
    return false;

  // If the target has hardware branch prediction that can handle indirect
  // branches, duplicating them can often make them predictable when there
  // are common paths through the code.  The limit needs to be high enough
  // to allow undoing the effects of tail merging and other optimizations
  // that rearrange the predecessors of the indirect branch.

  bool HasIndirectbr = false;
  if (!TailBB.empty())
    HasIndirectbr = TailBB.back().isIndirectBranch();

  if (HasIndirectbr && PreRegAlloc)
    MaxDuplicateCount = TailDupIndirectBranchSize;

  // Check the instructions in the block to determine whether tail-duplication
  // is invalid or unlikely to be profitable.
  unsigned InstrCount = 0;
  for (MachineInstr &MI : TailBB) {
    // Non-duplicable things shouldn't be tail-duplicated.
    // CFI instructions are marked as non-duplicable, because Darwin compact
    // unwind info emission can't handle multiple prologue setups. In case of
    // DWARF, allow them be duplicated, so that their existence doesn't prevent
    // tail duplication of some basic blocks, that would be duplicated otherwise.
    if (MI.isNotDuplicable() &&
        (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
        !MI.isCFIInstruction()))
      return false;

    // Convergent instructions can be duplicated only if doing so doesn't add
    // new control dependencies, which is what we're going to do here.
    if (MI.isConvergent())
      return false;

    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
    // A return may expand into a lot more instructions (e.g. reload of callee
    // saved registers) after PEI.
    if (PreRegAlloc && MI.isReturn())
      return false;

    // Avoid duplicating calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (PreRegAlloc && MI.isCall())
      return false;

    if (!MI.isPHI() && !MI.isMetaInstruction())
      InstrCount += 1;

    if (InstrCount > MaxDuplicateCount)
      return false;
  }

  // Check if any of the successors of TailBB has a PHI node in which the
  // value corresponding to TailBB uses a subregister.
  // If a phi node uses a register paired with a subregister, the actual
  // "value type" of the phi may differ from the type of the register without
  // any subregisters. Due to a bug, tail duplication may add a new operand
  // without a necessary subregister, producing an invalid code. This is
  // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
  // Disable tail duplication for this case for now, until the problem is
  // fixed.
  for (auto SB : TailBB.successors()) {
    for (auto &I : *SB) {
      if (!I.isPHI())
        break;
      unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
      assert(Idx != 0);
      MachineOperand &PU = I.getOperand(Idx);
      if (PU.getSubReg() != 0)
        return false;
    }
  }

  if (HasIndirectbr && PreRegAlloc)
    return true;

  if (IsSimple)
    return true;

  if (!PreRegAlloc)
    return true;

  return canCompletelyDuplicateBB(TailBB);
}

/// True if this BB has only one unconditional jump.
bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
  if (TailBB->succ_size() != 1)
    return false;
  if (TailBB->pred_empty())
    return false;
  MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr();
  if (I == TailBB->end())
    return true;
  return I->isUnconditionalBranch();
}

static bool bothUsedInPHI(const MachineBasicBlock &A,
                          const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
  for (MachineBasicBlock *BB : A.successors())
    if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
      return true;

  return false;
}

bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
  for (MachineBasicBlock *PredBB : BB.predecessors()) {
    if (PredBB->succ_size() > 1)
      return false;

    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
    SmallVector<MachineOperand, 4> PredCond;
    if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
      return false;

    if (!PredCond.empty())
      return false;
  }
  return true;
}

bool TailDuplicator::duplicateSimpleBB(
    MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
    const DenseSet<unsigned> &UsedByPhi,
    SmallVectorImpl<MachineInstr *> &Copies) {
  SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
                                            TailBB->succ_end());
  SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
                                            TailBB->pred_end());
  bool Changed = false;
  for (MachineBasicBlock *PredBB : Preds) {
    if (PredBB->hasEHPadSuccessor())
      continue;

    if (bothUsedInPHI(*PredBB, Succs))
      continue;

    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
    SmallVector<MachineOperand, 4> PredCond;
    if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
      continue;

    Changed = true;
    LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
                      << "From simple Succ: " << *TailBB);

    MachineBasicBlock *NewTarget = *TailBB->succ_begin();
    MachineBasicBlock *NextBB = PredBB->getNextNode();

    // Make PredFBB explicit.
    if (PredCond.empty())
      PredFBB = PredTBB;

    // Make fall through explicit.
    if (!PredTBB)
      PredTBB = NextBB;
    if (!PredFBB)
      PredFBB = NextBB;

    // Redirect
    if (PredFBB == TailBB)
      PredFBB = NewTarget;
    if (PredTBB == TailBB)
      PredTBB = NewTarget;

    // Make the branch unconditional if possible
    if (PredTBB == PredFBB) {
      PredCond.clear();
      PredFBB = nullptr;
    }

    // Avoid adding fall through branches.
    if (PredFBB == NextBB)
      PredFBB = nullptr;
    if (PredTBB == NextBB && PredFBB == nullptr)
      PredTBB = nullptr;

    auto DL = PredBB->findBranchDebugLoc();
    TII->removeBranch(*PredBB);

    if (!PredBB->isSuccessor(NewTarget))
      PredBB->replaceSuccessor(TailBB, NewTarget);
    else {
      PredBB->removeSuccessor(TailBB, true);
      assert(PredBB->succ_size() <= 1);
    }

    if (PredTBB)
      TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);

    TDBBs.push_back(PredBB);
  }
  return Changed;
}

bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
                                      MachineBasicBlock *PredBB) {
  // EH edges are ignored by analyzeBranch.
  if (PredBB->succ_size() > 1)
    return false;

  MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
  SmallVector<MachineOperand, 4> PredCond;
  if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
    return false;
  if (!PredCond.empty())
    return false;
  return true;
}

/// If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
/// \p IsSimple result of isSimpleBB
/// \p TailBB   Block to be duplicated.
/// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
///                      instead of the previous block in MF's order.
/// \p TDBBs             A vector to keep track of all blocks tail-duplicated
///                      into.
/// \p Copies            A vector of copy instructions inserted. Used later to
///                      walk all the inserted copies and remove redundant ones.
bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
                                   MachineBasicBlock *ForcedLayoutPred,
                                   SmallVectorImpl<MachineBasicBlock *> &TDBBs,
                                   SmallVectorImpl<MachineInstr *> &Copies) {
  LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
                    << '\n');

  DenseSet<unsigned> UsedByPhi;
  getRegsUsedByPHIs(*TailBB, &UsedByPhi);

  if (IsSimple)
    return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);

  // Iterate through all the unique predecessors and tail-duplicate this
  // block into them, if possible. Copying the list ahead of time also
  // avoids trouble with the predecessor list reallocating.
  bool Changed = false;
  SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
                                               TailBB->pred_end());
  for (MachineBasicBlock *PredBB : Preds) {
    assert(TailBB != PredBB &&
           "Single-block loop should have been rejected earlier!");

    if (!canTailDuplicate(TailBB, PredBB))
      continue;

    // Don't duplicate into a fall-through predecessor (at least for now).
    bool IsLayoutSuccessor = false;
    if (ForcedLayoutPred)
      IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
    else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
      IsLayoutSuccessor = true;
    if (IsLayoutSuccessor)
      continue;

    LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
                      << "From Succ: " << *TailBB);

    TDBBs.push_back(PredBB);

    // Remove PredBB's unconditional branch.
    TII->removeBranch(*PredBB);

    // Clone the contents of TailBB into PredBB.
    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
    for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
         I != E; /* empty */) {
      MachineInstr *MI = &*I;
      ++I;
      if (MI->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      } else {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
      }
    }
    appendCopies(PredBB, CopyInfos, Copies);

    NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch

    // Update the CFG.
    PredBB->removeSuccessor(PredBB->succ_begin());
    assert(PredBB->succ_empty() &&
           "TailDuplicate called on block with multiple successors!");
    for (MachineBasicBlock *Succ : TailBB->successors())
      PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));

    Changed = true;
    ++NumTailDups;
  }

  // If TailBB was duplicated into all its predecessors except for the prior
  // block, which falls through unconditionally, move the contents of this
  // block into the prior block.
  MachineBasicBlock *PrevBB = ForcedLayoutPred;
  if (!PrevBB)
    PrevBB = &*std::prev(TailBB->getIterator());
  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
  SmallVector<MachineOperand, 4> PriorCond;
  // This has to check PrevBB->succ_size() because EH edges are ignored by
  // analyzeBranch.
  if (PrevBB->succ_size() == 1 &&
      // Layout preds are not always CFG preds. Check.
      *PrevBB->succ_begin() == TailBB &&
      !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
      PriorCond.empty() &&
      (!PriorTBB || PriorTBB == TailBB) &&
      TailBB->pred_size() == 1 &&
      !TailBB->hasAddressTaken()) {
    LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
                      << "From MBB: " << *TailBB);
    // There may be a branch to the layout successor. This is unlikely but it
    // happens. The correct thing to do is to remove the branch before
    // duplicating the instructions in all cases.
    TII->removeBranch(*PrevBB);
    if (PreRegAlloc) {
      DenseMap<unsigned, RegSubRegPair> LocalVRMap;
      SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
      MachineBasicBlock::iterator I = TailBB->begin();
      // Process PHI instructions first.
      while (I != TailBB->end() && I->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        MachineInstr *MI = &*I++;
        processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      }

      // Now copy the non-PHI instructions.
      while (I != TailBB->end()) {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        MachineInstr *MI = &*I++;
        assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
        duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
        MI->eraseFromParent();
      }
      appendCopies(PrevBB, CopyInfos, Copies);
    } else {
      TII->removeBranch(*PrevBB);
      // No PHIs to worry about, just splice the instructions over.
      PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
    }
    PrevBB->removeSuccessor(PrevBB->succ_begin());
    assert(PrevBB->succ_empty());
    PrevBB->transferSuccessors(TailBB);
    TDBBs.push_back(PrevBB);
    Changed = true;
  }

  // If this is after register allocation, there are no phis to fix.
  if (!PreRegAlloc)
    return Changed;

  // If we made no changes so far, we are safe.
  if (!Changed)
    return Changed;

  // Handle the nasty case in that we duplicated a block that is part of a loop
  // into some but not all of its predecessors. For example:
  //    1 -> 2 <-> 3                 |
  //          \                      |
  //           \---> rest            |
  // if we duplicate 2 into 1 but not into 3, we end up with
  // 12 -> 3 <-> 2 -> rest           |
  //   \             /               |
  //    \----->-----/                |
  // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
  // with a phi in 3 (which now dominates 2).
  // What we do here is introduce a copy in 3 of the register defined by the
  // phi, just like when we are duplicating 2 into 3, but we don't copy any
  // real instructions or remove the 3 -> 2 edge from the phi in 2.
  for (MachineBasicBlock *PredBB : Preds) {
    if (is_contained(TDBBs, PredBB))
      continue;

    // EH edges
    if (PredBB->succ_size() != 1)
      continue;

    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
    MachineBasicBlock::iterator I = TailBB->begin();
    // Process PHI instructions first.
    while (I != TailBB->end() && I->isPHI()) {
      // Replace the uses of the def of the PHI with the register coming
      // from PredBB.
      MachineInstr *MI = &*I++;
      processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
    }
    appendCopies(PredBB, CopyInfos, Copies);
  }

  return Changed;
}

/// At the end of the block \p MBB generate COPY instructions between registers
/// described by \p CopyInfos. Append resulting instructions to \p Copies.
void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
      SmallVectorImpl<std::pair<unsigned,RegSubRegPair>> &CopyInfos,
      SmallVectorImpl<MachineInstr*> &Copies) {
  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
  const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
  for (auto &CI : CopyInfos) {
    auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
                .addReg(CI.second.Reg, 0, CI.second.SubReg);
    Copies.push_back(C);
  }
}

/// Remove the specified dead machine basic block from the function, updating
/// the CFG.
void TailDuplicator::removeDeadBlock(
    MachineBasicBlock *MBB,
    function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
  assert(MBB->pred_empty() && "MBB must be dead!");
  LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);

  if (RemovalCallback)
    (*RemovalCallback)(MBB);

  // Remove all successors.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_end() - 1);

  // Remove the block.
  MBB->eraseFromParent();
}