DwarfDebug.cpp 116 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf debug info into asm files.
//
//===----------------------------------------------------------------------===//

#include "DwarfDebug.h"
#include "ByteStreamer.h"
#include "DIEHash.h"
#include "DebugLocEntry.h"
#include "DebugLocStream.h"
#include "DwarfCompileUnit.h"
#include "DwarfExpression.h"
#include "DwarfFile.h"
#include "DwarfUnit.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AccelTable.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "dwarfdebug"

STATISTIC(NumCSParams, "Number of dbg call site params created");

static cl::opt<bool>
DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
                         cl::desc("Disable debug info printing"));

static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
    "use-dwarf-ranges-base-address-specifier", cl::Hidden,
    cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));

static cl::opt<bool> GenerateARangeSection("generate-arange-section",
                                           cl::Hidden,
                                           cl::desc("Generate dwarf aranges"),
                                           cl::init(false));

static cl::opt<bool>
    GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
                           cl::desc("Generate DWARF4 type units."),
                           cl::init(false));

static cl::opt<bool> SplitDwarfCrossCuReferences(
    "split-dwarf-cross-cu-references", cl::Hidden,
    cl::desc("Enable cross-cu references in DWO files"), cl::init(false));

enum DefaultOnOff { Default, Enable, Disable };

static cl::opt<DefaultOnOff> UnknownLocations(
    "use-unknown-locations", cl::Hidden,
    cl::desc("Make an absence of debug location information explicit."),
    cl::values(clEnumVal(Default, "At top of block or after label"),
               clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
    cl::init(Default));

static cl::opt<AccelTableKind> AccelTables(
    "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
    cl::values(clEnumValN(AccelTableKind::Default, "Default",
                          "Default for platform"),
               clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
               clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
               clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
    cl::init(AccelTableKind::Default));

static cl::opt<DefaultOnOff>
DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
                 cl::desc("Use inlined strings rather than string section."),
                 cl::values(clEnumVal(Default, "Default for platform"),
                            clEnumVal(Enable, "Enabled"),
                            clEnumVal(Disable, "Disabled")),
                 cl::init(Default));

static cl::opt<bool>
    NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
                         cl::desc("Disable emission .debug_ranges section."),
                         cl::init(false));

static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
    "dwarf-sections-as-references", cl::Hidden,
    cl::desc("Use sections+offset as references rather than labels."),
    cl::values(clEnumVal(Default, "Default for platform"),
               clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
    cl::init(Default));

enum LinkageNameOption {
  DefaultLinkageNames,
  AllLinkageNames,
  AbstractLinkageNames
};

static cl::opt<LinkageNameOption>
    DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
                      cl::desc("Which DWARF linkage-name attributes to emit."),
                      cl::values(clEnumValN(DefaultLinkageNames, "Default",
                                            "Default for platform"),
                                 clEnumValN(AllLinkageNames, "All", "All"),
                                 clEnumValN(AbstractLinkageNames, "Abstract",
                                            "Abstract subprograms")),
                      cl::init(DefaultLinkageNames));

static const char *const DWARFGroupName = "dwarf";
static const char *const DWARFGroupDescription = "DWARF Emission";
static const char *const DbgTimerName = "writer";
static const char *const DbgTimerDescription = "DWARF Debug Writer";
static constexpr unsigned ULEB128PadSize = 4;

void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
  getActiveStreamer().EmitInt8(
      Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
                  : dwarf::OperationEncodingString(Op));
}

void DebugLocDwarfExpression::emitSigned(int64_t Value) {
  getActiveStreamer().EmitSLEB128(Value, Twine(Value));
}

void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
  getActiveStreamer().EmitULEB128(Value, Twine(Value));
}

void DebugLocDwarfExpression::emitData1(uint8_t Value) {
  getActiveStreamer().EmitInt8(Value, Twine(Value));
}

void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
  assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
  getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
}

bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
                                              unsigned MachineReg) {
  // This information is not available while emitting .debug_loc entries.
  return false;
}

void DebugLocDwarfExpression::enableTemporaryBuffer() {
  assert(!IsBuffering && "Already buffering?");
  if (!TmpBuf)
    TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
  IsBuffering = true;
}

void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }

unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
  return TmpBuf ? TmpBuf->Bytes.size() : 0;
}

void DebugLocDwarfExpression::commitTemporaryBuffer() {
  if (!TmpBuf)
    return;
  for (auto Byte : enumerate(TmpBuf->Bytes)) {
    const char *Comment = (Byte.index() < TmpBuf->Comments.size())
                              ? TmpBuf->Comments[Byte.index()].c_str()
                              : "";
    OutBS.EmitInt8(Byte.value(), Comment);
  }
  TmpBuf->Bytes.clear();
  TmpBuf->Comments.clear();
}

const DIType *DbgVariable::getType() const {
  return getVariable()->getType();
}

/// Get .debug_loc entry for the instruction range starting at MI.
static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
  const DIExpression *Expr = MI->getDebugExpression();
  assert(MI->getNumOperands() == 4);
  if (MI->getOperand(0).isReg()) {
    auto RegOp = MI->getOperand(0);
    auto Op1 = MI->getOperand(1);
    // If the second operand is an immediate, this is a
    // register-indirect address.
    assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
    MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
    return DbgValueLoc(Expr, MLoc);
  }
  if (MI->getOperand(0).isTargetIndex()) {
    auto Op = MI->getOperand(0);
    return DbgValueLoc(Expr,
                       TargetIndexLocation(Op.getIndex(), Op.getOffset()));
  }
  if (MI->getOperand(0).isImm())
    return DbgValueLoc(Expr, MI->getOperand(0).getImm());
  if (MI->getOperand(0).isFPImm())
    return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
  if (MI->getOperand(0).isCImm())
    return DbgValueLoc(Expr, MI->getOperand(0).getCImm());

  llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
}

void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
  assert(FrameIndexExprs.empty() && "Already initialized?");
  assert(!ValueLoc.get() && "Already initialized?");

  assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
  assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
         "Wrong inlined-at");

  ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
  if (auto *E = DbgValue->getDebugExpression())
    if (E->getNumElements())
      FrameIndexExprs.push_back({0, E});
}

ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
  if (FrameIndexExprs.size() == 1)
    return FrameIndexExprs;

  assert(llvm::all_of(FrameIndexExprs,
                      [](const FrameIndexExpr &A) {
                        return A.Expr->isFragment();
                      }) &&
         "multiple FI expressions without DW_OP_LLVM_fragment");
  llvm::sort(FrameIndexExprs,
             [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
               return A.Expr->getFragmentInfo()->OffsetInBits <
                      B.Expr->getFragmentInfo()->OffsetInBits;
             });

  return FrameIndexExprs;
}

void DbgVariable::addMMIEntry(const DbgVariable &V) {
  assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
  assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
  assert(V.getVariable() == getVariable() && "conflicting variable");
  assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");

  assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
  assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");

  // FIXME: This logic should not be necessary anymore, as we now have proper
  // deduplication. However, without it, we currently run into the assertion
  // below, which means that we are likely dealing with broken input, i.e. two
  // non-fragment entries for the same variable at different frame indices.
  if (FrameIndexExprs.size()) {
    auto *Expr = FrameIndexExprs.back().Expr;
    if (!Expr || !Expr->isFragment())
      return;
  }

  for (const auto &FIE : V.FrameIndexExprs)
    // Ignore duplicate entries.
    if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
          return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
        }))
      FrameIndexExprs.push_back(FIE);

  assert((FrameIndexExprs.size() == 1 ||
          llvm::all_of(FrameIndexExprs,
                       [](FrameIndexExpr &FIE) {
                         return FIE.Expr && FIE.Expr->isFragment();
                       })) &&
         "conflicting locations for variable");
}

static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
                                            bool GenerateTypeUnits,
                                            DebuggerKind Tuning,
                                            const Triple &TT) {
  // Honor an explicit request.
  if (AccelTables != AccelTableKind::Default)
    return AccelTables;

  // Accelerator tables with type units are currently not supported.
  if (GenerateTypeUnits)
    return AccelTableKind::None;

  // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
  // always implies debug_names. For lower standard versions we use apple
  // accelerator tables on apple platforms and debug_names elsewhere.
  if (DwarfVersion >= 5)
    return AccelTableKind::Dwarf;
  if (Tuning == DebuggerKind::LLDB)
    return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
                                   : AccelTableKind::Dwarf;
  return AccelTableKind::None;
}

DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
    : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
      InfoHolder(A, "info_string", DIEValueAllocator),
      SkeletonHolder(A, "skel_string", DIEValueAllocator),
      IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
  const Triple &TT = Asm->TM.getTargetTriple();

  // Make sure we know our "debugger tuning".  The target option takes
  // precedence; fall back to triple-based defaults.
  if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
    DebuggerTuning = Asm->TM.Options.DebuggerTuning;
  else if (IsDarwin)
    DebuggerTuning = DebuggerKind::LLDB;
  else if (TT.isPS4CPU())
    DebuggerTuning = DebuggerKind::SCE;
  else
    DebuggerTuning = DebuggerKind::GDB;

  if (DwarfInlinedStrings == Default)
    UseInlineStrings = TT.isNVPTX();
  else
    UseInlineStrings = DwarfInlinedStrings == Enable;

  UseLocSection = !TT.isNVPTX();

  HasAppleExtensionAttributes = tuneForLLDB();

  // Handle split DWARF.
  HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();

  // SCE defaults to linkage names only for abstract subprograms.
  if (DwarfLinkageNames == DefaultLinkageNames)
    UseAllLinkageNames = !tuneForSCE();
  else
    UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;

  unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
  unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
                                    : MMI->getModule()->getDwarfVersion();
  // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
  DwarfVersion =
      TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);

  UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();

  // Use sections as references. Force for NVPTX.
  if (DwarfSectionsAsReferences == Default)
    UseSectionsAsReferences = TT.isNVPTX();
  else
    UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;

  // Don't generate type units for unsupported object file formats.
  GenerateTypeUnits =
      A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;

  TheAccelTableKind = computeAccelTableKind(
      DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());

  // Work around a GDB bug. GDB doesn't support the standard opcode;
  // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
  // is defined as of DWARF 3.
  // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
  // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
  UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;

  // GDB does not fully support the DWARF 4 representation for bitfields.
  UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();

  // The DWARF v5 string offsets table has - possibly shared - contributions
  // from each compile and type unit each preceded by a header. The string
  // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
  // a monolithic string offsets table without any header.
  UseSegmentedStringOffsetsTable = DwarfVersion >= 5;

  Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
}

// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
DwarfDebug::~DwarfDebug() = default;

static bool isObjCClass(StringRef Name) {
  return Name.startswith("+") || Name.startswith("-");
}

static bool hasObjCCategory(StringRef Name) {
  if (!isObjCClass(Name))
    return false;

  return Name.find(") ") != StringRef::npos;
}

static void getObjCClassCategory(StringRef In, StringRef &Class,
                                 StringRef &Category) {
  if (!hasObjCCategory(In)) {
    Class = In.slice(In.find('[') + 1, In.find(' '));
    Category = "";
    return;
  }

  Class = In.slice(In.find('[') + 1, In.find('('));
  Category = In.slice(In.find('[') + 1, In.find(' '));
}

static StringRef getObjCMethodName(StringRef In) {
  return In.slice(In.find(' ') + 1, In.find(']'));
}

// Add the various names to the Dwarf accelerator table names.
void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
                                    const DISubprogram *SP, DIE &Die) {
  if (getAccelTableKind() != AccelTableKind::Apple &&
      CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
    return;

  if (!SP->isDefinition())
    return;

  if (SP->getName() != "")
    addAccelName(CU, SP->getName(), Die);

  // If the linkage name is different than the name, go ahead and output that as
  // well into the name table. Only do that if we are going to actually emit
  // that name.
  if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
      (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
    addAccelName(CU, SP->getLinkageName(), Die);

  // If this is an Objective-C selector name add it to the ObjC accelerator
  // too.
  if (isObjCClass(SP->getName())) {
    StringRef Class, Category;
    getObjCClassCategory(SP->getName(), Class, Category);
    addAccelObjC(CU, Class, Die);
    if (Category != "")
      addAccelObjC(CU, Category, Die);
    // Also add the base method name to the name table.
    addAccelName(CU, getObjCMethodName(SP->getName()), Die);
  }
}

/// Check whether we should create a DIE for the given Scope, return true
/// if we don't create a DIE (the corresponding DIE is null).
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
  if (Scope->isAbstractScope())
    return false;

  // We don't create a DIE if there is no Range.
  const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
  if (Ranges.empty())
    return true;

  if (Ranges.size() > 1)
    return false;

  // We don't create a DIE if we have a single Range and the end label
  // is null.
  return !getLabelAfterInsn(Ranges.front().second);
}

template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
  F(CU);
  if (auto *SkelCU = CU.getSkeleton())
    if (CU.getCUNode()->getSplitDebugInlining())
      F(*SkelCU);
}

bool DwarfDebug::shareAcrossDWOCUs() const {
  return SplitDwarfCrossCuReferences;
}

void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
                                                     LexicalScope *Scope) {
  assert(Scope && Scope->getScopeNode());
  assert(Scope->isAbstractScope());
  assert(!Scope->getInlinedAt());

  auto *SP = cast<DISubprogram>(Scope->getScopeNode());

  // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
  // was inlined from another compile unit.
  if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
    // Avoid building the original CU if it won't be used
    SrcCU.constructAbstractSubprogramScopeDIE(Scope);
  else {
    auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
    if (auto *SkelCU = CU.getSkeleton()) {
      (shareAcrossDWOCUs() ? CU : SrcCU)
          .constructAbstractSubprogramScopeDIE(Scope);
      if (CU.getCUNode()->getSplitDebugInlining())
        SkelCU->constructAbstractSubprogramScopeDIE(Scope);
    } else
      CU.constructAbstractSubprogramScopeDIE(Scope);
  }
}

/// Try to interpret values loaded into registers that forward parameters
/// for \p CallMI. Store parameters with interpreted value into \p Params.
static void collectCallSiteParameters(const MachineInstr *CallMI,
                                      ParamSet &Params) {
  auto *MF = CallMI->getMF();
  auto CalleesMap = MF->getCallSitesInfo();
  auto CallFwdRegsInfo = CalleesMap.find(CallMI);

  // There is no information for the call instruction.
  if (CallFwdRegsInfo == CalleesMap.end())
    return;

  auto *MBB = CallMI->getParent();
  const auto &TRI = MF->getSubtarget().getRegisterInfo();
  const auto &TII = MF->getSubtarget().getInstrInfo();
  const auto &TLI = MF->getSubtarget().getTargetLowering();

  // Skip the call instruction.
  auto I = std::next(CallMI->getReverseIterator());

  DenseSet<unsigned> ForwardedRegWorklist;
  // Add all the forwarding registers into the ForwardedRegWorklist.
  for (auto ArgReg : CallFwdRegsInfo->second) {
    bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
    assert(InsertedReg && "Single register used to forward two arguments?");
    (void)InsertedReg;
  }

  // We erase, from the ForwardedRegWorklist, those forwarding registers for
  // which we successfully describe a loaded value (by using
  // the describeLoadedValue()). For those remaining arguments in the working
  // list, for which we do not describe a loaded value by
  // the describeLoadedValue(), we try to generate an entry value expression
  // for their call site value desctipion, if the call is within the entry MBB.
  // The RegsForEntryValues maps a forwarding register into the register holding
  // the entry value.
  // TODO: Handle situations when call site parameter value can be described
  // as the entry value within basic blocks other then the first one.
  bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
  DenseMap<unsigned, unsigned> RegsForEntryValues;

  // If the MI is an instruction defining one or more parameters' forwarding
  // registers, add those defines. We can currently only describe forwarded
  // registers that are explicitly defined, but keep track of implicit defines
  // also to remove those registers from the work list.
  auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
                                          SmallVectorImpl<unsigned> &Explicit,
                                          SmallVectorImpl<unsigned> &Implicit) {
    if (MI.isDebugInstr())
      return;

    for (const MachineOperand &MO : MI.operands()) {
      if (MO.isReg() && MO.isDef() &&
          Register::isPhysicalRegister(MO.getReg())) {
        for (auto FwdReg : ForwardedRegWorklist) {
          if (TRI->regsOverlap(FwdReg, MO.getReg())) {
            if (MO.isImplicit())
              Implicit.push_back(FwdReg);
            else
              Explicit.push_back(FwdReg);
          }
        }
      }
    }
  };

  auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
    unsigned FwdReg = Reg;
    if (ShouldTryEmitEntryVals) {
      auto EntryValReg = RegsForEntryValues.find(Reg);
      if (EntryValReg != RegsForEntryValues.end())
        FwdReg = EntryValReg->second;
    }

    DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
    Params.push_back(CSParm);
    ++NumCSParams;
  };

  // Search for a loading value in forwarding registers.
  for (; I != MBB->rend(); ++I) {
    // Skip bundle headers.
    if (I->isBundle())
      continue;

    // If the next instruction is a call we can not interpret parameter's
    // forwarding registers or we finished the interpretation of all parameters.
    if (I->isCall())
      return;

    if (ForwardedRegWorklist.empty())
      return;

    SmallVector<unsigned, 4> ExplicitFwdRegDefs;
    SmallVector<unsigned, 4> ImplicitFwdRegDefs;
    getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
    if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
      continue;

    // If the MI clobbers more then one forwarding register we must remove
    // all of them from the working list.
    for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
      ForwardedRegWorklist.erase(Reg);

    for (auto ParamFwdReg : ExplicitFwdRegDefs) {
      if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
        if (ParamValue->first.isImm()) {
          int64_t Val = ParamValue->first.getImm();
          DbgValueLoc DbgLocVal(ParamValue->second, Val);
          finishCallSiteParam(DbgLocVal, ParamFwdReg);
        } else if (ParamValue->first.isReg()) {
          Register RegLoc = ParamValue->first.getReg();
          // TODO: For now, there is no use of describing the value loaded into the
          //       register that is also the source registers (e.g. $r0 = add $r0, x).
          if (ParamFwdReg == RegLoc)
            continue;

          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
          Register FP = TRI->getFrameRegister(*MF);
          bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
          if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
            DbgValueLoc DbgLocVal(ParamValue->second,
                                  MachineLocation(RegLoc,
                                                  /*IsIndirect=*/IsSPorFP));
            finishCallSiteParam(DbgLocVal, ParamFwdReg);
          // TODO: Add support for entry value plus an expression.
          } else if (ShouldTryEmitEntryVals &&
                     ParamValue->second->getNumElements() == 0) {
            ForwardedRegWorklist.insert(RegLoc);
            RegsForEntryValues[RegLoc] = ParamFwdReg;
          }
        }
      }
    }
  }

  // Emit the call site parameter's value as an entry value.
  if (ShouldTryEmitEntryVals) {
    // Create an expression where the register's entry value is used.
    DIExpression *EntryExpr = DIExpression::get(
        MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
    for (auto RegEntry : ForwardedRegWorklist) {
      unsigned FwdReg = RegEntry;
      auto EntryValReg = RegsForEntryValues.find(RegEntry);
        if (EntryValReg != RegsForEntryValues.end())
          FwdReg = EntryValReg->second;

      DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
      DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
      Params.push_back(CSParm);
      ++NumCSParams;
    }
  }
}

void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
                                            DwarfCompileUnit &CU, DIE &ScopeDIE,
                                            const MachineFunction &MF) {
  // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
  // the subprogram is required to have one.
  if (!SP.areAllCallsDescribed() || !SP.isDefinition())
    return;

  // Use DW_AT_call_all_calls to express that call site entries are present
  // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
  // because one of its requirements is not met: call site entries for
  // optimized-out calls are elided.
  CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));

  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  assert(TII && "TargetInstrInfo not found: cannot label tail calls");
  bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();

  // Emit call site entries for each call or tail call in the function.
  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB.instrs()) {
      // Bundles with call in them will pass the isCall() test below but do not
      // have callee operand information so skip them here. Iterator will
      // eventually reach the call MI.
      if (MI.isBundle())
        continue;

      // Skip instructions which aren't calls. Both calls and tail-calling jump
      // instructions (e.g TAILJMPd64) are classified correctly here.
      if (!MI.isCall())
        continue;

      // TODO: Add support for targets with delay slots (see: beginInstruction).
      if (MI.hasDelaySlot())
        return;

      // If this is a direct call, find the callee's subprogram.
      // In the case of an indirect call find the register that holds
      // the callee.
      const MachineOperand &CalleeOp = MI.getOperand(0);
      if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
        continue;

      unsigned CallReg = 0;
      const DISubprogram *CalleeSP = nullptr;
      const Function *CalleeDecl = nullptr;
      if (CalleeOp.isReg()) {
        CallReg = CalleeOp.getReg();
        if (!CallReg)
          continue;
      } else {
        CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
        if (!CalleeDecl || !CalleeDecl->getSubprogram())
          continue;
        CalleeSP = CalleeDecl->getSubprogram();
      }

      // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).

      bool IsTail = TII->isTailCall(MI);

      // If MI is in a bundle, the label was created after the bundle since
      // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
      // to search for that label below.
      const MachineInstr *TopLevelCallMI =
          MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;

      // For tail calls, for non-gdb tuning, no return PC information is needed.
      // For regular calls (and tail calls in GDB tuning), the return PC
      // is needed to disambiguate paths in the call graph which could lead to
      // some target function.
      const MCExpr *PCOffset =
          (IsTail && !tuneForGDB())
              ? nullptr
              : getFunctionLocalOffsetAfterInsn(TopLevelCallMI);

      // Return address of a call-like instruction for a normal call or a
      // jump-like instruction for a tail call. This is needed for
      // GDB + DWARF 4 tuning.
      const MCSymbol *PCAddr =
          ApplyGNUExtensions
              ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
              : nullptr;

      assert((IsTail || PCOffset || PCAddr) &&
             "Call without return PC information");

      LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
                        << (CalleeDecl ? CalleeDecl->getName()
                                       : StringRef(MF.getSubtarget()
                                                       .getRegisterInfo()
                                                       ->getName(CallReg)))
                        << (IsTail ? " [IsTail]" : "") << "\n");

      DIE &CallSiteDIE =
            CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
                                         PCOffset, CallReg);

      // GDB and LLDB support call site parameter debug info.
      if (Asm->TM.Options.EnableDebugEntryValues &&
          (tuneForGDB() || tuneForLLDB())) {
        ParamSet Params;
        // Try to interpret values of call site parameters.
        collectCallSiteParameters(&MI, Params);
        CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
      }
    }
  }
}

void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
  if (!U.hasDwarfPubSections())
    return;

  U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
}

void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
                                      DwarfCompileUnit &NewCU) {
  DIE &Die = NewCU.getUnitDie();
  StringRef FN = DIUnit->getFilename();

  StringRef Producer = DIUnit->getProducer();
  StringRef Flags = DIUnit->getFlags();
  if (!Flags.empty() && !useAppleExtensionAttributes()) {
    std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
    NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
  } else
    NewCU.addString(Die, dwarf::DW_AT_producer, Producer);

  NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
                DIUnit->getSourceLanguage());
  NewCU.addString(Die, dwarf::DW_AT_name, FN);

  // Add DW_str_offsets_base to the unit DIE, except for split units.
  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
    NewCU.addStringOffsetsStart();

  if (!useSplitDwarf()) {
    NewCU.initStmtList();

    // If we're using split dwarf the compilation dir is going to be in the
    // skeleton CU and so we don't need to duplicate it here.
    if (!CompilationDir.empty())
      NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);

    addGnuPubAttributes(NewCU, Die);
  }

  if (useAppleExtensionAttributes()) {
    if (DIUnit->isOptimized())
      NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);

    StringRef Flags = DIUnit->getFlags();
    if (!Flags.empty())
      NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);

    if (unsigned RVer = DIUnit->getRuntimeVersion())
      NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
                    dwarf::DW_FORM_data1, RVer);
  }

  if (DIUnit->getDWOId()) {
    // This CU is either a clang module DWO or a skeleton CU.
    NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
                  DIUnit->getDWOId());
    if (!DIUnit->getSplitDebugFilename().empty()) {
      // This is a prefabricated skeleton CU.
      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
                                         ? dwarf::DW_AT_dwo_name
                                         : dwarf::DW_AT_GNU_dwo_name;
      NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
    }
  }
}
// Create new DwarfCompileUnit for the given metadata node with tag
// DW_TAG_compile_unit.
DwarfCompileUnit &
DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
  if (auto *CU = CUMap.lookup(DIUnit))
    return *CU;

  CompilationDir = DIUnit->getDirectory();

  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
      InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
  DwarfCompileUnit &NewCU = *OwnedUnit;
  InfoHolder.addUnit(std::move(OwnedUnit));

  for (auto *IE : DIUnit->getImportedEntities())
    NewCU.addImportedEntity(IE);

  // LTO with assembly output shares a single line table amongst multiple CUs.
  // To avoid the compilation directory being ambiguous, let the line table
  // explicitly describe the directory of all files, never relying on the
  // compilation directory.
  if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
    Asm->OutStreamer->emitDwarfFile0Directive(
        CompilationDir, DIUnit->getFilename(),
        NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
        NewCU.getUniqueID());

  if (useSplitDwarf()) {
    NewCU.setSkeleton(constructSkeletonCU(NewCU));
    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
  } else {
    finishUnitAttributes(DIUnit, NewCU);
    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
  }

  // Create DIEs for function declarations used for call site debug info.
  for (auto Scope : DIUnit->getRetainedTypes())
    if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
      NewCU.getOrCreateSubprogramDIE(SP);

  CUMap.insert({DIUnit, &NewCU});
  CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
  return NewCU;
}

void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
                                                  const DIImportedEntity *N) {
  if (isa<DILocalScope>(N->getScope()))
    return;
  if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
    D->addChild(TheCU.constructImportedEntityDIE(N));
}

/// Sort and unique GVEs by comparing their fragment offset.
static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
  llvm::sort(
      GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
        // Sort order: first null exprs, then exprs without fragment
        // info, then sort by fragment offset in bits.
        // FIXME: Come up with a more comprehensive comparator so
        // the sorting isn't non-deterministic, and so the following
        // std::unique call works correctly.
        if (!A.Expr || !B.Expr)
          return !!B.Expr;
        auto FragmentA = A.Expr->getFragmentInfo();
        auto FragmentB = B.Expr->getFragmentInfo();
        if (!FragmentA || !FragmentB)
          return !!FragmentB;
        return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
      });
  GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
                         [](DwarfCompileUnit::GlobalExpr A,
                            DwarfCompileUnit::GlobalExpr B) {
                           return A.Expr == B.Expr;
                         }),
             GVEs.end());
  return GVEs;
}

// Emit all Dwarf sections that should come prior to the content. Create
// global DIEs and emit initial debug info sections. This is invoked by
// the target AsmPrinter.
void DwarfDebug::beginModule() {
  NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
                     DWARFGroupDescription, TimePassesIsEnabled);
  if (DisableDebugInfoPrinting) {
    MMI->setDebugInfoAvailability(false);
    return;
  }

  const Module *M = MMI->getModule();

  unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
                                       M->debug_compile_units_end());
  // Tell MMI whether we have debug info.
  assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
         "DebugInfoAvailabilty initialized unexpectedly");
  SingleCU = NumDebugCUs == 1;
  DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
      GVMap;
  for (const GlobalVariable &Global : M->globals()) {
    SmallVector<DIGlobalVariableExpression *, 1> GVs;
    Global.getDebugInfo(GVs);
    for (auto *GVE : GVs)
      GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
  }

  // Create the symbol that designates the start of the unit's contribution
  // to the string offsets table. In a split DWARF scenario, only the skeleton
  // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
  if (useSegmentedStringOffsetsTable())
    (useSplitDwarf() ? SkeletonHolder : InfoHolder)
        .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));


  // Create the symbols that designates the start of the DWARF v5 range list
  // and locations list tables. They are located past the table headers.
  if (getDwarfVersion() >= 5) {
    DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
    Holder.setRnglistsTableBaseSym(
        Asm->createTempSymbol("rnglists_table_base"));

    if (useSplitDwarf())
      InfoHolder.setRnglistsTableBaseSym(
          Asm->createTempSymbol("rnglists_dwo_table_base"));
  }

  // Create the symbol that points to the first entry following the debug
  // address table (.debug_addr) header.
  AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
  DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));

  for (DICompileUnit *CUNode : M->debug_compile_units()) {
    // FIXME: Move local imported entities into a list attached to the
    // subprogram, then this search won't be needed and a
    // getImportedEntities().empty() test should go below with the rest.
    bool HasNonLocalImportedEntities = llvm::any_of(
        CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
          return !isa<DILocalScope>(IE->getScope());
        });

    if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
        CUNode->getRetainedTypes().empty() &&
        CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
      continue;

    DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);

    // Global Variables.
    for (auto *GVE : CUNode->getGlobalVariables()) {
      // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
      // already know about the variable and it isn't adding a constant
      // expression.
      auto &GVMapEntry = GVMap[GVE->getVariable()];
      auto *Expr = GVE->getExpression();
      if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
        GVMapEntry.push_back({nullptr, Expr});
    }
    DenseSet<DIGlobalVariable *> Processed;
    for (auto *GVE : CUNode->getGlobalVariables()) {
      DIGlobalVariable *GV = GVE->getVariable();
      if (Processed.insert(GV).second)
        CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
    }

    for (auto *Ty : CUNode->getEnumTypes()) {
      // The enum types array by design contains pointers to
      // MDNodes rather than DIRefs. Unique them here.
      CU.getOrCreateTypeDIE(cast<DIType>(Ty));
    }
    for (auto *Ty : CUNode->getRetainedTypes()) {
      // The retained types array by design contains pointers to
      // MDNodes rather than DIRefs. Unique them here.
      if (DIType *RT = dyn_cast<DIType>(Ty))
          // There is no point in force-emitting a forward declaration.
          CU.getOrCreateTypeDIE(RT);
    }
    // Emit imported_modules last so that the relevant context is already
    // available.
    for (auto *IE : CUNode->getImportedEntities())
      constructAndAddImportedEntityDIE(CU, IE);
  }
}

void DwarfDebug::finishEntityDefinitions() {
  for (const auto &Entity : ConcreteEntities) {
    DIE *Die = Entity->getDIE();
    assert(Die);
    // FIXME: Consider the time-space tradeoff of just storing the unit pointer
    // in the ConcreteEntities list, rather than looking it up again here.
    // DIE::getUnit isn't simple - it walks parent pointers, etc.
    DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
    assert(Unit);
    Unit->finishEntityDefinition(Entity.get());
  }
}

void DwarfDebug::finishSubprogramDefinitions() {
  for (const DISubprogram *SP : ProcessedSPNodes) {
    assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
    forBothCUs(
        getOrCreateDwarfCompileUnit(SP->getUnit()),
        [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
  }
}

void DwarfDebug::finalizeModuleInfo() {
  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();

  finishSubprogramDefinitions();

  finishEntityDefinitions();

  // Include the DWO file name in the hash if there's more than one CU.
  // This handles ThinLTO's situation where imported CUs may very easily be
  // duplicate with the same CU partially imported into another ThinLTO unit.
  StringRef DWOName;
  if (CUMap.size() > 1)
    DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;

  // Handle anything that needs to be done on a per-unit basis after
  // all other generation.
  for (const auto &P : CUMap) {
    auto &TheCU = *P.second;
    if (TheCU.getCUNode()->isDebugDirectivesOnly())
      continue;
    // Emit DW_AT_containing_type attribute to connect types with their
    // vtable holding type.
    TheCU.constructContainingTypeDIEs();

    // Add CU specific attributes if we need to add any.
    // If we're splitting the dwarf out now that we've got the entire
    // CU then add the dwo id to it.
    auto *SkCU = TheCU.getSkeleton();

    bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();

    if (HasSplitUnit) {
      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
                                         ? dwarf::DW_AT_dwo_name
                                         : dwarf::DW_AT_GNU_dwo_name;
      finishUnitAttributes(TheCU.getCUNode(), TheCU);
      TheCU.addString(TheCU.getUnitDie(), attrDWOName,
                      Asm->TM.Options.MCOptions.SplitDwarfFile);
      SkCU->addString(SkCU->getUnitDie(), attrDWOName,
                      Asm->TM.Options.MCOptions.SplitDwarfFile);
      // Emit a unique identifier for this CU.
      uint64_t ID =
          DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
      if (getDwarfVersion() >= 5) {
        TheCU.setDWOId(ID);
        SkCU->setDWOId(ID);
      } else {
        TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
                      dwarf::DW_FORM_data8, ID);
        SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
                      dwarf::DW_FORM_data8, ID);
      }

      if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
        const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
        SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
                              Sym, Sym);
      }
    } else if (SkCU) {
      finishUnitAttributes(SkCU->getCUNode(), *SkCU);
    }

    // If we have code split among multiple sections or non-contiguous
    // ranges of code then emit a DW_AT_ranges attribute on the unit that will
    // remain in the .o file, otherwise add a DW_AT_low_pc.
    // FIXME: We should use ranges allow reordering of code ala
    // .subsections_via_symbols in mach-o. This would mean turning on
    // ranges for all subprogram DIEs for mach-o.
    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;

    if (unsigned NumRanges = TheCU.getRanges().size()) {
      if (NumRanges > 1 && useRangesSection())
        // A DW_AT_low_pc attribute may also be specified in combination with
        // DW_AT_ranges to specify the default base address for use in
        // location lists (see Section 2.6.2) and range lists (see Section
        // 2.17.3).
        U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
      else
        U.setBaseAddress(TheCU.getRanges().front().Begin);
      U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
    }

    // We don't keep track of which addresses are used in which CU so this
    // is a bit pessimistic under LTO.
    if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) &&
        (getDwarfVersion() >= 5 || HasSplitUnit))
      U.addAddrTableBase();

    if (getDwarfVersion() >= 5) {
      if (U.hasRangeLists())
        U.addRnglistsBase();

      if (!DebugLocs.getLists().empty()) {
        if (!useSplitDwarf())
          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
                            DebugLocs.getSym(),
                            TLOF.getDwarfLoclistsSection()->getBeginSymbol());
      }
    }

    auto *CUNode = cast<DICompileUnit>(P.first);
    // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
    if (CUNode->getMacros()) {
      if (useSplitDwarf())
        TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
                            U.getMacroLabelBegin(),
                            TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
      else
        U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
                          U.getMacroLabelBegin(),
                          TLOF.getDwarfMacinfoSection()->getBeginSymbol());
    }
  }

  // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
  for (auto *CUNode : MMI->getModule()->debug_compile_units())
    if (CUNode->getDWOId())
      getOrCreateDwarfCompileUnit(CUNode);

  // Compute DIE offsets and sizes.
  InfoHolder.computeSizeAndOffsets();
  if (useSplitDwarf())
    SkeletonHolder.computeSizeAndOffsets();
}

// Emit all Dwarf sections that should come after the content.
void DwarfDebug::endModule() {
  assert(CurFn == nullptr);
  assert(CurMI == nullptr);

  for (const auto &P : CUMap) {
    auto &CU = *P.second;
    CU.createBaseTypeDIEs();
  }

  // If we aren't actually generating debug info (check beginModule -
  // conditionalized on !DisableDebugInfoPrinting and the presence of the
  // llvm.dbg.cu metadata node)
  if (!MMI->hasDebugInfo())
    return;

  // Finalize the debug info for the module.
  finalizeModuleInfo();

  emitDebugStr();

  if (useSplitDwarf())
    // Emit debug_loc.dwo/debug_loclists.dwo section.
    emitDebugLocDWO();
  else
    // Emit debug_loc/debug_loclists section.
    emitDebugLoc();

  // Corresponding abbreviations into a abbrev section.
  emitAbbreviations();

  // Emit all the DIEs into a debug info section.
  emitDebugInfo();

  // Emit info into a debug aranges section.
  if (GenerateARangeSection)
    emitDebugARanges();

  // Emit info into a debug ranges section.
  emitDebugRanges();

  if (useSplitDwarf())
  // Emit info into a debug macinfo.dwo section.
    emitDebugMacinfoDWO();
  else
  // Emit info into a debug macinfo section.
    emitDebugMacinfo();

  if (useSplitDwarf()) {
    emitDebugStrDWO();
    emitDebugInfoDWO();
    emitDebugAbbrevDWO();
    emitDebugLineDWO();
    emitDebugRangesDWO();
  }

  emitDebugAddr();

  // Emit info into the dwarf accelerator table sections.
  switch (getAccelTableKind()) {
  case AccelTableKind::Apple:
    emitAccelNames();
    emitAccelObjC();
    emitAccelNamespaces();
    emitAccelTypes();
    break;
  case AccelTableKind::Dwarf:
    emitAccelDebugNames();
    break;
  case AccelTableKind::None:
    break;
  case AccelTableKind::Default:
    llvm_unreachable("Default should have already been resolved.");
  }

  // Emit the pubnames and pubtypes sections if requested.
  emitDebugPubSections();

  // clean up.
  // FIXME: AbstractVariables.clear();
}

void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
                                               const DINode *Node,
                                               const MDNode *ScopeNode) {
  if (CU.getExistingAbstractEntity(Node))
    return;

  CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
                                       cast<DILocalScope>(ScopeNode)));
}

void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
    const DINode *Node, const MDNode *ScopeNode) {
  if (CU.getExistingAbstractEntity(Node))
    return;

  if (LexicalScope *Scope =
          LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
    CU.createAbstractEntity(Node, Scope);
}

// Collect variable information from side table maintained by MF.
void DwarfDebug::collectVariableInfoFromMFTable(
    DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
  SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
  for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
    if (!VI.Var)
      continue;
    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
           "Expected inlined-at fields to agree");

    InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
    Processed.insert(Var);
    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);

    // If variable scope is not found then skip this variable.
    if (!Scope)
      continue;

    ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
    auto RegVar = std::make_unique<DbgVariable>(
                    cast<DILocalVariable>(Var.first), Var.second);
    RegVar->initializeMMI(VI.Expr, VI.Slot);
    if (DbgVariable *DbgVar = MFVars.lookup(Var))
      DbgVar->addMMIEntry(*RegVar);
    else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
      MFVars.insert({Var, RegVar.get()});
      ConcreteEntities.push_back(std::move(RegVar));
    }
  }
}

/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
/// enclosing lexical scope. The check ensures there are no other instructions
/// in the same lexical scope preceding the DBG_VALUE and that its range is
/// either open or otherwise rolls off the end of the scope.
static bool validThroughout(LexicalScopes &LScopes,
                            const MachineInstr *DbgValue,
                            const MachineInstr *RangeEnd) {
  assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
  auto MBB = DbgValue->getParent();
  auto DL = DbgValue->getDebugLoc();
  auto *LScope = LScopes.findLexicalScope(DL);
  // Scope doesn't exist; this is a dead DBG_VALUE.
  if (!LScope)
    return false;
  auto &LSRange = LScope->getRanges();
  if (LSRange.size() == 0)
    return false;

  // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
  const MachineInstr *LScopeBegin = LSRange.front().first;
  // Early exit if the lexical scope begins outside of the current block.
  if (LScopeBegin->getParent() != MBB)
    return false;
  MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
  for (++Pred; Pred != MBB->rend(); ++Pred) {
    if (Pred->getFlag(MachineInstr::FrameSetup))
      break;
    auto PredDL = Pred->getDebugLoc();
    if (!PredDL || Pred->isMetaInstruction())
      continue;
    // Check whether the instruction preceding the DBG_VALUE is in the same
    // (sub)scope as the DBG_VALUE.
    if (DL->getScope() == PredDL->getScope())
      return false;
    auto *PredScope = LScopes.findLexicalScope(PredDL);
    if (!PredScope || LScope->dominates(PredScope))
      return false;
  }

  // If the range of the DBG_VALUE is open-ended, report success.
  if (!RangeEnd)
    return true;

  // Fail if there are instructions belonging to our scope in another block.
  const MachineInstr *LScopeEnd = LSRange.back().second;
  if (LScopeEnd->getParent() != MBB)
    return false;

  // Single, constant DBG_VALUEs in the prologue are promoted to be live
  // throughout the function. This is a hack, presumably for DWARF v2 and not
  // necessarily correct. It would be much better to use a dbg.declare instead
  // if we know the constant is live throughout the scope.
  if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
    return true;

  return false;
}

/// Build the location list for all DBG_VALUEs in the function that
/// describe the same variable. The resulting DebugLocEntries will have
/// strict monotonically increasing begin addresses and will never
/// overlap. If the resulting list has only one entry that is valid
/// throughout variable's scope return true.
//
// See the definition of DbgValueHistoryMap::Entry for an explanation of the
// different kinds of history map entries. One thing to be aware of is that if
// a debug value is ended by another entry (rather than being valid until the
// end of the function), that entry's instruction may or may not be included in
// the range, depending on if the entry is a clobbering entry (it has an
// instruction that clobbers one or more preceding locations), or if it is an
// (overlapping) debug value entry. This distinction can be seen in the example
// below. The first debug value is ended by the clobbering entry 2, and the
// second and third debug values are ended by the overlapping debug value entry
// 4.
//
// Input:
//
//   History map entries [type, end index, mi]
//
// 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
// 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
// 2 | |    [Clobber, $reg0 = [...], -, -]
// 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
// 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
//
// Output [start, end) [Value...]:
//
// [0-1)    [(reg0, fragment 0, 32)]
// [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
// [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
// [4-)     [(@g, fragment 0, 96)]
bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
                                   const DbgValueHistoryMap::Entries &Entries) {
  using OpenRange =
      std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
  SmallVector<OpenRange, 4> OpenRanges;
  bool isSafeForSingleLocation = true;
  const MachineInstr *StartDebugMI = nullptr;
  const MachineInstr *EndMI = nullptr;

  for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
    const MachineInstr *Instr = EI->getInstr();

    // Remove all values that are no longer live.
    size_t Index = std::distance(EB, EI);
    auto Last =
        remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
    OpenRanges.erase(Last, OpenRanges.end());

    // If we are dealing with a clobbering entry, this iteration will result in
    // a location list entry starting after the clobbering instruction.
    const MCSymbol *StartLabel =
        EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
    assert(StartLabel &&
           "Forgot label before/after instruction starting a range!");

    const MCSymbol *EndLabel;
    if (std::next(EI) == Entries.end()) {
      EndLabel = Asm->getFunctionEnd();
      if (EI->isClobber())
        EndMI = EI->getInstr();
    }
    else if (std::next(EI)->isClobber())
      EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
    else
      EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
    assert(EndLabel && "Forgot label after instruction ending a range!");

    if (EI->isDbgValue())
      LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");

    // If this history map entry has a debug value, add that to the list of
    // open ranges and check if its location is valid for a single value
    // location.
    if (EI->isDbgValue()) {
      // Do not add undef debug values, as they are redundant information in
      // the location list entries. An undef debug results in an empty location
      // description. If there are any non-undef fragments then padding pieces
      // with empty location descriptions will automatically be inserted, and if
      // all fragments are undef then the whole location list entry is
      // redundant.
      if (!Instr->isUndefDebugValue()) {
        auto Value = getDebugLocValue(Instr);
        OpenRanges.emplace_back(EI->getEndIndex(), Value);

        // TODO: Add support for single value fragment locations.
        if (Instr->getDebugExpression()->isFragment())
          isSafeForSingleLocation = false;

        if (!StartDebugMI)
          StartDebugMI = Instr;
      } else {
        isSafeForSingleLocation = false;
      }
    }

    // Location list entries with empty location descriptions are redundant
    // information in DWARF, so do not emit those.
    if (OpenRanges.empty())
      continue;

    // Omit entries with empty ranges as they do not have any effect in DWARF.
    if (StartLabel == EndLabel) {
      LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
      continue;
    }

    SmallVector<DbgValueLoc, 4> Values;
    for (auto &R : OpenRanges)
      Values.push_back(R.second);
    DebugLoc.emplace_back(StartLabel, EndLabel, Values);

    // Attempt to coalesce the ranges of two otherwise identical
    // DebugLocEntries.
    auto CurEntry = DebugLoc.rbegin();
    LLVM_DEBUG({
      dbgs() << CurEntry->getValues().size() << " Values:\n";
      for (auto &Value : CurEntry->getValues())
        Value.dump();
      dbgs() << "-----\n";
    });

    auto PrevEntry = std::next(CurEntry);
    if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
      DebugLoc.pop_back();
  }

  return DebugLoc.size() == 1 && isSafeForSingleLocation &&
         validThroughout(LScopes, StartDebugMI, EndMI);
}

DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
                                            LexicalScope &Scope,
                                            const DINode *Node,
                                            const DILocation *Location,
                                            const MCSymbol *Sym) {
  ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
  if (isa<const DILocalVariable>(Node)) {
    ConcreteEntities.push_back(
        std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
                                       Location));
    InfoHolder.addScopeVariable(&Scope,
        cast<DbgVariable>(ConcreteEntities.back().get()));
  } else if (isa<const DILabel>(Node)) {
    ConcreteEntities.push_back(
        std::make_unique<DbgLabel>(cast<const DILabel>(Node),
                                    Location, Sym));
    InfoHolder.addScopeLabel(&Scope,
        cast<DbgLabel>(ConcreteEntities.back().get()));
  }
  return ConcreteEntities.back().get();
}

// Find variables for each lexical scope.
void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
                                   const DISubprogram *SP,
                                   DenseSet<InlinedEntity> &Processed) {
  // Grab the variable info that was squirreled away in the MMI side-table.
  collectVariableInfoFromMFTable(TheCU, Processed);

  for (const auto &I : DbgValues) {
    InlinedEntity IV = I.first;
    if (Processed.count(IV))
      continue;

    // Instruction ranges, specifying where IV is accessible.
    const auto &HistoryMapEntries = I.second;
    if (HistoryMapEntries.empty())
      continue;

    LexicalScope *Scope = nullptr;
    const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
    if (const DILocation *IA = IV.second)
      Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
    else
      Scope = LScopes.findLexicalScope(LocalVar->getScope());
    // If variable scope is not found then skip this variable.
    if (!Scope)
      continue;

    Processed.insert(IV);
    DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
                                            *Scope, LocalVar, IV.second));

    const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
    assert(MInsn->isDebugValue() && "History must begin with debug value");

    // Check if there is a single DBG_VALUE, valid throughout the var's scope.
    // If the history map contains a single debug value, there may be an
    // additional entry which clobbers the debug value.
    size_t HistSize = HistoryMapEntries.size();
    bool SingleValueWithClobber =
        HistSize == 2 && HistoryMapEntries[1].isClobber();
    if (HistSize == 1 || SingleValueWithClobber) {
      const auto *End =
          SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
      if (validThroughout(LScopes, MInsn, End)) {
        RegVar->initializeDbgValue(MInsn);
        continue;
      }
    }

    // Do not emit location lists if .debug_loc secton is disabled.
    if (!useLocSection())
      continue;

    // Handle multiple DBG_VALUE instructions describing one variable.
    DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);

    // Build the location list for this variable.
    SmallVector<DebugLocEntry, 8> Entries;
    bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);

    // Check whether buildLocationList managed to merge all locations to one
    // that is valid throughout the variable's scope. If so, produce single
    // value location.
    if (isValidSingleLocation) {
      RegVar->initializeDbgValue(Entries[0].getValues()[0]);
      continue;
    }

    // If the variable has a DIBasicType, extract it.  Basic types cannot have
    // unique identifiers, so don't bother resolving the type with the
    // identifier map.
    const DIBasicType *BT = dyn_cast<DIBasicType>(
        static_cast<const Metadata *>(LocalVar->getType()));

    // Finalize the entry by lowering it into a DWARF bytestream.
    for (auto &Entry : Entries)
      Entry.finalize(*Asm, List, BT, TheCU);
  }

  // For each InlinedEntity collected from DBG_LABEL instructions, convert to
  // DWARF-related DbgLabel.
  for (const auto &I : DbgLabels) {
    InlinedEntity IL = I.first;
    const MachineInstr *MI = I.second;
    if (MI == nullptr)
      continue;

    LexicalScope *Scope = nullptr;
    const DILabel *Label = cast<DILabel>(IL.first);
    // The scope could have an extra lexical block file.
    const DILocalScope *LocalScope =
        Label->getScope()->getNonLexicalBlockFileScope();
    // Get inlined DILocation if it is inlined label.
    if (const DILocation *IA = IL.second)
      Scope = LScopes.findInlinedScope(LocalScope, IA);
    else
      Scope = LScopes.findLexicalScope(LocalScope);
    // If label scope is not found then skip this label.
    if (!Scope)
      continue;

    Processed.insert(IL);
    /// At this point, the temporary label is created.
    /// Save the temporary label to DbgLabel entity to get the
    /// actually address when generating Dwarf DIE.
    MCSymbol *Sym = getLabelBeforeInsn(MI);
    createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
  }

  // Collect info for variables/labels that were optimized out.
  for (const DINode *DN : SP->getRetainedNodes()) {
    if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
      continue;
    LexicalScope *Scope = nullptr;
    if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
      Scope = LScopes.findLexicalScope(DV->getScope());
    } else if (auto *DL = dyn_cast<DILabel>(DN)) {
      Scope = LScopes.findLexicalScope(DL->getScope());
    }

    if (Scope)
      createConcreteEntity(TheCU, *Scope, DN, nullptr);
  }
}

// Process beginning of an instruction.
void DwarfDebug::beginInstruction(const MachineInstr *MI) {
  DebugHandlerBase::beginInstruction(MI);
  assert(CurMI);

  const auto *SP = MI->getMF()->getFunction().getSubprogram();
  if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
    return;

  // Check if source location changes, but ignore DBG_VALUE and CFI locations.
  // If the instruction is part of the function frame setup code, do not emit
  // any line record, as there is no correspondence with any user code.
  if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
    return;
  const DebugLoc &DL = MI->getDebugLoc();
  // When we emit a line-0 record, we don't update PrevInstLoc; so look at
  // the last line number actually emitted, to see if it was line 0.
  unsigned LastAsmLine =
      Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();

  // Request a label after the call in order to emit AT_return_pc information
  // in call site entries. TODO: Add support for targets with delay slots.
  if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
    requestLabelAfterInsn(MI);

  if (DL == PrevInstLoc) {
    // If we have an ongoing unspecified location, nothing to do here.
    if (!DL)
      return;
    // We have an explicit location, same as the previous location.
    // But we might be coming back to it after a line 0 record.
    if (LastAsmLine == 0 && DL.getLine() != 0) {
      // Reinstate the source location but not marked as a statement.
      const MDNode *Scope = DL.getScope();
      recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
    }
    return;
  }

  if (!DL) {
    // We have an unspecified location, which might want to be line 0.
    // If we have already emitted a line-0 record, don't repeat it.
    if (LastAsmLine == 0)
      return;
    // If user said Don't Do That, don't do that.
    if (UnknownLocations == Disable)
      return;
    // See if we have a reason to emit a line-0 record now.
    // Reasons to emit a line-0 record include:
    // - User asked for it (UnknownLocations).
    // - Instruction has a label, so it's referenced from somewhere else,
    //   possibly debug information; we want it to have a source location.
    // - Instruction is at the top of a block; we don't want to inherit the
    //   location from the physically previous (maybe unrelated) block.
    if (UnknownLocations == Enable || PrevLabel ||
        (PrevInstBB && PrevInstBB != MI->getParent())) {
      // Preserve the file and column numbers, if we can, to save space in
      // the encoded line table.
      // Do not update PrevInstLoc, it remembers the last non-0 line.
      const MDNode *Scope = nullptr;
      unsigned Column = 0;
      if (PrevInstLoc) {
        Scope = PrevInstLoc.getScope();
        Column = PrevInstLoc.getCol();
      }
      recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
    }
    return;
  }

  // We have an explicit location, different from the previous location.
  // Don't repeat a line-0 record, but otherwise emit the new location.
  // (The new location might be an explicit line 0, which we do emit.)
  if (DL.getLine() == 0 && LastAsmLine == 0)
    return;
  unsigned Flags = 0;
  if (DL == PrologEndLoc) {
    Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
    PrologEndLoc = DebugLoc();
  }
  // If the line changed, we call that a new statement; unless we went to
  // line 0 and came back, in which case it is not a new statement.
  unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
  if (DL.getLine() && DL.getLine() != OldLine)
    Flags |= DWARF2_FLAG_IS_STMT;

  const MDNode *Scope = DL.getScope();
  recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);

  // If we're not at line 0, remember this location.
  if (DL.getLine())
    PrevInstLoc = DL;
}

static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
  // First known non-DBG_VALUE and non-frame setup location marks
  // the beginning of the function body.
  for (const auto &MBB : *MF)
    for (const auto &MI : MBB)
      if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
          MI.getDebugLoc())
        return MI.getDebugLoc();
  return DebugLoc();
}

/// Register a source line with debug info. Returns the  unique label that was
/// emitted and which provides correspondence to the source line list.
static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
                             const MDNode *S, unsigned Flags, unsigned CUID,
                             uint16_t DwarfVersion,
                             ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
  StringRef Fn;
  unsigned FileNo = 1;
  unsigned Discriminator = 0;
  if (auto *Scope = cast_or_null<DIScope>(S)) {
    Fn = Scope->getFilename();
    if (Line != 0 && DwarfVersion >= 4)
      if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
        Discriminator = LBF->getDiscriminator();

    FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
                 .getOrCreateSourceID(Scope->getFile());
  }
  Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
                                         Discriminator, Fn);
}

DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
                                             unsigned CUID) {
  // Get beginning of function.
  if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
    // Ensure the compile unit is created if the function is called before
    // beginFunction().
    (void)getOrCreateDwarfCompileUnit(
        MF.getFunction().getSubprogram()->getUnit());
    // We'd like to list the prologue as "not statements" but GDB behaves
    // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
    const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
    ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
                       CUID, getDwarfVersion(), getUnits());
    return PrologEndLoc;
  }
  return DebugLoc();
}

// Gather pre-function debug information.  Assumes being called immediately
// after the function entry point has been emitted.
void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
  CurFn = MF;

  auto *SP = MF->getFunction().getSubprogram();
  assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
  if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
    return;

  SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
                                      Asm->getFunctionBegin()));

  DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());

  // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
  // belongs to so that we add to the correct per-cu line table in the
  // non-asm case.
  if (Asm->OutStreamer->hasRawTextSupport())
    // Use a single line table if we are generating assembly.
    Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
  else
    Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());

  // Record beginning of function.
  PrologEndLoc = emitInitialLocDirective(
      *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
}

void DwarfDebug::skippedNonDebugFunction() {
  // If we don't have a subprogram for this function then there will be a hole
  // in the range information. Keep note of this by setting the previously used
  // section to nullptr.
  PrevCU = nullptr;
  CurFn = nullptr;
}

// Gather and emit post-function debug information.
void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
  const DISubprogram *SP = MF->getFunction().getSubprogram();

  assert(CurFn == MF &&
      "endFunction should be called with the same function as beginFunction");

  // Set DwarfDwarfCompileUnitID in MCContext to default value.
  Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);

  LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
  assert(!FnScope || SP == FnScope->getScopeNode());
  DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
  if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
    PrevLabel = nullptr;
    CurFn = nullptr;
    return;
  }

  DenseSet<InlinedEntity> Processed;
  collectEntityInfo(TheCU, SP, Processed);

  // Add the range of this function to the list of ranges for the CU.
  TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});

  // Under -gmlt, skip building the subprogram if there are no inlined
  // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
  // is still needed as we need its source location.
  if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
      TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
      LScopes.getAbstractScopesList().empty() && !IsDarwin) {
    assert(InfoHolder.getScopeVariables().empty());
    PrevLabel = nullptr;
    CurFn = nullptr;
    return;
  }

#ifndef NDEBUG
  size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
#endif
  // Construct abstract scopes.
  for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
    auto *SP = cast<DISubprogram>(AScope->getScopeNode());
    for (const DINode *DN : SP->getRetainedNodes()) {
      if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
        continue;

      const MDNode *Scope = nullptr;
      if (auto *DV = dyn_cast<DILocalVariable>(DN))
        Scope = DV->getScope();
      else if (auto *DL = dyn_cast<DILabel>(DN))
        Scope = DL->getScope();
      else
        llvm_unreachable("Unexpected DI type!");

      // Collect info for variables/labels that were optimized out.
      ensureAbstractEntityIsCreated(TheCU, DN, Scope);
      assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
             && "ensureAbstractEntityIsCreated inserted abstract scopes");
    }
    constructAbstractSubprogramScopeDIE(TheCU, AScope);
  }

  ProcessedSPNodes.insert(SP);
  DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
  if (auto *SkelCU = TheCU.getSkeleton())
    if (!LScopes.getAbstractScopesList().empty() &&
        TheCU.getCUNode()->getSplitDebugInlining())
      SkelCU->constructSubprogramScopeDIE(SP, FnScope);

  // Construct call site entries.
  constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);

  // Clear debug info
  // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
  // DbgVariables except those that are also in AbstractVariables (since they
  // can be used cross-function)
  InfoHolder.getScopeVariables().clear();
  InfoHolder.getScopeLabels().clear();
  PrevLabel = nullptr;
  CurFn = nullptr;
}

// Register a source line with debug info. Returns the  unique label that was
// emitted and which provides correspondence to the source line list.
void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
                                  unsigned Flags) {
  ::recordSourceLine(*Asm, Line, Col, S, Flags,
                     Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
                     getDwarfVersion(), getUnits());
}

//===----------------------------------------------------------------------===//
// Emit Methods
//===----------------------------------------------------------------------===//

// Emit the debug info section.
void DwarfDebug::emitDebugInfo() {
  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
  Holder.emitUnits(/* UseOffsets */ false);
}

// Emit the abbreviation section.
void DwarfDebug::emitAbbreviations() {
  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;

  Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
}

void DwarfDebug::emitStringOffsetsTableHeader() {
  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
  Holder.getStringPool().emitStringOffsetsTableHeader(
      *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
      Holder.getStringOffsetsStartSym());
}

template <typename AccelTableT>
void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
                           StringRef TableName) {
  Asm->OutStreamer->SwitchSection(Section);

  // Emit the full data.
  emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
}

void DwarfDebug::emitAccelDebugNames() {
  // Don't emit anything if we have no compilation units to index.
  if (getUnits().empty())
    return;

  emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
}

// Emit visible names into a hashed accelerator table section.
void DwarfDebug::emitAccelNames() {
  emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
            "Names");
}

// Emit objective C classes and categories into a hashed accelerator table
// section.
void DwarfDebug::emitAccelObjC() {
  emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
            "ObjC");
}

// Emit namespace dies into a hashed accelerator table.
void DwarfDebug::emitAccelNamespaces() {
  emitAccel(AccelNamespace,
            Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
            "namespac");
}

// Emit type dies into a hashed accelerator table.
void DwarfDebug::emitAccelTypes() {
  emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
            "types");
}

// Public name handling.
// The format for the various pubnames:
//
// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
// for the DIE that is named.
//
// gnu pubnames - offset/index value/name tuples where the offset is the offset
// into the CU and the index value is computed according to the type of value
// for the DIE that is named.
//
// For type units the offset is the offset of the skeleton DIE. For split dwarf
// it's the offset within the debug_info/debug_types dwo section, however, the
// reference in the pubname header doesn't change.

/// computeIndexValue - Compute the gdb index value for the DIE and CU.
static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
                                                        const DIE *Die) {
  // Entities that ended up only in a Type Unit reference the CU instead (since
  // the pub entry has offsets within the CU there's no real offset that can be
  // provided anyway). As it happens all such entities (namespaces and types,
  // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
  // not to be true it would be necessary to persist this information from the
  // point at which the entry is added to the index data structure - since by
  // the time the index is built from that, the original type/namespace DIE in a
  // type unit has already been destroyed so it can't be queried for properties
  // like tag, etc.
  if (Die->getTag() == dwarf::DW_TAG_compile_unit)
    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
                                          dwarf::GIEL_EXTERNAL);
  dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;

  // We could have a specification DIE that has our most of our knowledge,
  // look for that now.
  if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
    DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
    if (SpecDIE.findAttribute(dwarf::DW_AT_external))
      Linkage = dwarf::GIEL_EXTERNAL;
  } else if (Die->findAttribute(dwarf::DW_AT_external))
    Linkage = dwarf::GIEL_EXTERNAL;

  switch (Die->getTag()) {
  case dwarf::DW_TAG_class_type:
  case dwarf::DW_TAG_structure_type:
  case dwarf::DW_TAG_union_type:
  case dwarf::DW_TAG_enumeration_type:
    return dwarf::PubIndexEntryDescriptor(
        dwarf::GIEK_TYPE,
        dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
            ? dwarf::GIEL_EXTERNAL
            : dwarf::GIEL_STATIC);
  case dwarf::DW_TAG_typedef:
  case dwarf::DW_TAG_base_type:
  case dwarf::DW_TAG_subrange_type:
    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
  case dwarf::DW_TAG_namespace:
    return dwarf::GIEK_TYPE;
  case dwarf::DW_TAG_subprogram:
    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
  case dwarf::DW_TAG_variable:
    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
  case dwarf::DW_TAG_enumerator:
    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
                                          dwarf::GIEL_STATIC);
  default:
    return dwarf::GIEK_NONE;
  }
}

/// emitDebugPubSections - Emit visible names and types into debug pubnames and
/// pubtypes sections.
void DwarfDebug::emitDebugPubSections() {
  for (const auto &NU : CUMap) {
    DwarfCompileUnit *TheU = NU.second;
    if (!TheU->hasDwarfPubSections())
      continue;

    bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
                    DICompileUnit::DebugNameTableKind::GNU;

    Asm->OutStreamer->SwitchSection(
        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
                 : Asm->getObjFileLowering().getDwarfPubNamesSection());
    emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());

    Asm->OutStreamer->SwitchSection(
        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
                 : Asm->getObjFileLowering().getDwarfPubTypesSection());
    emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
  }
}

void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
  if (useSectionsAsReferences())
    Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
                         CU.getDebugSectionOffset());
  else
    Asm->emitDwarfSymbolReference(CU.getLabelBegin());
}

void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
                                     DwarfCompileUnit *TheU,
                                     const StringMap<const DIE *> &Globals) {
  if (auto *Skeleton = TheU->getSkeleton())
    TheU = Skeleton;

  // Emit the header.
  Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
  MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
  MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
  Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);

  Asm->OutStreamer->EmitLabel(BeginLabel);

  Asm->OutStreamer->AddComment("DWARF Version");
  Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);

  Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
  emitSectionReference(*TheU);

  Asm->OutStreamer->AddComment("Compilation Unit Length");
  Asm->emitInt32(TheU->getLength());

  // Emit the pubnames for this compilation unit.
  for (const auto &GI : Globals) {
    const char *Name = GI.getKeyData();
    const DIE *Entity = GI.second;

    Asm->OutStreamer->AddComment("DIE offset");
    Asm->emitInt32(Entity->getOffset());

    if (GnuStyle) {
      dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
      Asm->OutStreamer->AddComment(
          Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
          ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
      Asm->emitInt8(Desc.toBits());
    }

    Asm->OutStreamer->AddComment("External Name");
    Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
  }

  Asm->OutStreamer->AddComment("End Mark");
  Asm->emitInt32(0);
  Asm->OutStreamer->EmitLabel(EndLabel);
}

/// Emit null-terminated strings into a debug str section.
void DwarfDebug::emitDebugStr() {
  MCSection *StringOffsetsSection = nullptr;
  if (useSegmentedStringOffsetsTable()) {
    emitStringOffsetsTableHeader();
    StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
  }
  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
  Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
                     StringOffsetsSection, /* UseRelativeOffsets = */ true);
}

void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
                                   const DebugLocStream::Entry &Entry,
                                   const DwarfCompileUnit *CU) {
  auto &&Comments = DebugLocs.getComments(Entry);
  auto Comment = Comments.begin();
  auto End = Comments.end();

  // The expressions are inserted into a byte stream rather early (see
  // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
  // need to reference a base_type DIE the offset of that DIE is not yet known.
  // To deal with this we instead insert a placeholder early and then extract
  // it here and replace it with the real reference.
  unsigned PtrSize = Asm->MAI->getCodePointerSize();
  DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
                                    DebugLocs.getBytes(Entry).size()),
                          Asm->getDataLayout().isLittleEndian(), PtrSize);
  DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);

  using Encoding = DWARFExpression::Operation::Encoding;
  uint64_t Offset = 0;
  for (auto &Op : Expr) {
    assert(Op.getCode() != dwarf::DW_OP_const_type &&
           "3 operand ops not yet supported");
    Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
    Offset++;
    for (unsigned I = 0; I < 2; ++I) {
      if (Op.getDescription().Op[I] == Encoding::SizeNA)
        continue;
      if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
          if (CU) {
            uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
            assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
            Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
          } else {
            // Emit a reference to the 'generic type'.
            Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
          }
          // Make sure comments stay aligned.
          for (unsigned J = 0; J < ULEB128PadSize; ++J)
            if (Comment != End)
              Comment++;
      } else {
        for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
          Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
      }
      Offset = Op.getOperandEndOffset(I);
    }
    assert(Offset == Op.getEndOffset());
  }
}

void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
                                   const DbgValueLoc &Value,
                                   DwarfExpression &DwarfExpr) {
  auto *DIExpr = Value.getExpression();
  DIExpressionCursor ExprCursor(DIExpr);
  DwarfExpr.addFragmentOffset(DIExpr);
  // Regular entry.
  if (Value.isInt()) {
    if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
               BT->getEncoding() == dwarf::DW_ATE_signed_char))
      DwarfExpr.addSignedConstant(Value.getInt());
    else
      DwarfExpr.addUnsignedConstant(Value.getInt());
  } else if (Value.isLocation()) {
    MachineLocation Location = Value.getLoc();
    if (Location.isIndirect())
      DwarfExpr.setMemoryLocationKind();
    DIExpressionCursor Cursor(DIExpr);

    if (DIExpr->isEntryValue()) {
      DwarfExpr.setEntryValueFlag();
      DwarfExpr.beginEntryValueExpression(Cursor);
    }

    const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
    if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
      return;
    return DwarfExpr.addExpression(std::move(Cursor));
  } else if (Value.isTargetIndexLocation()) {
    TargetIndexLocation Loc = Value.getTargetIndexLocation();
    // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
    // encoding is supported.
    DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset);
  } else if (Value.isConstantFP()) {
    APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
    DwarfExpr.addUnsignedConstant(RawBytes);
  }
  DwarfExpr.addExpression(std::move(ExprCursor));
}

void DebugLocEntry::finalize(const AsmPrinter &AP,
                             DebugLocStream::ListBuilder &List,
                             const DIBasicType *BT,
                             DwarfCompileUnit &TheCU) {
  assert(!Values.empty() &&
         "location list entries without values are redundant");
  assert(Begin != End && "unexpected location list entry with empty range");
  DebugLocStream::EntryBuilder Entry(List, Begin, End);
  BufferByteStreamer Streamer = Entry.getStreamer();
  DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
  const DbgValueLoc &Value = Values[0];
  if (Value.isFragment()) {
    // Emit all fragments that belong to the same variable and range.
    assert(llvm::all_of(Values, [](DbgValueLoc P) {
          return P.isFragment();
        }) && "all values are expected to be fragments");
    assert(std::is_sorted(Values.begin(), Values.end()) &&
           "fragments are expected to be sorted");

    for (auto Fragment : Values)
      DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);

  } else {
    assert(Values.size() == 1 && "only fragments may have >1 value");
    DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
  }
  DwarfExpr.finalize();
  if (DwarfExpr.TagOffset)
    List.setTagOffset(*DwarfExpr.TagOffset);
}

void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
                                           const DwarfCompileUnit *CU) {
  // Emit the size.
  Asm->OutStreamer->AddComment("Loc expr size");
  if (getDwarfVersion() >= 5)
    Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
  else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
    Asm->emitInt16(DebugLocs.getBytes(Entry).size());
  else {
    // The entry is too big to fit into 16 bit, drop it as there is nothing we
    // can do.
    Asm->emitInt16(0);
    return;
  }
  // Emit the entry.
  APByteStreamer Streamer(*Asm);
  emitDebugLocEntry(Streamer, Entry, CU);
}

// Emit the common part of the DWARF 5 range/locations list tables header.
static void emitListsTableHeaderStart(AsmPrinter *Asm,
                                      MCSymbol *TableStart,
                                      MCSymbol *TableEnd) {
  // Build the table header, which starts with the length field.
  Asm->OutStreamer->AddComment("Length");
  Asm->EmitLabelDifference(TableEnd, TableStart, 4);
  Asm->OutStreamer->EmitLabel(TableStart);
  // Version number (DWARF v5 and later).
  Asm->OutStreamer->AddComment("Version");
  Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
  // Address size.
  Asm->OutStreamer->AddComment("Address size");
  Asm->emitInt8(Asm->MAI->getCodePointerSize());
  // Segment selector size.
  Asm->OutStreamer->AddComment("Segment selector size");
  Asm->emitInt8(0);
}

// Emit the header of a DWARF 5 range list table list table. Returns the symbol
// that designates the end of the table for the caller to emit when the table is
// complete.
static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
                                         const DwarfFile &Holder) {
  MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
  MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
  emitListsTableHeaderStart(Asm, TableStart, TableEnd);

  Asm->OutStreamer->AddComment("Offset entry count");
  Asm->emitInt32(Holder.getRangeLists().size());
  Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());

  for (const RangeSpanList &List : Holder.getRangeLists())
    Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
                             4);

  return TableEnd;
}

// Emit the header of a DWARF 5 locations list table. Returns the symbol that
// designates the end of the table for the caller to emit when the table is
// complete.
static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
                                         const DwarfDebug &DD) {
  MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
  MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
  emitListsTableHeaderStart(Asm, TableStart, TableEnd);

  const auto &DebugLocs = DD.getDebugLocs();

  Asm->OutStreamer->AddComment("Offset entry count");
  Asm->emitInt32(DebugLocs.getLists().size());
  Asm->OutStreamer->EmitLabel(DebugLocs.getSym());

  for (const auto &List : DebugLocs.getLists())
    Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);

  return TableEnd;
}

template <typename Ranges, typename PayloadEmitter>
static void emitRangeList(
    DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
    const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
    unsigned StartxLength, unsigned EndOfList,
    StringRef (*StringifyEnum)(unsigned),
    bool ShouldUseBaseAddress,
    PayloadEmitter EmitPayload) {

  auto Size = Asm->MAI->getCodePointerSize();
  bool UseDwarf5 = DD.getDwarfVersion() >= 5;

  // Emit our symbol so we can find the beginning of the range.
  Asm->OutStreamer->EmitLabel(Sym);

  // Gather all the ranges that apply to the same section so they can share
  // a base address entry.
  MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;

  for (const auto &Range : R)
    SectionRanges[&Range.Begin->getSection()].push_back(&Range);

  const MCSymbol *CUBase = CU.getBaseAddress();
  bool BaseIsSet = false;
  for (const auto &P : SectionRanges) {
    auto *Base = CUBase;
    if (!Base && ShouldUseBaseAddress) {
      const MCSymbol *Begin = P.second.front()->Begin;
      const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
      if (!UseDwarf5) {
        Base = NewBase;
        BaseIsSet = true;
        Asm->OutStreamer->EmitIntValue(-1, Size);
        Asm->OutStreamer->AddComment("  base address");
        Asm->OutStreamer->EmitSymbolValue(Base, Size);
      } else if (NewBase != Begin || P.second.size() > 1) {
        // Only use a base address if
        //  * the existing pool address doesn't match (NewBase != Begin)
        //  * or, there's more than one entry to share the base address
        Base = NewBase;
        BaseIsSet = true;
        Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
        Asm->emitInt8(BaseAddressx);
        Asm->OutStreamer->AddComment("  base address index");
        Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
      }
    } else if (BaseIsSet && !UseDwarf5) {
      BaseIsSet = false;
      assert(!Base);
      Asm->OutStreamer->EmitIntValue(-1, Size);
      Asm->OutStreamer->EmitIntValue(0, Size);
    }

    for (const auto *RS : P.second) {
      const MCSymbol *Begin = RS->Begin;
      const MCSymbol *End = RS->End;
      assert(Begin && "Range without a begin symbol?");
      assert(End && "Range without an end symbol?");
      if (Base) {
        if (UseDwarf5) {
          // Emit offset_pair when we have a base.
          Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
          Asm->emitInt8(OffsetPair);
          Asm->OutStreamer->AddComment("  starting offset");
          Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
          Asm->OutStreamer->AddComment("  ending offset");
          Asm->EmitLabelDifferenceAsULEB128(End, Base);
        } else {
          Asm->EmitLabelDifference(Begin, Base, Size);
          Asm->EmitLabelDifference(End, Base, Size);
        }
      } else if (UseDwarf5) {
        Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
        Asm->emitInt8(StartxLength);
        Asm->OutStreamer->AddComment("  start index");
        Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
        Asm->OutStreamer->AddComment("  length");
        Asm->EmitLabelDifferenceAsULEB128(End, Begin);
      } else {
        Asm->OutStreamer->EmitSymbolValue(Begin, Size);
        Asm->OutStreamer->EmitSymbolValue(End, Size);
      }
      EmitPayload(*RS);
    }
  }

  if (UseDwarf5) {
    Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
    Asm->emitInt8(EndOfList);
  } else {
    // Terminate the list with two 0 values.
    Asm->OutStreamer->EmitIntValue(0, Size);
    Asm->OutStreamer->EmitIntValue(0, Size);
  }
}

// Handles emission of both debug_loclist / debug_loclist.dwo
static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
  emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
                *List.CU, dwarf::DW_LLE_base_addressx,
                dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
                dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
                /* ShouldUseBaseAddress */ true,
                [&](const DebugLocStream::Entry &E) {
                  DD.emitDebugLocEntryLocation(E, List.CU);
                });
}

void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
  if (DebugLocs.getLists().empty())
    return;

  Asm->OutStreamer->SwitchSection(Sec);

  MCSymbol *TableEnd = nullptr;
  if (getDwarfVersion() >= 5)
    TableEnd = emitLoclistsTableHeader(Asm, *this);

  for (const auto &List : DebugLocs.getLists())
    emitLocList(*this, Asm, List);

  if (TableEnd)
    Asm->OutStreamer->EmitLabel(TableEnd);
}

// Emit locations into the .debug_loc/.debug_loclists section.
void DwarfDebug::emitDebugLoc() {
  emitDebugLocImpl(
      getDwarfVersion() >= 5
          ? Asm->getObjFileLowering().getDwarfLoclistsSection()
          : Asm->getObjFileLowering().getDwarfLocSection());
}

// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
void DwarfDebug::emitDebugLocDWO() {
  if (getDwarfVersion() >= 5) {
    emitDebugLocImpl(
        Asm->getObjFileLowering().getDwarfLoclistsDWOSection());

    return;
  }

  for (const auto &List : DebugLocs.getLists()) {
    Asm->OutStreamer->SwitchSection(
        Asm->getObjFileLowering().getDwarfLocDWOSection());
    Asm->OutStreamer->EmitLabel(List.Label);

    for (const auto &Entry : DebugLocs.getEntries(List)) {
      // GDB only supports startx_length in pre-standard split-DWARF.
      // (in v5 standard loclists, it currently* /only/ supports base_address +
      // offset_pair, so the implementations can't really share much since they
      // need to use different representations)
      // * as of October 2018, at least
      // Ideally/in v5, this could use SectionLabels to reuse existing addresses
      // in the address pool to minimize object size/relocations.
      Asm->emitInt8(dwarf::DW_LLE_startx_length);
      unsigned idx = AddrPool.getIndex(Entry.Begin);
      Asm->EmitULEB128(idx);
      // Also the pre-standard encoding is slightly different, emitting this as
      // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
      Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
      emitDebugLocEntryLocation(Entry, List.CU);
    }
    Asm->emitInt8(dwarf::DW_LLE_end_of_list);
  }
}

struct ArangeSpan {
  const MCSymbol *Start, *End;
};

// Emit a debug aranges section, containing a CU lookup for any
// address we can tie back to a CU.
void DwarfDebug::emitDebugARanges() {
  // Provides a unique id per text section.
  MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;

  // Filter labels by section.
  for (const SymbolCU &SCU : ArangeLabels) {
    if (SCU.Sym->isInSection()) {
      // Make a note of this symbol and it's section.
      MCSection *Section = &SCU.Sym->getSection();
      if (!Section->getKind().isMetadata())
        SectionMap[Section].push_back(SCU);
    } else {
      // Some symbols (e.g. common/bss on mach-o) can have no section but still
      // appear in the output. This sucks as we rely on sections to build
      // arange spans. We can do it without, but it's icky.
      SectionMap[nullptr].push_back(SCU);
    }
  }

  DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;

  for (auto &I : SectionMap) {
    MCSection *Section = I.first;
    SmallVector<SymbolCU, 8> &List = I.second;
    if (List.size() < 1)
      continue;

    // If we have no section (e.g. common), just write out
    // individual spans for each symbol.
    if (!Section) {
      for (const SymbolCU &Cur : List) {
        ArangeSpan Span;
        Span.Start = Cur.Sym;
        Span.End = nullptr;
        assert(Cur.CU);
        Spans[Cur.CU].push_back(Span);
      }
      continue;
    }

    // Sort the symbols by offset within the section.
    llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
      unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
      unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;

      // Symbols with no order assigned should be placed at the end.
      // (e.g. section end labels)
      if (IA == 0)
        return false;
      if (IB == 0)
        return true;
      return IA < IB;
    });

    // Insert a final terminator.
    List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));

    // Build spans between each label.
    const MCSymbol *StartSym = List[0].Sym;
    for (size_t n = 1, e = List.size(); n < e; n++) {
      const SymbolCU &Prev = List[n - 1];
      const SymbolCU &Cur = List[n];

      // Try and build the longest span we can within the same CU.
      if (Cur.CU != Prev.CU) {
        ArangeSpan Span;
        Span.Start = StartSym;
        Span.End = Cur.Sym;
        assert(Prev.CU);
        Spans[Prev.CU].push_back(Span);
        StartSym = Cur.Sym;
      }
    }
  }

  // Start the dwarf aranges section.
  Asm->OutStreamer->SwitchSection(
      Asm->getObjFileLowering().getDwarfARangesSection());

  unsigned PtrSize = Asm->MAI->getCodePointerSize();

  // Build a list of CUs used.
  std::vector<DwarfCompileUnit *> CUs;
  for (const auto &it : Spans) {
    DwarfCompileUnit *CU = it.first;
    CUs.push_back(CU);
  }

  // Sort the CU list (again, to ensure consistent output order).
  llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
    return A->getUniqueID() < B->getUniqueID();
  });

  // Emit an arange table for each CU we used.
  for (DwarfCompileUnit *CU : CUs) {
    std::vector<ArangeSpan> &List = Spans[CU];

    // Describe the skeleton CU's offset and length, not the dwo file's.
    if (auto *Skel = CU->getSkeleton())
      CU = Skel;

    // Emit size of content not including length itself.
    unsigned ContentSize =
        sizeof(int16_t) + // DWARF ARange version number
        sizeof(int32_t) + // Offset of CU in the .debug_info section
        sizeof(int8_t) +  // Pointer Size (in bytes)
        sizeof(int8_t);   // Segment Size (in bytes)

    unsigned TupleSize = PtrSize * 2;

    // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
    unsigned Padding =
        offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));

    ContentSize += Padding;
    ContentSize += (List.size() + 1) * TupleSize;

    // For each compile unit, write the list of spans it covers.
    Asm->OutStreamer->AddComment("Length of ARange Set");
    Asm->emitInt32(ContentSize);
    Asm->OutStreamer->AddComment("DWARF Arange version number");
    Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
    Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
    emitSectionReference(*CU);
    Asm->OutStreamer->AddComment("Address Size (in bytes)");
    Asm->emitInt8(PtrSize);
    Asm->OutStreamer->AddComment("Segment Size (in bytes)");
    Asm->emitInt8(0);

    Asm->OutStreamer->emitFill(Padding, 0xff);

    for (const ArangeSpan &Span : List) {
      Asm->EmitLabelReference(Span.Start, PtrSize);

      // Calculate the size as being from the span start to it's end.
      if (Span.End) {
        Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
      } else {
        // For symbols without an end marker (e.g. common), we
        // write a single arange entry containing just that one symbol.
        uint64_t Size = SymSize[Span.Start];
        if (Size == 0)
          Size = 1;

        Asm->OutStreamer->EmitIntValue(Size, PtrSize);
      }
    }

    Asm->OutStreamer->AddComment("ARange terminator");
    Asm->OutStreamer->EmitIntValue(0, PtrSize);
    Asm->OutStreamer->EmitIntValue(0, PtrSize);
  }
}

/// Emit a single range list. We handle both DWARF v5 and earlier.
static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
                          const RangeSpanList &List) {
  emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
                dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
                dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
                llvm::dwarf::RangeListEncodingString,
                List.CU->getCUNode()->getRangesBaseAddress() ||
                    DD.getDwarfVersion() >= 5,
                [](auto) {});
}

void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
  if (Holder.getRangeLists().empty())
    return;

  assert(useRangesSection());
  assert(!CUMap.empty());
  assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
    return !Pair.second->getCUNode()->isDebugDirectivesOnly();
  }));

  Asm->OutStreamer->SwitchSection(Section);

  MCSymbol *TableEnd = nullptr;
  if (getDwarfVersion() >= 5)
    TableEnd = emitRnglistsTableHeader(Asm, Holder);

  for (const RangeSpanList &List : Holder.getRangeLists())
    emitRangeList(*this, Asm, List);

  if (TableEnd)
    Asm->OutStreamer->EmitLabel(TableEnd);
}

/// Emit address ranges into the .debug_ranges section or into the DWARF v5
/// .debug_rnglists section.
void DwarfDebug::emitDebugRanges() {
  const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;

  emitDebugRangesImpl(Holder,
                      getDwarfVersion() >= 5
                          ? Asm->getObjFileLowering().getDwarfRnglistsSection()
                          : Asm->getObjFileLowering().getDwarfRangesSection());
}

void DwarfDebug::emitDebugRangesDWO() {
  emitDebugRangesImpl(InfoHolder,
                      Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
}

void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
  for (auto *MN : Nodes) {
    if (auto *M = dyn_cast<DIMacro>(MN))
      emitMacro(*M);
    else if (auto *F = dyn_cast<DIMacroFile>(MN))
      emitMacroFile(*F, U);
    else
      llvm_unreachable("Unexpected DI type!");
  }
}

void DwarfDebug::emitMacro(DIMacro &M) {
  Asm->EmitULEB128(M.getMacinfoType());
  Asm->EmitULEB128(M.getLine());
  StringRef Name = M.getName();
  StringRef Value = M.getValue();
  Asm->OutStreamer->EmitBytes(Name);
  if (!Value.empty()) {
    // There should be one space between macro name and macro value.
    Asm->emitInt8(' ');
    Asm->OutStreamer->EmitBytes(Value);
  }
  Asm->emitInt8('\0');
}

void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
  assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
  Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
  Asm->EmitULEB128(F.getLine());
  Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
  handleMacroNodes(F.getElements(), U);
  Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
}

void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
  for (const auto &P : CUMap) {
    auto &TheCU = *P.second;
    auto *SkCU = TheCU.getSkeleton();
    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
    auto *CUNode = cast<DICompileUnit>(P.first);
    DIMacroNodeArray Macros = CUNode->getMacros();
    if (Macros.empty())
      continue;
    Asm->OutStreamer->SwitchSection(Section);
    Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
    handleMacroNodes(Macros, U);
    Asm->OutStreamer->AddComment("End Of Macro List Mark");
    Asm->emitInt8(0);
  }
}

/// Emit macros into a debug macinfo section.
void DwarfDebug::emitDebugMacinfo() {
  emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
}

void DwarfDebug::emitDebugMacinfoDWO() {
  emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
}

// DWARF5 Experimental Separate Dwarf emitters.

void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
                                  std::unique_ptr<DwarfCompileUnit> NewU) {

  if (!CompilationDir.empty())
    NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);

  addGnuPubAttributes(*NewU, Die);

  SkeletonHolder.addUnit(std::move(NewU));
}

DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {

  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
      CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
      UnitKind::Skeleton);
  DwarfCompileUnit &NewCU = *OwnedUnit;
  NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());

  NewCU.initStmtList();

  if (useSegmentedStringOffsetsTable())
    NewCU.addStringOffsetsStart();

  initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));

  return NewCU;
}

// Emit the .debug_info.dwo section for separated dwarf. This contains the
// compile units that would normally be in debug_info.
void DwarfDebug::emitDebugInfoDWO() {
  assert(useSplitDwarf() && "No split dwarf debug info?");
  // Don't emit relocations into the dwo file.
  InfoHolder.emitUnits(/* UseOffsets */ true);
}

// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
// abbreviations for the .debug_info.dwo section.
void DwarfDebug::emitDebugAbbrevDWO() {
  assert(useSplitDwarf() && "No split dwarf?");
  InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
}

void DwarfDebug::emitDebugLineDWO() {
  assert(useSplitDwarf() && "No split dwarf?");
  SplitTypeUnitFileTable.Emit(
      *Asm->OutStreamer, MCDwarfLineTableParams(),
      Asm->getObjFileLowering().getDwarfLineDWOSection());
}

void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
  assert(useSplitDwarf() && "No split dwarf?");
  InfoHolder.getStringPool().emitStringOffsetsTableHeader(
      *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
      InfoHolder.getStringOffsetsStartSym());
}

// Emit the .debug_str.dwo section for separated dwarf. This contains the
// string section and is identical in format to traditional .debug_str
// sections.
void DwarfDebug::emitDebugStrDWO() {
  if (useSegmentedStringOffsetsTable())
    emitStringOffsetsTableHeaderDWO();
  assert(useSplitDwarf() && "No split dwarf?");
  MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
  InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
                         OffSec, /* UseRelativeOffsets = */ false);
}

// Emit address pool.
void DwarfDebug::emitDebugAddr() {
  AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
}

MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
  if (!useSplitDwarf())
    return nullptr;
  const DICompileUnit *DIUnit = CU.getCUNode();
  SplitTypeUnitFileTable.maybeSetRootFile(
      DIUnit->getDirectory(), DIUnit->getFilename(),
      CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
  return &SplitTypeUnitFileTable;
}

uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
  MD5 Hash;
  Hash.update(Identifier);
  // ... take the least significant 8 bytes and return those. Our MD5
  // implementation always returns its results in little endian, so we actually
  // need the "high" word.
  MD5::MD5Result Result;
  Hash.final(Result);
  return Result.high();
}

void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
                                      StringRef Identifier, DIE &RefDie,
                                      const DICompositeType *CTy) {
  // Fast path if we're building some type units and one has already used the
  // address pool we know we're going to throw away all this work anyway, so
  // don't bother building dependent types.
  if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
    return;

  auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
  if (!Ins.second) {
    CU.addDIETypeSignature(RefDie, Ins.first->second);
    return;
  }

  bool TopLevelType = TypeUnitsUnderConstruction.empty();
  AddrPool.resetUsedFlag();

  auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
                                                    getDwoLineTable(CU));
  DwarfTypeUnit &NewTU = *OwnedUnit;
  DIE &UnitDie = NewTU.getUnitDie();
  TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);

  NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
                CU.getLanguage());

  uint64_t Signature = makeTypeSignature(Identifier);
  NewTU.setTypeSignature(Signature);
  Ins.first->second = Signature;

  if (useSplitDwarf()) {
    MCSection *Section =
        getDwarfVersion() <= 4
            ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
            : Asm->getObjFileLowering().getDwarfInfoDWOSection();
    NewTU.setSection(Section);
  } else {
    MCSection *Section =
        getDwarfVersion() <= 4
            ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
            : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
    NewTU.setSection(Section);
    // Non-split type units reuse the compile unit's line table.
    CU.applyStmtList(UnitDie);
  }

  // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
  // units.
  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
    NewTU.addStringOffsetsStart();

  NewTU.setType(NewTU.createTypeDIE(CTy));

  if (TopLevelType) {
    auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
    TypeUnitsUnderConstruction.clear();

    // Types referencing entries in the address table cannot be placed in type
    // units.
    if (AddrPool.hasBeenUsed()) {

      // Remove all the types built while building this type.
      // This is pessimistic as some of these types might not be dependent on
      // the type that used an address.
      for (const auto &TU : TypeUnitsToAdd)
        TypeSignatures.erase(TU.second);

      // Construct this type in the CU directly.
      // This is inefficient because all the dependent types will be rebuilt
      // from scratch, including building them in type units, discovering that
      // they depend on addresses, throwing them out and rebuilding them.
      CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
      return;
    }

    // If the type wasn't dependent on fission addresses, finish adding the type
    // and all its dependent types.
    for (auto &TU : TypeUnitsToAdd) {
      InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
      InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
    }
  }
  CU.addDIETypeSignature(RefDie, Signature);
}

DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
    : DD(DD),
      TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
  DD->TypeUnitsUnderConstruction.clear();
  assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
}

DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
  DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
  DD->AddrPool.resetUsedFlag();
}

DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
  return NonTypeUnitContext(this);
}

// Add the Name along with its companion DIE to the appropriate accelerator
// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
// AccelTableKind::Apple, we use the table we got as an argument). If
// accelerator tables are disabled, this function does nothing.
template <typename DataT>
void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
                                  AccelTable<DataT> &AppleAccel, StringRef Name,
                                  const DIE &Die) {
  if (getAccelTableKind() == AccelTableKind::None)
    return;

  if (getAccelTableKind() != AccelTableKind::Apple &&
      CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
    return;

  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
  DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);

  switch (getAccelTableKind()) {
  case AccelTableKind::Apple:
    AppleAccel.addName(Ref, Die);
    break;
  case AccelTableKind::Dwarf:
    AccelDebugNames.addName(Ref, Die);
    break;
  case AccelTableKind::Default:
    llvm_unreachable("Default should have already been resolved.");
  case AccelTableKind::None:
    llvm_unreachable("None handled above");
  }
}

void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
                              const DIE &Die) {
  addAccelNameImpl(CU, AccelNames, Name, Die);
}

void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
                              const DIE &Die) {
  // ObjC names go only into the Apple accelerator tables.
  if (getAccelTableKind() == AccelTableKind::Apple)
    addAccelNameImpl(CU, AccelObjC, Name, Die);
}

void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
                                   const DIE &Die) {
  addAccelNameImpl(CU, AccelNamespace, Name, Die);
}

void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
                              const DIE &Die, char Flags) {
  addAccelNameImpl(CU, AccelTypes, Name, Die);
}

uint16_t DwarfDebug::getDwarfVersion() const {
  return Asm->OutStreamer->getContext().getDwarfVersion();
}

const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
  return SectionLabels.find(S)->second;
}