RegAllocFast.cpp 45.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");

static RegisterRegAlloc
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);

namespace {

  class RegAllocFast : public MachineFunctionPass {
  public:
    static char ID;

    RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}

  private:
    MachineFrameInfo *MFI;
    MachineRegisterInfo *MRI;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

    /// Basic block currently being allocated.
    MachineBasicBlock *MBB;

    /// Maps virtual regs to the frame index where these values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    /// Everything we know about a live virtual register.
    struct LiveReg {
      MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
      Register VirtReg;                ///< Virtual register number.
      MCPhysReg PhysReg = 0;           ///< Currently held here.
      unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
      bool Dirty = false;              ///< Register needs spill.

      explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}

      unsigned getSparseSetIndex() const {
        return Register::virtReg2Index(VirtReg);
      }
    };

    using LiveRegMap = SparseSet<LiveReg>;
    /// This map contains entries for each virtual register that is currently
    /// available in a physical register.
    LiveRegMap LiveVirtRegs;

    DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;

    /// Has a bit set for every virtual register for which it was determined
    /// that it is alive across blocks.
    BitVector MayLiveAcrossBlocks;

    /// State of a physical register.
    enum RegState {
      /// A disabled register is not available for allocation, but an alias may
      /// be in use. A register can only be moved out of the disabled state if
      /// all aliases are disabled.
      regDisabled,

      /// A free register is not currently in use and can be allocated
      /// immediately without checking aliases.
      regFree,

      /// A reserved register has been assigned explicitly (e.g., setting up a
      /// call parameter), and it remains reserved until it is used.
      regReserved

      /// A register state may also be a virtual register number, indication
      /// that the physical register is currently allocated to a virtual
      /// register. In that case, LiveVirtRegs contains the inverse mapping.
    };

    /// Maps each physical register to a RegState enum or a virtual register.
    std::vector<unsigned> PhysRegState;

    SmallVector<Register, 16> VirtDead;
    SmallVector<MachineInstr *, 32> Coalesced;

    using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
    /// Set of register units that are used in the current instruction, and so
    /// cannot be allocated.
    RegUnitSet UsedInInstr;

    void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);

    /// Mark a physreg as used in this instruction.
    void markRegUsedInInstr(MCPhysReg PhysReg) {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        UsedInInstr.insert(*Units);
    }

    /// Check if a physreg or any of its aliases are used in this instruction.
    bool isRegUsedInInstr(MCPhysReg PhysReg) const {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        if (UsedInInstr.count(*Units))
          return true;
      return false;
    }

    enum : unsigned {
      spillClean = 50,
      spillDirty = 100,
      spillPrefBonus = 20,
      spillImpossible = ~0u
    };

  public:
    StringRef getPassName() const override { return "Fast Register Allocator"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoPHIs);
    }

    MachineFunctionProperties getSetProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool runOnMachineFunction(MachineFunction &MF) override;

    void allocateBasicBlock(MachineBasicBlock &MBB);
    void allocateInstruction(MachineInstr &MI);
    void handleDebugValue(MachineInstr &MI);
    void handleThroughOperands(MachineInstr &MI,
                               SmallVectorImpl<Register> &VirtDead);
    bool isLastUseOfLocalReg(const MachineOperand &MO) const;

    void addKillFlag(const LiveReg &LRI);
    void killVirtReg(LiveReg &LR);
    void killVirtReg(Register VirtReg);
    void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
    void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg);

    void usePhysReg(MachineOperand &MO);
    void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
                       RegState NewState);
    unsigned calcSpillCost(MCPhysReg PhysReg) const;
    void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);

    LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint);
    void allocVirtRegUndef(MachineOperand &MO);
    MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
                            Register Hint);
    LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
                           Register Hint);
    void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
    bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);

    Register traceCopies(Register VirtReg) const;
    Register traceCopyChain(Register Reg) const;

    int getStackSpaceFor(Register VirtReg);
    void spill(MachineBasicBlock::iterator Before, Register VirtReg,
               MCPhysReg AssignedReg, bool Kill);
    void reload(MachineBasicBlock::iterator Before, Register VirtReg,
                MCPhysReg PhysReg);

    bool mayLiveOut(Register VirtReg);
    bool mayLiveIn(Register VirtReg);

    void dumpState();
  };

} // end anonymous namespace

char RegAllocFast::ID = 0;

INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
                false)

void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
  PhysRegState[PhysReg] = NewState;
}

/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(Register VirtReg) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  // Already has space allocated?
  if (SS != -1)
    return SS;

  // Allocate a new stack object for this spill location...
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  unsigned Size = TRI->getSpillSize(RC);
  unsigned Align = TRI->getSpillAlignment(RC);
  int FrameIdx = MFI->CreateSpillStackObject(Size, Align);

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}

/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(Register VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
    // Cannot be live-out if there are no successors.
    return !MBB->succ_empty();
  }

  // If this block loops back to itself, it would be necessary to check whether
  // the use comes after the def.
  if (MBB->isSuccessor(MBB)) {
    MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
    return true;
  }

  // See if the first \p Limit uses of the register are all in the current
  // block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
    if (UseInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      // Cannot be live-out if there are no successors.
      return !MBB->succ_empty();
    }
  }

  return false;
}

/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(Register VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
    return !MBB->pred_empty();

  // See if the first \p Limit def of the register are all in the current block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
    if (DefInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      return !MBB->pred_empty();
    }
  }

  return false;
}

/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
                         MCPhysReg AssignedReg, bool Kill) {
  LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
                    << " in " << printReg(AssignedReg, TRI));
  int FI = getStackSpaceFor(VirtReg);
  LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
  ++NumStores;

  // If this register is used by DBG_VALUE then insert new DBG_VALUE to
  // identify spilled location as the place to find corresponding variable's
  // value.
  SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
  for (MachineInstr *DBG : LRIDbgValues) {
    MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
    assert(NewDV->getParent() == MBB && "dangling parent pointer");
    (void)NewDV;
    LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
  }
  // Now this register is spilled there is should not be any DBG_VALUE
  // pointing to this register because they are all pointing to spilled value
  // now.
  LRIDbgValues.clear();
}

/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
                          MCPhysReg PhysReg) {
  LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
                    << printReg(PhysReg, TRI) << '\n');
  int FI = getStackSpaceFor(VirtReg);
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
  ++NumLoads;
}

/// Return true if MO is the only remaining reference to its virtual register,
/// and it is guaranteed to be a block-local register.
bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
  // If the register has ever been spilled or reloaded, we conservatively assume
  // it is a global register used in multiple blocks.
  if (StackSlotForVirtReg[MO.getReg()] != -1)
    return false;

  // Check that the use/def chain has exactly one operand - MO.
  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
  if (&*I != &MO)
    return false;
  return ++I == MRI->reg_nodbg_end();
}

/// Set kill flags on last use of a virtual register.
void RegAllocFast::addKillFlag(const LiveReg &LR) {
  if (!LR.LastUse) return;
  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    if (MO.getReg() == LR.PhysReg)
      MO.setIsKill();
    // else, don't do anything we are problably redefining a
    // subreg of this register and given we don't track which
    // lanes are actually dead, we cannot insert a kill flag here.
    // Otherwise we may end up in a situation like this:
    // ... = (MO) physreg:sub1, implicit killed physreg
    // ... <== Here we would allow later pass to reuse physreg:sub1
    //         which is potentially wrong.
    // LR:sub0 = ...
    // ... = LR.sub1 <== This is going to use physreg:sub1
  }
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(LiveReg &LR) {
  addKillFlag(LR);
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
         "Broken RegState mapping");
  setPhysRegState(LR.PhysReg, regFree);
  LR.PhysReg = 0;
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(Register VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "killVirtReg needs a virtual register");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
    killVirtReg(*LRI);
}

/// This method spills the value specified by VirtReg into the corresponding
/// stack slot if needed.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
                                Register VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "Spilling a physical register is illegal!");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
         "Spilling unmapped virtual register");
  spillVirtReg(MI, *LRI);
}

/// Do the actual work of spilling.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");

  if (LR.Dirty) {
    // If this physreg is used by the instruction, we want to kill it on the
    // instruction, not on the spill.
    bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
    LR.Dirty = false;

    spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);

    if (SpillKill)
      LR.LastUse = nullptr; // Don't kill register again
  }
  killVirtReg(LR);
}

/// Spill all dirty virtregs without killing them.
void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
  if (LiveVirtRegs.empty())
    return;
  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
  // of spilling here is deterministic, if arbitrary.
  for (LiveReg &LR : LiveVirtRegs) {
    if (!LR.PhysReg)
      continue;
    if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
      continue;
    spillVirtReg(MI, LR);
  }
  LiveVirtRegs.clear();
}

/// Handle the direct use of a physical register.  Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
void RegAllocFast::usePhysReg(MachineOperand &MO) {
  // Ignore undef uses.
  if (MO.isUndef())
    return;

  Register PhysReg = MO.getReg();
  assert(PhysReg.isPhysical() && "Bad usePhysReg operand");

  markRegUsedInInstr(PhysReg);
  switch (PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regReserved:
    PhysRegState[PhysReg] = regFree;
    LLVM_FALLTHROUGH;
  case regFree:
    MO.setIsKill();
    return;
  default:
    // The physreg was allocated to a virtual register. That means the value we
    // wanted has been clobbered.
    llvm_unreachable("Instruction uses an allocated register");
  }

  // Maybe a superregister is reserved?
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regReserved:
      // Either PhysReg is a subregister of Alias and we mark the
      // whole register as free, or PhysReg is the superregister of
      // Alias and we mark all the aliases as disabled before freeing
      // PhysReg.
      // In the latter case, since PhysReg was disabled, this means that
      // its value is defined only by physical sub-registers. This check
      // is performed by the assert of the default case in this loop.
      // Note: The value of the superregister may only be partial
      // defined, that is why regDisabled is a valid state for aliases.
      assert((TRI->isSuperRegister(PhysReg, Alias) ||
              TRI->isSuperRegister(Alias, PhysReg)) &&
             "Instruction is not using a subregister of a reserved register");
      LLVM_FALLTHROUGH;
    case regFree:
      if (TRI->isSuperRegister(PhysReg, Alias)) {
        // Leave the superregister in the working set.
        setPhysRegState(Alias, regFree);
        MO.getParent()->addRegisterKilled(Alias, TRI, true);
        return;
      }
      // Some other alias was in the working set - clear it.
      setPhysRegState(Alias, regDisabled);
      break;
    default:
      llvm_unreachable("Instruction uses an alias of an allocated register");
    }
  }

  // All aliases are disabled, bring register into working set.
  setPhysRegState(PhysReg, regFree);
  MO.setIsKill();
}

/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
                                 MCPhysReg PhysReg, RegState NewState) {
  markRegUsedInInstr(PhysReg);
  switch (Register VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  default:
    spillVirtReg(MI, VirtReg);
    LLVM_FALLTHROUGH;
  case regFree:
  case regReserved:
    setPhysRegState(PhysReg, NewState);
    return;
  }

  // This is a disabled register, disable all aliases.
  setPhysRegState(PhysReg, NewState);
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (Register VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    default:
      spillVirtReg(MI, VirtReg);
      LLVM_FALLTHROUGH;
    case regFree:
    case regReserved:
      setPhysRegState(Alias, regDisabled);
      if (TRI->isSuperRegister(PhysReg, Alias))
        return;
      break;
    }
  }
}

/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
  if (isRegUsedInInstr(PhysReg)) {
    LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
                      << " is already used in instr.\n");
    return spillImpossible;
  }
  switch (Register VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regFree:
    return 0;
  case regReserved:
    LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
                      << printReg(PhysReg, TRI) << " is reserved already.\n");
    return spillImpossible;
  default: {
    LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
    assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
           "Missing VirtReg entry");
    return LRI->Dirty ? spillDirty : spillClean;
  }
  }

  // This is a disabled register, add up cost of aliases.
  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
  unsigned Cost = 0;
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (Register VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regFree:
      ++Cost;
      break;
    case regReserved:
      return spillImpossible;
    default: {
      LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      Cost += LRI->Dirty ? spillDirty : spillClean;
      break;
    }
    }
  }
  return Cost;
}

/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now.  The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
  Register VirtReg = LR.VirtReg;
  LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
                    << printReg(PhysReg, TRI) << '\n');
  assert(LR.PhysReg == 0 && "Already assigned a physreg");
  assert(PhysReg != 0 && "Trying to assign no register");
  LR.PhysReg = PhysReg;
  setPhysRegState(PhysReg, VirtReg);
}

static bool isCoalescable(const MachineInstr &MI) {
  return MI.isFullCopy();
}

Register RegAllocFast::traceCopyChain(Register Reg) const {
  static const unsigned ChainLengthLimit = 3;
  unsigned C = 0;
  do {
    if (Reg.isPhysical())
      return Reg;
    assert(Reg.isVirtual());

    MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
    if (!VRegDef || !isCoalescable(*VRegDef))
      return 0;
    Reg = VRegDef->getOperand(1).getReg();
  } while (++C <= ChainLengthLimit);
  return 0;
}

/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
Register RegAllocFast::traceCopies(Register VirtReg) const {
  static const unsigned DefLimit = 3;
  unsigned C = 0;
  for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
    if (isCoalescable(MI)) {
      Register Reg = MI.getOperand(1).getReg();
      Reg = traceCopyChain(Reg);
      if (Reg.isValid())
        return Reg;
    }

    if (++C >= DefLimit)
      break;
  }
  return Register();
}

/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) {
  const Register VirtReg = LR.VirtReg;

  assert(Register::isVirtualRegister(VirtReg) &&
         "Can only allocate virtual registers");

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
                    << " in class " << TRI->getRegClassName(&RC)
                    << " with hint " << printReg(Hint0, TRI) << '\n');

  // Take hint when possible.
  if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) &&
      RC.contains(Hint0)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint0);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint0, regFree);
      assignVirtToPhysReg(LR, Hint0);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << "occupied\n");
    }
  } else {
    Hint0 = Register();
  }

  // Try other hint.
  Register Hint1 = traceCopies(VirtReg);
  if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) &&
      RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint1);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint1, regFree);
      assignVirtToPhysReg(LR, Hint1);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << "occupied\n");
    }
  } else {
    Hint1 = Register();
  }

  MCPhysReg BestReg = 0;
  unsigned BestCost = spillImpossible;
  ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
  for (MCPhysReg PhysReg : AllocationOrder) {
    LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
    unsigned Cost = calcSpillCost(PhysReg);
    LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
    // Immediate take a register with cost 0.
    if (Cost == 0) {
      assignVirtToPhysReg(LR, PhysReg);
      return;
    }

    if (PhysReg == Hint1 || PhysReg == Hint0)
      Cost -= spillPrefBonus;

    if (Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = Cost;
    }
  }

  if (!BestReg) {
    // Nothing we can do: Report an error and keep going with an invalid
    // allocation.
    if (MI.isInlineAsm())
      MI.emitError("inline assembly requires more registers than available");
    else
      MI.emitError("ran out of registers during register allocation");
    definePhysReg(MI, *AllocationOrder.begin(), regFree);
    assignVirtToPhysReg(LR, *AllocationOrder.begin());
    return;
  }

  definePhysReg(MI, BestReg, regFree);
  assignVirtToPhysReg(LR, BestReg);
}

void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
  assert(MO.isUndef() && "expected undef use");
  Register VirtReg = MO.getReg();
  assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");

  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
  MCPhysReg PhysReg;
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    PhysReg = LRI->PhysReg;
  } else {
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
    PhysReg = AllocationOrder[0];
  }

  unsigned SubRegIdx = MO.getSubReg();
  if (SubRegIdx != 0) {
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
    MO.setSubReg(0);
  }
  MO.setReg(PhysReg);
  MO.setIsRenamable(true);
}

/// Allocates a register for VirtReg and mark it as dirty.
MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
                                      Register VirtReg, Register Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (!LRI->PhysReg) {
    // If there is no hint, peek at the only use of this register.
    if ((!Hint || !Hint.isPhysical()) &&
        MRI->hasOneNonDBGUse(VirtReg)) {
      const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
      // It's a copy, use the destination register as a hint.
      if (UseMI.isCopyLike())
        Hint = UseMI.getOperand(0).getReg();
    }
    allocVirtReg(MI, *LRI, Hint);
  } else if (LRI->LastUse) {
    // Redefining a live register - kill at the last use, unless it is this
    // instruction defining VirtReg multiple times.
    if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
      addKillFlag(*LRI);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  LRI->Dirty = true;
  markRegUsedInInstr(LRI->PhysReg);
  return LRI->PhysReg;
}

/// Make sure VirtReg is available in a physreg and return it.
RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
                                                   unsigned OpNum,
                                                   Register VirtReg,
                                                   Register Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  MachineOperand &MO = MI.getOperand(OpNum);
  if (!LRI->PhysReg) {
    allocVirtReg(MI, *LRI, Hint);
    reload(MI, VirtReg, LRI->PhysReg);
  } else if (LRI->Dirty) {
    if (isLastUseOfLocalReg(MO)) {
      LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
      if (MO.isUse())
        MO.setIsKill();
      else
        MO.setIsDead();
    } else if (MO.isKill()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
      MO.setIsKill(false);
    } else if (MO.isDead()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
      MO.setIsDead(false);
    }
  } else if (MO.isKill()) {
    // We must remove kill flags from uses of reloaded registers because the
    // register would be killed immediately, and there might be a second use:
    //   %foo = OR killed %x, %x
    // This would cause a second reload of %x into a different register.
    LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
    MO.setIsKill(false);
  } else if (MO.isDead()) {
    LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
    MO.setIsDead(false);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  markRegUsedInInstr(LRI->PhysReg);
  return *LRI;
}

/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers.  Return true if the operand kills its
/// register.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
                              MCPhysReg PhysReg) {
  bool Dead = MO.isDead();
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    MO.setIsRenamable(true);
    return MO.isKill() || Dead;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
  MO.setIsRenamable(true);
  MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI.addRegisterKilled(PhysReg, TRI, true);
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef())
    MI.addRegisterDefined(PhysReg, TRI);

  return Dead;
}

// Handles special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RegAllocFast::handleThroughOperands(MachineInstr &MI,
                                         SmallVectorImpl<Register> &VirtDead) {
  LLVM_DEBUG(dbgs() << "Scanning for through registers:");
  SmallSet<Register, 8> ThroughRegs;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Reg.isVirtual())
      continue;
    if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
        (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
      if (ThroughRegs.insert(Reg).second)
        LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
    }
  }

  // If any physreg defines collide with preallocated through registers,
  // we must spill and reallocate.
  LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef()) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Reg.isPhysical())
      continue;
    markRegUsedInInstr(Reg);
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      if (ThroughRegs.count(PhysRegState[*AI]))
        definePhysReg(MI, *AI, regFree);
    }
  }

  SmallVector<Register, 8> PartialDefs;
  LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isUse()) {
      if (!MO.isTied()) continue;
      LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
                        << ") is tied to operand " << MI.findTiedOperandIdx(I)
                        << ".\n");
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      MCPhysReg PhysReg = LR.PhysReg;
      setPhysReg(MI, MO, PhysReg);
      // Note: we don't update the def operand yet. That would cause the normal
      // def-scan to attempt spilling.
    } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
      LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
      // Reload the register, but don't assign to the operand just yet.
      // That would confuse the later phys-def processing pass.
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      PartialDefs.push_back(LR.PhysReg);
    }
  }

  LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (!MO.isEarlyClobber())
      continue;
    // Note: defineVirtReg may invalidate MO.
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg))
      VirtDead.push_back(Reg);
  }

  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
  UsedInInstr.clear();
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Reg.isPhysical())
      continue;
    LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
                      << " as used in instr\n");
    markRegUsedInInstr(Reg);
  }

  // Also mark PartialDefs as used to avoid reallocation.
  for (Register PartialDef : PartialDefs)
    markRegUsedInInstr(PartialDef);
}

#ifndef NDEBUG
void RegAllocFast::dumpState() {
  for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
    if (PhysRegState[Reg] == regDisabled) continue;
    dbgs() << " " << printReg(Reg, TRI);
    switch(PhysRegState[Reg]) {
    case regFree:
      break;
    case regReserved:
      dbgs() << "*";
      break;
    default: {
      dbgs() << '=' << printReg(PhysRegState[Reg]);
      LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      if (LRI->Dirty)
        dbgs() << "*";
      assert(LRI->PhysReg == Reg && "Bad inverse map");
      break;
    }
    }
  }
  dbgs() << '\n';
  // Check that LiveVirtRegs is the inverse.
  for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
       e = LiveVirtRegs.end(); i != e; ++i) {
    if (!i->PhysReg)
      continue;
    assert(i->VirtReg.isVirtual() && "Bad map key");
    assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
    assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
  }
}
#endif

void RegAllocFast::allocateInstruction(MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // If this is a copy, we may be able to coalesce.
  Register CopySrcReg;
  Register CopyDstReg;
  unsigned CopySrcSub = 0;
  unsigned CopyDstSub = 0;
  if (MI.isCopy()) {
    CopyDstReg = MI.getOperand(0).getReg();
    CopySrcReg = MI.getOperand(1).getReg();
    CopyDstSub = MI.getOperand(0).getSubReg();
    CopySrcSub = MI.getOperand(1).getSubReg();
  }

  // Track registers used by instruction.
  UsedInInstr.clear();

  // First scan.
  // Mark physreg uses and early clobbers as used.
  // Find the end of the virtreg operands
  unsigned VirtOpEnd = 0;
  bool hasTiedOps = false;
  bool hasEarlyClobbers = false;
  bool hasPartialRedefs = false;
  bool hasPhysDefs = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    // Make sure MRI knows about registers clobbered by regmasks.
    if (MO.isRegMask()) {
      MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
      continue;
    }
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Reg) continue;
    if (Register::isVirtualRegister(Reg)) {
      VirtOpEnd = i+1;
      if (MO.isUse()) {
        hasTiedOps = hasTiedOps ||
                            MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
      } else {
        if (MO.isEarlyClobber())
          hasEarlyClobbers = true;
        if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
          hasPartialRedefs = true;
      }
      continue;
    }
    if (!MRI->isAllocatable(Reg)) continue;
    if (MO.isUse()) {
      usePhysReg(MO);
    } else if (MO.isEarlyClobber()) {
      definePhysReg(MI, Reg,
                    (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
      hasEarlyClobbers = true;
    } else
      hasPhysDefs = true;
  }

  // The instruction may have virtual register operands that must be allocated
  // the same register at use-time and def-time: early clobbers and tied
  // operands. If there are also physical defs, these registers must avoid
  // both physical defs and uses, making them more constrained than normal
  // operands.
  // Similarly, if there are multiple defs and tied operands, we must make
  // sure the same register is allocated to uses and defs.
  // We didn't detect inline asm tied operands above, so just make this extra
  // pass for all inline asm.
  if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
      (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
    handleThroughOperands(MI, VirtDead);
    // Don't attempt coalescing when we have funny stuff going on.
    CopyDstReg = Register();
    // Pretend we have early clobbers so the use operands get marked below.
    // This is not necessary for the common case of a single tied use.
    hasEarlyClobbers = true;
  }

  // Second scan.
  // Allocate virtreg uses.
  bool HasUndefUse = false;
  for (unsigned I = 0; I != VirtOpEnd; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Reg.isVirtual())
      continue;
    if (MO.isUse()) {
      if (MO.isUndef()) {
        HasUndefUse = true;
        // There is no need to allocate a register for an undef use.
        continue;
      }

      // Populate MayLiveAcrossBlocks in case the use block is allocated before
      // the def block (removing the vreg uses).
      mayLiveIn(Reg);

      LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
      MCPhysReg PhysReg = LR.PhysReg;
      CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
      if (setPhysReg(MI, MO, PhysReg))
        killVirtReg(LR);
    }
  }

  // Allocate undef operands. This is a separate step because in a situation
  // like  ` = OP undef %X, %X`    both operands need the same register assign
  // so we should perform the normal assignment first.
  if (HasUndefUse) {
    for (MachineOperand &MO : MI.uses()) {
      if (!MO.isReg() || !MO.isUse())
        continue;
      Register Reg = MO.getReg();
      if (!Reg.isVirtual())
        continue;

      assert(MO.isUndef() && "Should only have undef virtreg uses left");
      allocVirtRegUndef(MO);
    }
  }

  // Track registers defined by instruction - early clobbers and tied uses at
  // this point.
  UsedInInstr.clear();
  if (hasEarlyClobbers) {
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg()) continue;
      Register Reg = MO.getReg();
      if (!Reg || !Reg.isPhysical())
        continue;
      // Look for physreg defs and tied uses.
      if (!MO.isDef() && !MO.isTied()) continue;
      markRegUsedInInstr(Reg);
    }
  }

  unsigned DefOpEnd = MI.getNumOperands();
  if (MI.isCall()) {
    // Spill all virtregs before a call. This serves one purpose: If an
    // exception is thrown, the landing pad is going to expect to find
    // registers in their spill slots.
    // Note: although this is appealing to just consider all definitions
    // as call-clobbered, this is not correct because some of those
    // definitions may be used later on and we do not want to reuse
    // those for virtual registers in between.
    LLVM_DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
    spillAll(MI, /*OnlyLiveOut*/ false);
  }

  // Third scan.
  // Mark all physreg defs as used before allocating virtreg defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg))
      continue;
    definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
  }

  // Fourth scan.
  // Allocate defs and collect dead defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    // We have already dealt with phys regs in the previous scan.
    if (Reg.isPhysical())
      continue;
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
      VirtDead.push_back(Reg);
      CopyDstReg = Register(); // cancel coalescing;
    } else
      CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
  }

  // Kill dead defs after the scan to ensure that multiple defs of the same
  // register are allocated identically. We didn't need to do this for uses
  // because we are crerating our own kill flags, and they are always at the
  // last use.
  for (Register VirtReg : VirtDead)
    killVirtReg(VirtReg);
  VirtDead.clear();

  LLVM_DEBUG(dbgs() << "<< " << MI);
  if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
    LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
    Coalesced.push_back(&MI);
  }
}

void RegAllocFast::handleDebugValue(MachineInstr &MI) {
  MachineOperand &MO = MI.getOperand(0);

  // Ignore DBG_VALUEs that aren't based on virtual registers. These are
  // mostly constants and frame indices.
  if (!MO.isReg())
    return;
  Register Reg = MO.getReg();
  if (!Register::isVirtualRegister(Reg))
    return;

  // See if this virtual register has already been allocated to a physical
  // register or spilled to a stack slot.
  LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    setPhysReg(MI, MO, LRI->PhysReg);
  } else {
    int SS = StackSlotForVirtReg[Reg];
    if (SS != -1) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      updateDbgValueForSpill(MI, SS);
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
      return;
    }

    // We can't allocate a physreg for a DebugValue, sorry!
    LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    MO.setReg(Register());
  }

  // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
  // that future spills of Reg will have DBG_VALUEs.
  LiveDbgValueMap[Reg].push_back(&MI);
}

void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
  this->MBB = &MBB;
  LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);

  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");

  MachineBasicBlock::iterator MII = MBB.begin();

  // Add live-in registers as live.
  for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins())
    if (MRI->isAllocatable(LI.PhysReg))
      definePhysReg(MII, LI.PhysReg, regReserved);

  VirtDead.clear();
  Coalesced.clear();

  // Otherwise, sequentially allocate each instruction in the MBB.
  for (MachineInstr &MI : MBB) {
    LLVM_DEBUG(
      dbgs() << "\n>> " << MI << "Regs:";
      dumpState()
    );

    // Special handling for debug values. Note that they are not allowed to
    // affect codegen of the other instructions in any way.
    if (MI.isDebugValue()) {
      handleDebugValue(MI);
      continue;
    }

    allocateInstruction(MI);
  }

  // Spill all physical registers holding virtual registers now.
  LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
  spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);

  // Erase all the coalesced copies. We are delaying it until now because
  // LiveVirtRegs might refer to the instrs.
  for (MachineInstr *MI : Coalesced)
    MBB.erase(MI);
  NumCoalesced += Coalesced.size();

  LLVM_DEBUG(MBB.dump());
}

bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  TRI = STI.getRegisterInfo();
  TII = STI.getInstrInfo();
  MFI = &MF.getFrameInfo();
  MRI->freezeReservedRegs(MF);
  RegClassInfo.runOnMachineFunction(MF);
  UsedInInstr.clear();
  UsedInInstr.setUniverse(TRI->getNumRegUnits());

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned NumVirtRegs = MRI->getNumVirtRegs();
  StackSlotForVirtReg.resize(NumVirtRegs);
  LiveVirtRegs.setUniverse(NumVirtRegs);
  MayLiveAcrossBlocks.clear();
  MayLiveAcrossBlocks.resize(NumVirtRegs);

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineBasicBlock &MBB : MF)
    allocateBasicBlock(MBB);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers.
  MRI->clearVirtRegs();

  StackSlotForVirtReg.clear();
  LiveDbgValueMap.clear();
  return true;
}

FunctionPass *llvm::createFastRegisterAllocator() {
  return new RegAllocFast();
}