SplitKit.cpp 65.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//

#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeCalc.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumFinished, "Number of splits finished");
STATISTIC(NumSimple,   "Number of splits that were simple");
STATISTIC(NumCopies,   "Number of copies inserted for splitting");
STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");

//===----------------------------------------------------------------------===//
//                     Last Insert Point Analysis
//===----------------------------------------------------------------------===//

InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
                                         unsigned BBNum)
    : LIS(lis), LastInsertPoint(BBNum) {}

SlotIndex
InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
                                            const MachineBasicBlock &MBB) {
  unsigned Num = MBB.getNumber();
  std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
  SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);

  SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
  for (const MachineBasicBlock *SMBB : MBB.successors())
    if (SMBB->isEHPad())
      EHPadSuccessors.push_back(SMBB);

  // Compute insert points on the first call. The pair is independent of the
  // current live interval.
  if (!LIP.first.isValid()) {
    MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
    if (FirstTerm == MBB.end())
      LIP.first = MBBEnd;
    else
      LIP.first = LIS.getInstructionIndex(*FirstTerm);

    // If there is a landing pad successor, also find the call instruction.
    if (EHPadSuccessors.empty())
      return LIP.first;
    // There may not be a call instruction (?) in which case we ignore LPad.
    LIP.second = LIP.first;
    for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
         I != E;) {
      --I;
      if (I->isCall()) {
        LIP.second = LIS.getInstructionIndex(*I);
        break;
      }
    }
  }

  // If CurLI is live into a landing pad successor, move the last insert point
  // back to the call that may throw.
  if (!LIP.second)
    return LIP.first;

  if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
        return LIS.isLiveInToMBB(CurLI, EHPad);
      }))
    return LIP.first;

  // Find the value leaving MBB.
  const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
  if (!VNI)
    return LIP.first;

  // If the value leaving MBB was defined after the call in MBB, it can't
  // really be live-in to the landing pad.  This can happen if the landing pad
  // has a PHI, and this register is undef on the exceptional edge.
  // <rdar://problem/10664933>
  if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
    return LIP.first;

  // Value is properly live-in to the landing pad.
  // Only allow inserts before the call.
  return LIP.second;
}

MachineBasicBlock::iterator
InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
                                            MachineBasicBlock &MBB) {
  SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
  if (LIP == LIS.getMBBEndIdx(&MBB))
    return MBB.end();
  return LIS.getInstructionFromIndex(LIP);
}

//===----------------------------------------------------------------------===//
//                                 Split Analysis
//===----------------------------------------------------------------------===//

SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
                             const MachineLoopInfo &mli)
    : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
      TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}

void SplitAnalysis::clear() {
  UseSlots.clear();
  UseBlocks.clear();
  ThroughBlocks.clear();
  CurLI = nullptr;
  DidRepairRange = false;
}

/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
  assert(UseSlots.empty() && "Call clear first");

  // First get all the defs from the interval values. This provides the correct
  // slots for early clobbers.
  for (const VNInfo *VNI : CurLI->valnos)
    if (!VNI->isPHIDef() && !VNI->isUnused())
      UseSlots.push_back(VNI->def);

  // Get use slots form the use-def chain.
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
    if (!MO.isUndef())
      UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());

  array_pod_sort(UseSlots.begin(), UseSlots.end());

  // Remove duplicates, keeping the smaller slot for each instruction.
  // That is what we want for early clobbers.
  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
                             SlotIndex::isSameInstr),
                 UseSlots.end());

  // Compute per-live block info.
  if (!calcLiveBlockInfo()) {
    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    // I am looking at you, RegisterCoalescer!
    DidRepairRange = true;
    ++NumRepairs;
    LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    const_cast<LiveIntervals&>(LIS)
      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    UseBlocks.clear();
    ThroughBlocks.clear();
    bool fixed = calcLiveBlockInfo();
    (void)fixed;
    assert(fixed && "Couldn't fix broken live interval");
  }

  LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
                    << UseBlocks.size() << " blocks, through "
                    << NumThroughBlocks << " blocks.\n");
}

/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
bool SplitAnalysis::calcLiveBlockInfo() {
  ThroughBlocks.resize(MF.getNumBlockIDs());
  NumThroughBlocks = NumGapBlocks = 0;
  if (CurLI->empty())
    return true;

  LiveInterval::const_iterator LVI = CurLI->begin();
  LiveInterval::const_iterator LVE = CurLI->end();

  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
  UseI = UseSlots.begin();
  UseE = UseSlots.end();

  // Loop over basic blocks where CurLI is live.
  MachineFunction::iterator MFI =
      LIS.getMBBFromIndex(LVI->start)->getIterator();
  while (true) {
    BlockInfo BI;
    BI.MBB = &*MFI;
    SlotIndex Start, Stop;
    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

    // If the block contains no uses, the range must be live through. At one
    // point, RegisterCoalescer could create dangling ranges that ended
    // mid-block.
    if (UseI == UseE || *UseI >= Stop) {
      ++NumThroughBlocks;
      ThroughBlocks.set(BI.MBB->getNumber());
      // The range shouldn't end mid-block if there are no uses. This shouldn't
      // happen.
      if (LVI->end < Stop)
        return false;
    } else {
      // This block has uses. Find the first and last uses in the block.
      BI.FirstInstr = *UseI;
      assert(BI.FirstInstr >= Start);
      do ++UseI;
      while (UseI != UseE && *UseI < Stop);
      BI.LastInstr = UseI[-1];
      assert(BI.LastInstr < Stop);

      // LVI is the first live segment overlapping MBB.
      BI.LiveIn = LVI->start <= Start;

      // When not live in, the first use should be a def.
      if (!BI.LiveIn) {
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
        BI.FirstDef = BI.FirstInstr;
      }

      // Look for gaps in the live range.
      BI.LiveOut = true;
      while (LVI->end < Stop) {
        SlotIndex LastStop = LVI->end;
        if (++LVI == LVE || LVI->start >= Stop) {
          BI.LiveOut = false;
          BI.LastInstr = LastStop;
          break;
        }

        if (LastStop < LVI->start) {
          // There is a gap in the live range. Create duplicate entries for the
          // live-in snippet and the live-out snippet.
          ++NumGapBlocks;

          // Push the Live-in part.
          BI.LiveOut = false;
          UseBlocks.push_back(BI);
          UseBlocks.back().LastInstr = LastStop;

          // Set up BI for the live-out part.
          BI.LiveIn = false;
          BI.LiveOut = true;
          BI.FirstInstr = BI.FirstDef = LVI->start;
        }

        // A Segment that starts in the middle of the block must be a def.
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
        if (!BI.FirstDef)
          BI.FirstDef = LVI->start;
      }

      UseBlocks.push_back(BI);

      // LVI is now at LVE or LVI->end >= Stop.
      if (LVI == LVE)
        break;
    }

    // Live segment ends exactly at Stop. Move to the next segment.
    if (LVI->end == Stop && ++LVI == LVE)
      break;

    // Pick the next basic block.
    if (LVI->start < Stop)
      ++MFI;
    else
      MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
  }

  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
  return true;
}

unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
  if (cli->empty())
    return 0;
  LiveInterval *li = const_cast<LiveInterval*>(cli);
  LiveInterval::iterator LVI = li->begin();
  LiveInterval::iterator LVE = li->end();
  unsigned Count = 0;

  // Loop over basic blocks where li is live.
  MachineFunction::const_iterator MFI =
      LIS.getMBBFromIndex(LVI->start)->getIterator();
  SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
  while (true) {
    ++Count;
    LVI = li->advanceTo(LVI, Stop);
    if (LVI == LVE)
      return Count;
    do {
      ++MFI;
      Stop = LIS.getMBBEndIdx(&*MFI);
    } while (Stop <= LVI->start);
  }
}

bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
  const LiveInterval &Orig = LIS.getInterval(OrigReg);
  assert(!Orig.empty() && "Splitting empty interval?");
  LiveInterval::const_iterator I = Orig.find(Idx);

  // Range containing Idx should begin at Idx.
  if (I != Orig.end() && I->start <= Idx)
    return I->start == Idx;

  // Range does not contain Idx, previous must end at Idx.
  return I != Orig.begin() && (--I)->end == Idx;
}

void SplitAnalysis::analyze(const LiveInterval *li) {
  clear();
  CurLI = li;
  analyzeUses();
}

//===----------------------------------------------------------------------===//
//                               Split Editor
//===----------------------------------------------------------------------===//

/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
                         LiveIntervals &lis, VirtRegMap &vrm,
                         MachineDominatorTree &mdt,
                         MachineBlockFrequencyInfo &mbfi)
    : SA(sa), AA(aa), LIS(lis), VRM(vrm),
      MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
      TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
      TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
      MBFI(mbfi), RegAssign(Allocator) {}

void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
  Edit = &LRE;
  SpillMode = SM;
  OpenIdx = 0;
  RegAssign.clear();
  Values.clear();

  // Reset the LiveRangeCalc instances needed for this spill mode.
  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                  &LIS.getVNInfoAllocator());
  if (SpillMode)
    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                    &LIS.getVNInfoAllocator());

  // We don't need an AliasAnalysis since we will only be performing
  // cheap-as-a-copy remats anyway.
  Edit->anyRematerializable(nullptr);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SplitEditor::dump() const {
  if (RegAssign.empty()) {
    dbgs() << " empty\n";
    return;
  }

  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
  dbgs() << '\n';
}
#endif

LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
                                                        LiveInterval &LI) {
  for (LiveInterval::SubRange &S : LI.subranges())
    if (S.LaneMask == LM)
      return S;
  llvm_unreachable("SubRange for this mask not found");
}

void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
  if (!LI.hasSubRanges()) {
    LI.createDeadDef(VNI);
    return;
  }

  SlotIndex Def = VNI->def;
  if (Original) {
    // If we are transferring a def from the original interval, make sure
    // to only update the subranges for which the original subranges had
    // a def at this location.
    for (LiveInterval::SubRange &S : LI.subranges()) {
      auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
      VNInfo *PV = PS.getVNInfoAt(Def);
      if (PV != nullptr && PV->def == Def)
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
    }
  } else {
    // This is a new def: either from rematerialization, or from an inserted
    // copy. Since rematerialization can regenerate a definition of a sub-
    // register, we need to check which subranges need to be updated.
    const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
    assert(DefMI != nullptr);
    LaneBitmask LM;
    for (const MachineOperand &DefOp : DefMI->defs()) {
      Register R = DefOp.getReg();
      if (R != LI.reg)
        continue;
      if (unsigned SR = DefOp.getSubReg())
        LM |= TRI.getSubRegIndexLaneMask(SR);
      else {
        LM = MRI.getMaxLaneMaskForVReg(R);
        break;
      }
    }
    for (LiveInterval::SubRange &S : LI.subranges())
      if ((S.LaneMask & LM).any())
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
  }
}

VNInfo *SplitEditor::defValue(unsigned RegIdx,
                              const VNInfo *ParentVNI,
                              SlotIndex Idx,
                              bool Original) {
  assert(ParentVNI && "Mapping  NULL value");
  assert(Idx.isValid() && "Invalid SlotIndex");
  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));

  // Create a new value.
  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());

  bool Force = LI->hasSubRanges();
  ValueForcePair FP(Force ? nullptr : VNI, Force);
  // Use insert for lookup, so we can add missing values with a second lookup.
  std::pair<ValueMap::iterator, bool> InsP =
    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));

  // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
  // forced. Keep it as a simple def without any liveness.
  if (!Force && InsP.second)
    return VNI;

  // If the previous value was a simple mapping, add liveness for it now.
  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
    addDeadDef(*LI, OldVNI, Original);

    // No longer a simple mapping.  Switch to a complex mapping. If the
    // interval has subranges, make it a forced mapping.
    InsP.first->second = ValueForcePair(nullptr, Force);
  }

  // This is a complex mapping, add liveness for VNI
  addDeadDef(*LI, VNI, Original);
  return VNI;
}

void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
  VNInfo *VNI = VFP.getPointer();

  // ParentVNI was either unmapped or already complex mapped. Either way, just
  // set the force bit.
  if (!VNI) {
    VFP.setInt(true);
    return;
  }

  // This was previously a single mapping. Make sure the old def is represented
  // by a trivial live range.
  addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);

  // Mark as complex mapped, forced.
  VFP = ValueForcePair(nullptr, true);
}

SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
    unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
  bool FirstCopy = !Def.isValid();
  MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
      .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
              | getInternalReadRegState(!FirstCopy), SubIdx)
      .addReg(FromReg, 0, SubIdx);

  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
  SlotIndexes &Indexes = *LIS.getSlotIndexes();
  if (FirstCopy) {
    Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
  } else {
    CopyMI->bundleWithPred();
  }
  LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
  DestLI.refineSubRanges(Allocator, LaneMask,
                         [Def, &Allocator](LiveInterval::SubRange &SR) {
                           SR.createDeadDef(Def, Allocator);
                         },
                         Indexes, TRI);
  return Def;
}

SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
    LaneBitmask LaneMask, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
  if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
    // The full vreg is copied.
    MachineInstr *CopyMI =
        BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
    SlotIndexes &Indexes = *LIS.getSlotIndexes();
    return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
  }

  // Only a subset of lanes needs to be copied. The following is a simple
  // heuristic to construct a sequence of COPYs. We could add a target
  // specific callback if this turns out to be suboptimal.
  LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));

  // First pass: Try to find a perfectly matching subregister index. If none
  // exists find the one covering the most lanemask bits.
  SmallVector<unsigned, 8> PossibleIndexes;
  unsigned BestIdx = 0;
  unsigned BestCover = 0;
  const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
  assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
  for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
    // Is this index even compatible with the given class?
    if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
      continue;
    LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
    // Early exit if we found a perfect match.
    if (SubRegMask == LaneMask) {
      BestIdx = Idx;
      break;
    }

    // The index must not cover any lanes outside \p LaneMask.
    if ((SubRegMask & ~LaneMask).any())
      continue;

    unsigned PopCount = SubRegMask.getNumLanes();
    PossibleIndexes.push_back(Idx);
    if (PopCount > BestCover) {
      BestCover = PopCount;
      BestIdx = Idx;
    }
  }

  // Abort if we cannot possibly implement the COPY with the given indexes.
  if (BestIdx == 0)
    report_fatal_error("Impossible to implement partial COPY");

  SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
                                        BestIdx, DestLI, Late, SlotIndex());

  // Greedy heuristic: Keep iterating keeping the best covering subreg index
  // each time.
  LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
  while (LanesLeft.any()) {
    unsigned BestIdx = 0;
    int BestCover = std::numeric_limits<int>::min();
    for (unsigned Idx : PossibleIndexes) {
      LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
      // Early exit if we found a perfect match.
      if (SubRegMask == LanesLeft) {
        BestIdx = Idx;
        break;
      }

      // Try to cover as much of the remaining lanes as possible but
      // as few of the already covered lanes as possible.
      int Cover = (SubRegMask & LanesLeft).getNumLanes()
                - (SubRegMask & ~LanesLeft).getNumLanes();
      if (Cover > BestCover) {
        BestCover = Cover;
        BestIdx = Idx;
      }
    }

    if (BestIdx == 0)
      report_fatal_error("Impossible to implement partial COPY");

    buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
                          DestLI, Late, Def);
    LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
  }

  return Def;
}

VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
                                   VNInfo *ParentVNI,
                                   SlotIndex UseIdx,
                                   MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I) {
  SlotIndex Def;
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));

  // We may be trying to avoid interference that ends at a deleted instruction,
  // so always begin RegIdx 0 early and all others late.
  bool Late = RegIdx != 0;

  // Attempt cheap-as-a-copy rematerialization.
  unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);

  unsigned Reg = LI->reg;
  bool DidRemat = false;
  if (OrigVNI) {
    LiveRangeEdit::Remat RM(ParentVNI);
    RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
    if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
      Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
      ++NumRemats;
      DidRemat = true;
    }
  }
  if (!DidRemat) {
    LaneBitmask LaneMask;
    if (LI->hasSubRanges()) {
      LaneMask = LaneBitmask::getNone();
      for (LiveInterval::SubRange &S : LI->subranges())
        LaneMask |= S.LaneMask;
    } else {
      LaneMask = LaneBitmask::getAll();
    }

    ++NumCopies;
    Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
  }

  // Define the value in Reg.
  return defValue(RegIdx, ParentVNI, Def, false);
}

/// Create a new virtual register and live interval.
unsigned SplitEditor::openIntv() {
  // Create the complement as index 0.
  if (Edit->empty())
    Edit->createEmptyInterval();

  // Create the open interval.
  OpenIdx = Edit->size();
  Edit->createEmptyInterval();
  return OpenIdx;
}

void SplitEditor::selectIntv(unsigned Idx) {
  assert(Idx != 0 && "Cannot select the complement interval");
  assert(Idx < Edit->size() && "Can only select previously opened interval");
  LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
  OpenIdx = Idx;
}

SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before enterIntvBefore");
  LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
  Idx = Idx.getBaseIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvBefore called with invalid index");

  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before enterIntvAfter");
  LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
  Idx = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvAfter called with invalid index");

  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
                              std::next(MachineBasicBlock::iterator(MI)));
  return VNI->def;
}

SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
  SlotIndex End = LIS.getMBBEndIdx(&MBB);
  SlotIndex Last = End.getPrevSlot();
  LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
                    << Last);
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return End;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
                              SA.getLastSplitPointIter(&MBB));
  RegAssign.insert(VNI->def, End, OpenIdx);
  LLVM_DEBUG(dump());
  return VNI->def;
}

/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}

void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before useIntv");
  LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  LLVM_DEBUG(dump());
}

SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
  LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);

  // The interval must be live beyond the instruction at Idx.
  SlotIndex Boundary = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Boundary.getNextSlot();
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
  assert(MI && "No instruction at index");

  // In spill mode, make live ranges as short as possible by inserting the copy
  // before MI.  This is only possible if that instruction doesn't redefine the
  // value.  The inserted COPY is not a kill, and we don't need to recompute
  // the source live range.  The spiller also won't try to hoist this copy.
  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
      MI->readsVirtualRegister(Edit->getReg())) {
    forceRecompute(0, *ParentVNI);
    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    return Idx;
  }

  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
                              std::next(MachineBasicBlock::iterator(MI)));
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
  LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);

  // The interval must be live into the instruction at Idx.
  Idx = Idx.getBaseIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx.getNextSlot();
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');

  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "No instruction at index");
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
  LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
                    << Start);

  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Start;
  }

  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
                              MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
  RegAssign.insert(Start, VNI->def, OpenIdx);
  LLVM_DEBUG(dump());
  return VNI->def;
}

void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before overlapIntv");
  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
         "Parent changes value in extended range");
  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
         "Range cannot span basic blocks");

  // The complement interval will be extended as needed by LRCalc.extend().
  if (ParentVNI)
    forceRecompute(0, *ParentVNI);
  LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  LLVM_DEBUG(dump());
}

//===----------------------------------------------------------------------===//
//                                  Spill modes
//===----------------------------------------------------------------------===//

void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
  RegAssignMap::iterator AssignI;
  AssignI.setMap(RegAssign);

  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    SlotIndex Def = Copies[i]->def;
    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
    assert(MI && "No instruction for back-copy");

    MachineBasicBlock *MBB = MI->getParent();
    MachineBasicBlock::iterator MBBI(MI);
    bool AtBegin;
    do AtBegin = MBBI == MBB->begin();
    while (!AtBegin && (--MBBI)->isDebugInstr());

    LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
    LIS.removeVRegDefAt(*LI, Def);
    LIS.RemoveMachineInstrFromMaps(*MI);
    MI->eraseFromParent();

    // Adjust RegAssign if a register assignment is killed at Def. We want to
    // avoid calculating the live range of the source register if possible.
    AssignI.find(Def.getPrevSlot());
    if (!AssignI.valid() || AssignI.start() >= Def)
      continue;
    // If MI doesn't kill the assigned register, just leave it.
    if (AssignI.stop() != Def)
      continue;
    unsigned RegIdx = AssignI.value();
    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
      LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
                        << '\n');
      forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
    } else {
      SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
      LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
      AssignI.setStop(Kill);
    }
  }
}

MachineBasicBlock*
SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
                                  MachineBasicBlock *DefMBB) {
  if (MBB == DefMBB)
    return MBB;
  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");

  const MachineLoopInfo &Loops = SA.Loops;
  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
  MachineDomTreeNode *DefDomNode = MDT[DefMBB];

  // Best candidate so far.
  MachineBasicBlock *BestMBB = MBB;
  unsigned BestDepth = std::numeric_limits<unsigned>::max();

  while (true) {
    const MachineLoop *Loop = Loops.getLoopFor(MBB);

    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
    // higher frequency by definition.
    if (!Loop) {
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " at depth 0\n");
      return MBB;
    }

    // We'll never be able to exit the DefLoop.
    if (Loop == DefLoop) {
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " in the same loop\n");
      return MBB;
    }

    // Least busy dominator seen so far.
    unsigned Depth = Loop->getLoopDepth();
    if (Depth < BestDepth) {
      BestMBB = MBB;
      BestDepth = Depth;
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " at depth " << Depth << '\n');
    }

    // Leave loop by going to the immediate dominator of the loop header.
    // This is a bigger stride than simply walking up the dominator tree.
    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();

    // Too far up the dominator tree?
    if (!IDom || !MDT.dominates(DefDomNode, IDom))
      return BestMBB;

    MBB = IDom->getBlock();
  }
}

void SplitEditor::computeRedundantBackCopies(
    DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LiveInterval *Parent = &Edit->getParent();
  SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
  SmallPtrSet<VNInfo *, 8> DominatedVNIs;

  // Aggregate VNIs having the same value as ParentVNI.
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    EqualVNs[ParentVNI->id].insert(VNI);
  }

  // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
  // redundant VNIs to BackCopies.
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
    if (!NotToHoistSet.count(ParentVNI->id))
      continue;
    SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
    SmallPtrSetIterator<VNInfo *> It2 = It1;
    for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
      It2 = It1;
      for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
        if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
          continue;

        MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
        MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
        if (MBB1 == MBB2) {
          DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
        } else if (MDT.dominates(MBB1, MBB2)) {
          DominatedVNIs.insert(*It2);
        } else if (MDT.dominates(MBB2, MBB1)) {
          DominatedVNIs.insert(*It1);
        }
      }
    }
    if (!DominatedVNIs.empty()) {
      forceRecompute(0, *ParentVNI);
      for (auto VNI : DominatedVNIs) {
        BackCopies.push_back(VNI);
      }
      DominatedVNIs.clear();
    }
  }
}

/// For SM_Size mode, find a common dominator for all the back-copies for
/// the same ParentVNI and hoist the backcopies to the dominator BB.
/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
/// to do the hoisting, simply remove the dominated backcopies for the same
/// ParentVNI.
void SplitEditor::hoistCopies() {
  // Get the complement interval, always RegIdx 0.
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LiveInterval *Parent = &Edit->getParent();

  // Track the nearest common dominator for all back-copies for each ParentVNI,
  // indexed by ParentVNI->id.
  using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
  // The total cost of all the back-copies for each ParentVNI.
  SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
  // The ParentVNI->id set for which hoisting back-copies are not beneficial
  // for Speed.
  DenseSet<unsigned> NotToHoistSet;

  // Find the nearest common dominator for parent values with multiple
  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    assert(ParentVNI && "Parent not live at complement def");

    // Don't hoist remats.  The complement is probably going to disappear
    // completely anyway.
    if (Edit->didRematerialize(ParentVNI))
      continue;

    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);

    DomPair &Dom = NearestDom[ParentVNI->id];

    // Keep directly defined parent values.  This is either a PHI or an
    // instruction in the complement range.  All other copies of ParentVNI
    // should be eliminated.
    if (VNI->def == ParentVNI->def) {
      LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
      Dom = DomPair(ValMBB, VNI->def);
      continue;
    }
    // Skip the singly mapped values.  There is nothing to gain from hoisting a
    // single back-copy.
    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
      LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
      continue;
    }

    if (!Dom.first) {
      // First time we see ParentVNI.  VNI dominates itself.
      Dom = DomPair(ValMBB, VNI->def);
    } else if (Dom.first == ValMBB) {
      // Two defs in the same block.  Pick the earlier def.
      if (!Dom.second.isValid() || VNI->def < Dom.second)
        Dom.second = VNI->def;
    } else {
      // Different basic blocks. Check if one dominates.
      MachineBasicBlock *Near =
        MDT.findNearestCommonDominator(Dom.first, ValMBB);
      if (Near == ValMBB)
        // Def ValMBB dominates.
        Dom = DomPair(ValMBB, VNI->def);
      else if (Near != Dom.first)
        // None dominate. Hoist to common dominator, need new def.
        Dom = DomPair(Near, SlotIndex());
      Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
    }

    LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
                      << VNI->def << " for parent " << ParentVNI->id << '@'
                      << ParentVNI->def << " hoist to "
                      << printMBBReference(*Dom.first) << ' ' << Dom.second
                      << '\n');
  }

  // Insert the hoisted copies.
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    DomPair &Dom = NearestDom[i];
    if (!Dom.first || Dom.second.isValid())
      continue;
    // This value needs a hoisted copy inserted at the end of Dom.first.
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
    // Get a less loopy dominator than Dom.first.
    Dom.first = findShallowDominator(Dom.first, DefMBB);
    if (SpillMode == SM_Speed &&
        MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
      NotToHoistSet.insert(ParentVNI->id);
      continue;
    }
    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
    Dom.second =
      defFromParent(0, ParentVNI, Last, *Dom.first,
                    SA.getLastSplitPointIter(Dom.first))->def;
  }

  // Remove redundant back-copies that are now known to be dominated by another
  // def with the same value.
  SmallVector<VNInfo*, 8> BackCopies;
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    const DomPair &Dom = NearestDom[ParentVNI->id];
    if (!Dom.first || Dom.second == VNI->def ||
        NotToHoistSet.count(ParentVNI->id))
      continue;
    BackCopies.push_back(VNI);
    forceRecompute(0, *ParentVNI);
  }

  // If it is not beneficial to hoist all the BackCopies, simply remove
  // redundant BackCopies in speed mode.
  if (SpillMode == SM_Speed && !NotToHoistSet.empty())
    computeRedundantBackCopies(NotToHoistSet, BackCopies);

  removeBackCopies(BackCopies);
}

/// transferValues - Transfer all possible values to the new live ranges.
/// Values that were rematerialized are left alone, they need LRCalc.extend().
bool SplitEditor::transferValues() {
  bool Skipped = false;
  RegAssignMap::const_iterator AssignI = RegAssign.begin();
  for (const LiveRange::Segment &S : Edit->getParent()) {
    LLVM_DEBUG(dbgs() << "  blit " << S << ':');
    VNInfo *ParentVNI = S.valno;
    // RegAssign has holes where RegIdx 0 should be used.
    SlotIndex Start = S.start;
    AssignI.advanceTo(Start);
    do {
      unsigned RegIdx;
      SlotIndex End = S.end;
      if (!AssignI.valid()) {
        RegIdx = 0;
      } else if (AssignI.start() <= Start) {
        RegIdx = AssignI.value();
        if (AssignI.stop() < End) {
          End = AssignI.stop();
          ++AssignI;
        }
      } else {
        RegIdx = 0;
        End = std::min(End, AssignI.start());
      }

      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
      LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
                        << printReg(Edit->get(RegIdx)) << ')');
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));

      // Check for a simply defined value that can be blitted directly.
      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
      if (VNInfo *VNI = VFP.getPointer()) {
        LLVM_DEBUG(dbgs() << ':' << VNI->id);
        LI.addSegment(LiveInterval::Segment(Start, End, VNI));
        Start = End;
        continue;
      }

      // Skip values with forced recomputation.
      if (VFP.getInt()) {
        LLVM_DEBUG(dbgs() << "(recalc)");
        Skipped = true;
        Start = End;
        continue;
      }

      LiveRangeCalc &LRC = getLRCalc(RegIdx);

      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
      // so the live range is accurate. Add live-in blocks in [Start;End) to the
      // LiveInBlocks.
      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
      SlotIndex BlockStart, BlockEnd;
      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);

      // The first block may be live-in, or it may have its own def.
      if (Start != BlockStart) {
        VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
        assert(VNI && "Missing def for complex mapped value");
        LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
        // MBB has its own def. Is it also live-out?
        if (BlockEnd <= End)
          LRC.setLiveOutValue(&*MBB, VNI);

        // Skip to the next block for live-in.
        ++MBB;
        BlockStart = BlockEnd;
      }

      // Handle the live-in blocks covered by [Start;End).
      assert(Start <= BlockStart && "Expected live-in block");
      while (BlockStart < End) {
        LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
        BlockEnd = LIS.getMBBEndIdx(&*MBB);
        if (BlockStart == ParentVNI->def) {
          // This block has the def of a parent PHI, so it isn't live-in.
          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
          VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
          assert(VNI && "Missing def for complex mapped parent PHI");
          if (End >= BlockEnd)
            LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
        } else {
          // This block needs a live-in value.  The last block covered may not
          // be live-out.
          if (End < BlockEnd)
            LRC.addLiveInBlock(LI, MDT[&*MBB], End);
          else {
            // Live-through, and we don't know the value.
            LRC.addLiveInBlock(LI, MDT[&*MBB]);
            LRC.setLiveOutValue(&*MBB, nullptr);
          }
        }
        BlockStart = BlockEnd;
        ++MBB;
      }
      Start = End;
    } while (Start != S.end);
    LLVM_DEBUG(dbgs() << '\n');
  }

  LRCalc[0].calculateValues();
  if (SpillMode)
    LRCalc[1].calculateValues();

  return Skipped;
}

static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
  const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
  if (Seg == nullptr)
    return true;
  if (Seg->end != Def.getDeadSlot())
    return false;
  // This is a dead PHI. Remove it.
  LR.removeSegment(*Seg, true);
  return true;
}

void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
                                 LiveRange &LR, LaneBitmask LM,
                                 ArrayRef<SlotIndex> Undefs) {
  for (MachineBasicBlock *P : B.predecessors()) {
    SlotIndex End = LIS.getMBBEndIdx(P);
    SlotIndex LastUse = End.getPrevSlot();
    // The predecessor may not have a live-out value. That is OK, like an
    // undef PHI operand.
    LiveInterval &PLI = Edit->getParent();
    // Need the cast because the inputs to ?: would otherwise be deemed
    // "incompatible": SubRange vs LiveInterval.
    LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
                               : static_cast<LiveRange&>(PLI);
    if (PSR.liveAt(LastUse))
      LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
  }
}

void SplitEditor::extendPHIKillRanges() {
  // Extend live ranges to be live-out for successor PHI values.

  // Visit each PHI def slot in the parent live interval. If the def is dead,
  // remove it. Otherwise, extend the live interval to reach the end indexes
  // of all predecessor blocks.

  LiveInterval &ParentLI = Edit->getParent();
  for (const VNInfo *V : ParentLI.valnos) {
    if (V->isUnused() || !V->isPHIDef())
      continue;

    unsigned RegIdx = RegAssign.lookup(V->def);
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
    LiveRangeCalc &LRC = getLRCalc(RegIdx);
    MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
    if (!removeDeadSegment(V->def, LI))
      extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
  }

  SmallVector<SlotIndex, 4> Undefs;
  LiveRangeCalc SubLRC;

  for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
    for (const VNInfo *V : PS.valnos) {
      if (V->isUnused() || !V->isPHIDef())
        continue;
      unsigned RegIdx = RegAssign.lookup(V->def);
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
      LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
      if (removeDeadSegment(V->def, S))
        continue;

      MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
      SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                   &LIS.getVNInfoAllocator());
      Undefs.clear();
      LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
      extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
    }
  }
}

/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
  struct ExtPoint {
    ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
      : MO(O), RegIdx(R), Next(N) {}

    MachineOperand MO;
    unsigned RegIdx;
    SlotIndex Next;
  };

  SmallVector<ExtPoint,4> ExtPoints;

  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = *RI;
    MachineInstr *MI = MO.getParent();
    ++RI;
    // LiveDebugVariables should have handled all DBG_VALUE instructions.
    if (MI->isDebugValue()) {
      LLVM_DEBUG(dbgs() << "Zapping " << *MI);
      MO.setReg(0);
      continue;
    }

    // <undef> operands don't really read the register, so it doesn't matter
    // which register we choose.  When the use operand is tied to a def, we must
    // use the same register as the def, so just do that always.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    if (MO.isDef() || MO.isUndef())
      Idx = Idx.getRegSlot(MO.isEarlyClobber());

    // Rewrite to the mapped register at Idx.
    unsigned RegIdx = RegAssign.lookup(Idx);
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
    MO.setReg(LI.reg);
    LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
                      << '\t' << Idx << ':' << RegIdx << '\t' << *MI);

    // Extend liveness to Idx if the instruction reads reg.
    if (!ExtendRanges || MO.isUndef())
      continue;

    // Skip instructions that don't read Reg.
    if (MO.isDef()) {
      if (!MO.getSubReg() && !MO.isEarlyClobber())
        continue;
      // We may want to extend a live range for a partial redef, or for a use
      // tied to an early clobber.
      Idx = Idx.getPrevSlot();
      if (!Edit->getParent().liveAt(Idx))
        continue;
    } else
      Idx = Idx.getRegSlot(true);

    SlotIndex Next = Idx.getNextSlot();
    if (LI.hasSubRanges()) {
      // We have to delay extending subranges until we have seen all operands
      // defining the register. This is because a <def,read-undef> operand
      // will create an "undef" point, and we cannot extend any subranges
      // until all of them have been accounted for.
      if (MO.isUse())
        ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
    } else {
      LiveRangeCalc &LRC = getLRCalc(RegIdx);
      LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
    }
  }

  for (ExtPoint &EP : ExtPoints) {
    LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
    assert(LI.hasSubRanges());

    LiveRangeCalc SubLRC;
    Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
    LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
                              : MRI.getMaxLaneMaskForVReg(Reg);
    for (LiveInterval::SubRange &S : LI.subranges()) {
      if ((S.LaneMask & LM).none())
        continue;
      // The problem here can be that the new register may have been created
      // for a partially defined original register. For example:
      //   %0:subreg_hireg<def,read-undef> = ...
      //   ...
      //   %1 = COPY %0
      if (S.empty())
        continue;
      SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                   &LIS.getVNInfoAllocator());
      SmallVector<SlotIndex, 4> Undefs;
      LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
      SubLRC.extend(S, EP.Next, 0, Undefs);
    }
  }

  for (unsigned R : *Edit) {
    LiveInterval &LI = LIS.getInterval(R);
    if (!LI.hasSubRanges())
      continue;
    LI.clear();
    LI.removeEmptySubRanges();
    LIS.constructMainRangeFromSubranges(LI);
  }
}

void SplitEditor::deleteRematVictims() {
  SmallVector<MachineInstr*, 8> Dead;
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
    LiveInterval *LI = &LIS.getInterval(*I);
    for (const LiveRange::Segment &S : LI->segments) {
      // Dead defs end at the dead slot.
      if (S.end != S.valno->def.getDeadSlot())
        continue;
      if (S.valno->isPHIDef())
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
      assert(MI && "Missing instruction for dead def");
      MI->addRegisterDead(LI->reg, &TRI);

      if (!MI->allDefsAreDead())
        continue;

      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
      Dead.push_back(MI);
    }
  }

  if (Dead.empty())
    return;

  Edit->eliminateDeadDefs(Dead, None, &AA);
}

void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
  // Fast-path for common case.
  if (!ParentVNI.isPHIDef()) {
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
      forceRecompute(I, ParentVNI);
    return;
  }

  // Trace value through phis.
  SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
  SmallVector<const VNInfo *, 4> WorkList;
  Visited.insert(&ParentVNI);
  WorkList.push_back(&ParentVNI);

  const LiveInterval &ParentLI = Edit->getParent();
  const SlotIndexes &Indexes = *LIS.getSlotIndexes();
  do {
    const VNInfo &VNI = *WorkList.back();
    WorkList.pop_back();
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
      forceRecompute(I, VNI);
    if (!VNI.isPHIDef())
      continue;

    MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
      SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
      VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
      assert(PredVNI && "Value available in PhiVNI predecessor");
      if (Visited.insert(PredVNI).second)
        WorkList.push_back(PredVNI);
    }
  } while(!WorkList.empty());
}

void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
  ++NumFinished;

  // At this point, the live intervals in Edit contain VNInfos corresponding to
  // the inserted copies.

  // Add the original defs from the parent interval.
  for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
    if (ParentVNI->isUnused())
      continue;
    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
    defValue(RegIdx, ParentVNI, ParentVNI->def, true);

    // Force rematted values to be recomputed everywhere.
    // The new live ranges may be truncated.
    if (Edit->didRematerialize(ParentVNI))
      forceRecomputeVNI(*ParentVNI);
  }

  // Hoist back-copies to the complement interval when in spill mode.
  switch (SpillMode) {
  case SM_Partition:
    // Leave all back-copies as is.
    break;
  case SM_Size:
  case SM_Speed:
    // hoistCopies will behave differently between size and speed.
    hoistCopies();
  }

  // Transfer the simply mapped values, check if any are skipped.
  bool Skipped = transferValues();

  // Rewrite virtual registers, possibly extending ranges.
  rewriteAssigned(Skipped);

  if (Skipped)
    extendPHIKillRanges();
  else
    ++NumSimple;

  // Delete defs that were rematted everywhere.
  if (Skipped)
    deleteRematVictims();

  // Get rid of unused values and set phi-kill flags.
  for (unsigned Reg : *Edit) {
    LiveInterval &LI = LIS.getInterval(Reg);
    LI.removeEmptySubRanges();
    LI.RenumberValues();
  }

  // Provide a reverse mapping from original indices to Edit ranges.
  if (LRMap) {
    LRMap->clear();
    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
      LRMap->push_back(i);
  }

  // Now check if any registers were separated into multiple components.
  ConnectedVNInfoEqClasses ConEQ(LIS);
  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
    // Don't use iterators, they are invalidated by create() below.
    unsigned VReg = Edit->get(i);
    LiveInterval &LI = LIS.getInterval(VReg);
    SmallVector<LiveInterval*, 8> SplitLIs;
    LIS.splitSeparateComponents(LI, SplitLIs);
    unsigned Original = VRM.getOriginal(VReg);
    for (LiveInterval *SplitLI : SplitLIs)
      VRM.setIsSplitFromReg(SplitLI->reg, Original);

    // The new intervals all map back to i.
    if (LRMap)
      LRMap->resize(Edit->size(), i);
  }

  // Calculate spill weight and allocation hints for new intervals.
  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);

  assert(!LRMap || LRMap->size() == Edit->size());
}

//===----------------------------------------------------------------------===//
//                            Single Block Splitting
//===----------------------------------------------------------------------===//

bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
                                           bool SingleInstrs) const {
  // Always split for multiple instructions.
  if (!BI.isOneInstr())
    return true;
  // Don't split for single instructions unless explicitly requested.
  if (!SingleInstrs)
    return false;
  // Splitting a live-through range always makes progress.
  if (BI.LiveIn && BI.LiveOut)
    return true;
  // No point in isolating a copy. It has no register class constraints.
  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
    return false;
  // Finally, don't isolate an end point that was created by earlier splits.
  return isOriginalEndpoint(BI.FirstInstr);
}

void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
  openIntv();
  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
    LastSplitPoint));
  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
  } else {
      // The last use is after the last valid split point.
    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
    useIntv(SegStart, SegStop);
    overlapIntv(SegStop, BI.LastInstr);
  }
}

//===----------------------------------------------------------------------===//
//                    Global Live Range Splitting Support
//===----------------------------------------------------------------------===//

// These methods support a method of global live range splitting that uses a
// global algorithm to decide intervals for CFG edges. They will insert split
// points and color intervals in basic blocks while avoiding interference.
//
// Note that splitSingleBlock is also useful for blocks where both CFG edges
// are on the stack.

void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
                                        unsigned IntvIn, SlotIndex LeaveBefore,
                                        unsigned IntvOut, SlotIndex EnterAfter){
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);

  LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
                    << ") intf " << LeaveBefore << '-' << EnterAfter
                    << ", live-through " << IntvIn << " -> " << IntvOut);

  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");

  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");

  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);

  if (!IntvOut) {
    LLVM_DEBUG(dbgs() << ", spill on entry.\n");
    //
    //        <<<<<<<<<    Possible LeaveBefore interference.
    //    |-----------|    Live through.
    //    -____________    Spill on entry.
    //
    selectIntv(IntvIn);
    SlotIndex Idx = leaveIntvAtTop(*MBB);
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    (void)Idx;
    return;
  }

  if (!IntvIn) {
    LLVM_DEBUG(dbgs() << ", reload on exit.\n");
    //
    //    >>>>>>>          Possible EnterAfter interference.
    //    |-----------|    Live through.
    //    ___________--    Reload on exit.
    //
    selectIntv(IntvOut);
    SlotIndex Idx = enterIntvAtEnd(*MBB);
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    (void)Idx;
    return;
  }

  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
    LLVM_DEBUG(dbgs() << ", straight through.\n");
    //
    //    |-----------|    Live through.
    //    -------------    Straight through, same intv, no interference.
    //
    selectIntv(IntvOut);
    useIntv(Start, Stop);
    return;
  }

  // We cannot legally insert splits after LSP.
  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");

  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
    LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
    //
    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
    //    |-----------|    Live through.
    //    ------=======    Switch intervals between interference.
    //
    selectIntv(IntvOut);
    SlotIndex Idx;
    if (LeaveBefore && LeaveBefore < LSP) {
      Idx = enterIntvBefore(LeaveBefore);
      useIntv(Idx, Stop);
    } else {
      Idx = enterIntvAtEnd(*MBB);
    }
    selectIntv(IntvIn);
    useIntv(Start, Idx);
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    return;
  }

  LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
  //
  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
  //    |-----------|    Live through.
  //    ==---------==    Switch intervals before/after interference.
  //
  assert(LeaveBefore <= EnterAfter && "Missed case");

  selectIntv(IntvOut);
  SlotIndex Idx = enterIntvAfter(EnterAfter);
  useIntv(Idx, Stop);
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");

  selectIntv(IntvIn);
  Idx = leaveIntvBefore(LeaveBefore);
  useIntv(Start, Idx);
  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
}

void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
                                  unsigned IntvIn, SlotIndex LeaveBefore) {
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
                    << Stop << "), uses " << BI.FirstInstr << '-'
                    << BI.LastInstr << ", reg-in " << IntvIn
                    << ", leave before " << LeaveBefore
                    << (BI.LiveOut ? ", stack-out" : ", killed in block"));

  assert(IntvIn && "Must have register in");
  assert(BI.LiveIn && "Must be live-in");
  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");

  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
    LLVM_DEBUG(dbgs() << " before interference.\n");
    //
    //               <<<    Interference after kill.
    //     |---o---x   |    Killed in block.
    //     =========        Use IntvIn everywhere.
    //
    selectIntv(IntvIn);
    useIntv(Start, BI.LastInstr);
    return;
  }

  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());

  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
    //
    //               <<<    Possible interference after last use.
    //     |---o---o---|    Live-out on stack.
    //     =========____    Leave IntvIn after last use.
    //
    //                 <    Interference after last use.
    //     |---o---o--o|    Live-out on stack, late last use.
    //     ============     Copy to stack after LSP, overlap IntvIn.
    //            \_____    Stack interval is live-out.
    //
    if (BI.LastInstr < LSP) {
      LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
      selectIntv(IntvIn);
      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
      useIntv(Start, Idx);
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    } else {
      LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
      selectIntv(IntvIn);
      SlotIndex Idx = leaveIntvBefore(LSP);
      overlapIntv(Idx, BI.LastInstr);
      useIntv(Start, Idx);
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    }
    return;
  }

  // The interference is overlapping somewhere we wanted to use IntvIn. That
  // means we need to create a local interval that can be allocated a
  // different register.
  unsigned LocalIntv = openIntv();
  (void)LocalIntv;
  LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");

  if (!BI.LiveOut || BI.LastInstr < LSP) {
    //
    //           <<<<<<<    Interference overlapping uses.
    //     |---o---o---|    Live-out on stack.
    //     =====----____    Leave IntvIn before interference, then spill.
    //
    SlotIndex To = leaveIntvAfter(BI.LastInstr);
    SlotIndex From = enterIntvBefore(LeaveBefore);
    useIntv(From, To);
    selectIntv(IntvIn);
    useIntv(Start, From);
    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
    return;
  }

  //           <<<<<<<    Interference overlapping uses.
  //     |---o---o--o|    Live-out on stack, late last use.
  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
  //            \_____    Stack interval is live-out.
  //
  SlotIndex To = leaveIntvBefore(LSP);
  overlapIntv(To, BI.LastInstr);
  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
  useIntv(From, To);
  selectIntv(IntvIn);
  useIntv(Start, From);
  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
}

void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
                                   unsigned IntvOut, SlotIndex EnterAfter) {
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
                    << Stop << "), uses " << BI.FirstInstr << '-'
                    << BI.LastInstr << ", reg-out " << IntvOut
                    << ", enter after " << EnterAfter
                    << (BI.LiveIn ? ", stack-in" : ", defined in block"));

  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());

  assert(IntvOut && "Must have register out");
  assert(BI.LiveOut && "Must be live-out");
  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");

  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
    LLVM_DEBUG(dbgs() << " after interference.\n");
    //
    //    >>>>             Interference before def.
    //    |   o---o---|    Defined in block.
    //        =========    Use IntvOut everywhere.
    //
    selectIntv(IntvOut);
    useIntv(BI.FirstInstr, Stop);
    return;
  }

  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
    LLVM_DEBUG(dbgs() << ", reload after interference.\n");
    //
    //    >>>>             Interference before def.
    //    |---o---o---|    Live-through, stack-in.
    //    ____=========    Enter IntvOut before first use.
    //
    selectIntv(IntvOut);
    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
    useIntv(Idx, Stop);
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    return;
  }

  // The interference is overlapping somewhere we wanted to use IntvOut. That
  // means we need to create a local interval that can be allocated a
  // different register.
  LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
  //
  //    >>>>>>>          Interference overlapping uses.
  //    |---o---o---|    Live-through, stack-in.
  //    ____---======    Create local interval for interference range.
  //
  selectIntv(IntvOut);
  SlotIndex Idx = enterIntvAfter(EnterAfter);
  useIntv(Idx, Stop);
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");

  openIntv();
  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
  useIntv(From, Idx);
}