Operation.h
27.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//===- Operation.h - MLIR Operation Class -----------------------*- C++ -*-===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Operation class.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_IR_OPERATION_H
#define MLIR_IR_OPERATION_H
#include "mlir/IR/Block.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Region.h"
#include "llvm/ADT/Twine.h"
namespace mlir {
/// Operation is a basic unit of execution within a function. Operations can
/// be nested within other operations effectively forming a tree. Child
/// operations are organized into operation blocks represented by a 'Block'
/// class.
class Operation final
: public IRMultiObjectWithUseList<OpOperand>,
public llvm::ilist_node_with_parent<Operation, Block>,
private llvm::TrailingObjects<Operation, detail::TrailingOpResult,
BlockOperand, Region,
detail::OperandStorage> {
public:
/// Create a new Operation with the specific fields.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList);
/// Overload of create that takes an existing NamedAttributeList to avoid
/// unnecessarily uniquing a list of attributes.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList);
/// Create a new Operation from the fields stored in `state`.
static Operation *create(const OperationState &state);
/// Create a new Operation with the specific fields.
static Operation *create(Location location, OperationName name,
ArrayRef<Type> resultTypes, ArrayRef<Value> operands,
NamedAttributeList attributes,
ArrayRef<Block *> successors = {},
RegionRange regions = {},
bool resizableOperandList = false);
/// The name of an operation is the key identifier for it.
OperationName getName() { return name; }
/// If this operation has a registered operation description, return it.
/// Otherwise return null.
const AbstractOperation *getAbstractOperation() {
return getName().getAbstractOperation();
}
/// Returns true if this operation has a registered operation description,
/// otherwise false.
bool isRegistered() { return getAbstractOperation(); }
/// Remove this operation from its parent block and delete it.
void erase();
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *clone(BlockAndValueMapping &mapper);
Operation *clone();
/// Create a partial copy of this operation without traversing into attached
/// regions. The new operation will have the same number of regions as the
/// original one, but they will be left empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *cloneWithoutRegions(BlockAndValueMapping &mapper);
/// Create a partial copy of this operation without traversing into attached
/// regions. The new operation will have the same number of regions as the
/// original one, but they will be left empty.
Operation *cloneWithoutRegions();
/// Returns the operation block that contains this operation.
Block *getBlock() { return block; }
/// Return the context this operation is associated with.
MLIRContext *getContext();
/// Return the dialect this operation is associated with, or nullptr if the
/// associated dialect is not registered.
Dialect *getDialect();
/// The source location the operation was defined or derived from.
Location getLoc() { return location; }
/// Set the source location the operation was defined or derived from.
void setLoc(Location loc) { location = loc; }
/// Returns the region to which the instruction belongs. Returns nullptr if
/// the instruction is unlinked.
Region *getParentRegion();
/// Returns the closest surrounding operation that contains this operation
/// or nullptr if this is a top-level operation.
Operation *getParentOp();
/// Return the closest surrounding parent operation that is of type 'OpTy'.
template <typename OpTy> OpTy getParentOfType() {
auto *op = this;
while ((op = op->getParentOp()))
if (auto parentOp = dyn_cast<OpTy>(op))
return parentOp;
return OpTy();
}
/// Return true if this operation is a proper ancestor of the `other`
/// operation.
bool isProperAncestor(Operation *other);
/// Return true if this operation is an ancestor of the `other` operation. An
/// operation is considered as its own ancestor, use `isProperAncestor` to
/// avoid this.
bool isAncestor(Operation *other) {
return this == other || isProperAncestor(other);
}
/// Replace any uses of 'from' with 'to' within this operation.
void replaceUsesOfWith(Value from, Value to);
/// Replace all uses of results of this operation with the provided 'values'.
template <typename ValuesT,
typename = decltype(std::declval<ValuesT>().begin())>
void replaceAllUsesWith(ValuesT &&values) {
assert(std::distance(values.begin(), values.end()) == getNumResults() &&
"expected 'values' to correspond 1-1 with the number of results");
auto valueIt = values.begin();
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
getResult(i).replaceAllUsesWith(*(valueIt++));
}
/// Replace all uses of results of this operation with results of 'op'.
void replaceAllUsesWith(Operation *op) {
assert(getNumResults() == op->getNumResults());
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
getResult(i).replaceAllUsesWith(op->getResult(i));
}
/// Destroys this operation and its subclass data.
void destroy();
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void dropAllReferences();
/// Drop uses of all values defined by this operation or its nested regions.
void dropAllDefinedValueUses();
/// Unlink this operation from its current block and insert it right before
/// `existingOp` which may be in the same or another block in the same
/// function.
void moveBefore(Operation *existingOp);
/// Unlink this operation from its current block and insert it right before
/// `iterator` in the specified block.
void moveBefore(Block *block, llvm::iplist<Operation>::iterator iterator);
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool isBeforeInBlock(Operation *other);
void print(raw_ostream &os, OpPrintingFlags flags = llvm::None);
void print(raw_ostream &os, AsmState &state,
OpPrintingFlags flags = llvm::None);
void dump();
//===--------------------------------------------------------------------===//
// Operands
//===--------------------------------------------------------------------===//
/// Returns if the operation has a resizable operation list, i.e. operands can
/// be added.
bool hasResizableOperandsList() { return getOperandStorage().isResizable(); }
/// Replace the current operands of this operation with the ones provided in
/// 'operands'. If the operands list is not resizable, the size of 'operands'
/// must be less than or equal to the current number of operands.
void setOperands(ValueRange operands);
unsigned getNumOperands() { return getOperandStorage().size(); }
Value getOperand(unsigned idx) { return getOpOperand(idx).get(); }
void setOperand(unsigned idx, Value value) {
return getOpOperand(idx).set(value);
}
// Support operand iteration.
using operand_range = OperandRange;
using operand_iterator = operand_range::iterator;
operand_iterator operand_begin() { return getOperands().begin(); }
operand_iterator operand_end() { return getOperands().end(); }
/// Returns an iterator on the underlying Value's (Value ).
operand_range getOperands() { return operand_range(this); }
/// Erase the operand at position `idx`.
void eraseOperand(unsigned idx) { getOperandStorage().eraseOperand(idx); }
MutableArrayRef<OpOperand> getOpOperands() {
return getOperandStorage().getOperands();
}
OpOperand &getOpOperand(unsigned idx) { return getOpOperands()[idx]; }
// Support operand type iteration.
using operand_type_iterator = operand_range::type_iterator;
using operand_type_range = iterator_range<operand_type_iterator>;
operand_type_iterator operand_type_begin() { return operand_begin(); }
operand_type_iterator operand_type_end() { return operand_end(); }
operand_type_range getOperandTypes() { return getOperands().getTypes(); }
//===--------------------------------------------------------------------===//
// Results
//===--------------------------------------------------------------------===//
/// Return the number of results held by this operation.
unsigned getNumResults();
/// Get the 'idx'th result of this operation.
OpResult getResult(unsigned idx) { return OpResult(this, idx); }
/// Support result iteration.
using result_range = ResultRange;
using result_iterator = result_range::iterator;
result_iterator result_begin() { return getResults().begin(); }
result_iterator result_end() { return getResults().end(); }
result_range getResults() { return result_range(this); }
result_range getOpResults() { return getResults(); }
OpResult getOpResult(unsigned idx) { return getResult(idx); }
/// Support result type iteration.
using result_type_iterator = result_range::type_iterator;
using result_type_range = iterator_range<result_type_iterator>;
result_type_iterator result_type_begin() { return result_begin(); }
result_type_iterator result_type_end() { return result_end(); }
result_type_range getResultTypes() { return getResults().getTypes(); }
//===--------------------------------------------------------------------===//
// Attributes
//===--------------------------------------------------------------------===//
// Operations may optionally carry a list of attributes that associate
// constants to names. Attributes may be dynamically added and removed over
// the lifetime of an operation.
/// Return all of the attributes on this operation.
ArrayRef<NamedAttribute> getAttrs() { return attrs.getAttrs(); }
/// Return the internal attribute list on this operation.
NamedAttributeList &getAttrList() { return attrs; }
/// Set the attribute list on this operation.
/// Using a NamedAttributeList is more efficient as it does not require new
/// uniquing in the MLIRContext.
void setAttrs(NamedAttributeList newAttrs) { attrs = newAttrs; }
/// Return the specified attribute if present, null otherwise.
Attribute getAttr(Identifier name) { return attrs.get(name); }
Attribute getAttr(StringRef name) { return attrs.get(name); }
template <typename AttrClass> AttrClass getAttrOfType(Identifier name) {
return getAttr(name).dyn_cast_or_null<AttrClass>();
}
template <typename AttrClass> AttrClass getAttrOfType(StringRef name) {
return getAttr(name).dyn_cast_or_null<AttrClass>();
}
/// If the an attribute exists with the specified name, change it to the new
/// value. Otherwise, add a new attribute with the specified name/value.
void setAttr(Identifier name, Attribute value) { attrs.set(name, value); }
void setAttr(StringRef name, Attribute value) {
setAttr(Identifier::get(name, getContext()), value);
}
/// Remove the attribute with the specified name if it exists. The return
/// value indicates whether the attribute was present or not.
NamedAttributeList::RemoveResult removeAttr(Identifier name) {
return attrs.remove(name);
}
/// A utility iterator that filters out non-dialect attributes.
class dialect_attr_iterator
: public llvm::filter_iterator<ArrayRef<NamedAttribute>::iterator,
bool (*)(NamedAttribute)> {
static bool filter(NamedAttribute attr) {
// Dialect attributes are prefixed by the dialect name, like operations.
return attr.first.strref().count('.');
}
explicit dialect_attr_iterator(ArrayRef<NamedAttribute>::iterator it,
ArrayRef<NamedAttribute>::iterator end)
: llvm::filter_iterator<ArrayRef<NamedAttribute>::iterator,
bool (*)(NamedAttribute)>(it, end, &filter) {}
// Allow access to the constructor.
friend Operation;
};
using dialect_attr_range = iterator_range<dialect_attr_iterator>;
/// Return a range corresponding to the dialect attributes for this operation.
dialect_attr_range getDialectAttrs() {
auto attrs = getAttrs();
return {dialect_attr_iterator(attrs.begin(), attrs.end()),
dialect_attr_iterator(attrs.end(), attrs.end())};
}
dialect_attr_iterator dialect_attr_begin() {
auto attrs = getAttrs();
return dialect_attr_iterator(attrs.begin(), attrs.end());
}
dialect_attr_iterator dialect_attr_end() {
auto attrs = getAttrs();
return dialect_attr_iterator(attrs.end(), attrs.end());
}
/// Set the dialect attributes for this operation, and preserve all dependent.
template <typename DialectAttrT>
void setDialectAttrs(DialectAttrT &&dialectAttrs) {
SmallVector<NamedAttribute, 16> attrs;
attrs.assign(std::begin(dialectAttrs), std::end(dialectAttrs));
for (auto attr : getAttrs())
if (!attr.first.strref().count('.'))
attrs.push_back(attr);
setAttrs(llvm::makeArrayRef(attrs));
}
//===--------------------------------------------------------------------===//
// Blocks
//===--------------------------------------------------------------------===//
/// Returns the number of regions held by this operation.
unsigned getNumRegions() { return numRegions; }
/// Returns the regions held by this operation.
MutableArrayRef<Region> getRegions() {
auto *regions = getTrailingObjects<Region>();
return {regions, numRegions};
}
/// Returns the region held by this operation at position 'index'.
Region &getRegion(unsigned index) {
assert(index < numRegions && "invalid region index");
return getRegions()[index];
}
//===--------------------------------------------------------------------===//
// Terminators
//===--------------------------------------------------------------------===//
MutableArrayRef<BlockOperand> getBlockOperands() {
return {getTrailingObjects<BlockOperand>(), numSuccs};
}
// Successor iteration.
using succ_iterator = SuccessorRange::iterator;
succ_iterator successor_begin() { return getSuccessors().begin(); }
succ_iterator successor_end() { return getSuccessors().end(); }
SuccessorRange getSuccessors() { return SuccessorRange(this); }
/// Return the operands of this operation that are *not* successor arguments.
operand_range getNonSuccessorOperands();
operand_range getSuccessorOperands(unsigned index);
Value getSuccessorOperand(unsigned succIndex, unsigned opIndex) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(opIndex < getNumSuccessorOperands(succIndex));
return getOperand(getSuccessorOperandIndex(succIndex) + opIndex);
}
bool hasSuccessors() { return numSuccs != 0; }
unsigned getNumSuccessors() { return numSuccs; }
unsigned getNumSuccessorOperands(unsigned index) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(index < getNumSuccessors());
return getBlockOperands()[index].numSuccessorOperands;
}
Block *getSuccessor(unsigned index) {
assert(index < getNumSuccessors());
return getBlockOperands()[index].get();
}
void setSuccessor(Block *block, unsigned index);
/// Erase a specific operand from the operand list of the successor at
/// 'index'.
void eraseSuccessorOperand(unsigned succIndex, unsigned opIndex) {
assert(succIndex < getNumSuccessors());
assert(opIndex < getNumSuccessorOperands(succIndex));
getOperandStorage().eraseOperand(getSuccessorOperandIndex(succIndex) +
opIndex);
--getBlockOperands()[succIndex].numSuccessorOperands;
}
/// Get the index of the first operand of the successor at the provided
/// index.
unsigned getSuccessorOperandIndex(unsigned index);
/// Return a pair (successorIndex, successorArgIndex) containing the index
/// of the successor that `operandIndex` belongs to and the index of the
/// argument to that successor that `operandIndex` refers to.
///
/// If `operandIndex` is not a successor operand, None is returned.
Optional<std::pair<unsigned, unsigned>>
decomposeSuccessorOperandIndex(unsigned operandIndex);
/// Returns the `BlockArgument` corresponding to operand `operandIndex` in
/// some successor, or None if `operandIndex` isn't a successor operand index.
Optional<BlockArgument> getSuccessorBlockArgument(unsigned operandIndex) {
auto decomposed = decomposeSuccessorOperandIndex(operandIndex);
if (!decomposed.hasValue())
return None;
return getSuccessor(decomposed->first)->getArgument(decomposed->second);
}
//===--------------------------------------------------------------------===//
// Accessors for various properties of operations
//===--------------------------------------------------------------------===//
/// Returns whether the operation is commutative.
bool isCommutative() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::Commutative);
return false;
}
/// Returns whether the operation has side-effects.
bool hasNoSideEffect() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::NoSideEffect);
return false;
}
/// Represents the status of whether an operation is a terminator. We
/// represent an 'unknown' status because we want to support unregistered
/// terminators.
enum class TerminatorStatus { Terminator, NonTerminator, Unknown };
/// Returns the status of whether this operation is a terminator or not.
TerminatorStatus getTerminatorStatus() {
if (auto *absOp = getAbstractOperation()) {
return absOp->hasProperty(OperationProperty::Terminator)
? TerminatorStatus::Terminator
: TerminatorStatus::NonTerminator;
}
return TerminatorStatus::Unknown;
}
/// Returns if the operation is known to be a terminator.
bool isKnownTerminator() {
return getTerminatorStatus() == TerminatorStatus::Terminator;
}
/// Returns if the operation is known to *not* be a terminator.
bool isKnownNonTerminator() {
return getTerminatorStatus() == TerminatorStatus::NonTerminator;
}
/// Returns if the operation is known to be completely isolated from enclosing
/// regions, i.e. no internal regions reference values defined above this
/// operation.
bool isKnownIsolatedFromAbove() {
if (auto *absOp = getAbstractOperation())
return absOp->hasProperty(OperationProperty::IsolatedFromAbove);
return false;
}
/// Attempt to fold this operation with the specified constant operand values
/// - the elements in "operands" will correspond directly to the operands of
/// the operation, but may be null if non-constant. If folding is successful,
/// this fills in the `results` vector. If not, `results` is unspecified.
LogicalResult fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results);
/// Returns if the operation was registered with a particular trait, e.g.
/// hasTrait<OperandsAreIntegerLike>().
template <template <typename T> class Trait> bool hasTrait() {
auto *absOp = getAbstractOperation();
return absOp ? absOp->hasTrait<Trait>() : false;
}
//===--------------------------------------------------------------------===//
// Operation Walkers
//===--------------------------------------------------------------------===//
/// Walk the operation in postorder, calling the callback for each nested
/// operation(including this one). The callback method can take any of the
/// following forms:
/// void(Operation*) : Walk all operations opaquely.
/// * op->walk([](Operation *nestedOp) { ...});
/// void(OpT) : Walk all operations of the given derived type.
/// * op->walk([](ReturnOp returnOp) { ...});
/// WalkResult(Operation*|OpT) : Walk operations, but allow for
/// interruption/cancellation.
/// * op->walk([](... op) {
/// // Interrupt, i.e cancel, the walk based on some invariant.
/// if (some_invariant)
/// return WalkResult::interrupt();
/// return WalkResult::advance();
/// });
template <typename FnT, typename RetT = detail::walkResultType<FnT>>
RetT walk(FnT &&callback) {
return detail::walkOperations(this, std::forward<FnT>(callback));
}
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic emitOpError(const Twine &message = {});
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic emitError(const Twine &message = {});
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic emitWarning(const Twine &message = {});
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic emitRemark(const Twine &message = {});
private:
//===--------------------------------------------------------------------===//
// Ordering
//===--------------------------------------------------------------------===//
/// This value represents an invalid index ordering for an operation within a
/// block.
static constexpr unsigned kInvalidOrderIdx = -1;
/// This value represents the stride to use when computing a new order for an
/// operation.
static constexpr unsigned kOrderStride = 5;
/// Update the order index of this operation of this operation if necessary,
/// potentially recomputing the order of the parent block.
void updateOrderIfNecessary();
/// Returns true if this operation has a valid order.
bool hasValidOrder() { return orderIndex != kInvalidOrderIdx; }
private:
Operation(Location location, OperationName name, ArrayRef<Type> resultTypes,
unsigned numSuccessors, unsigned numRegions,
const NamedAttributeList &attributes);
// Operations are deleted through the destroy() member because they are
// allocated with malloc.
~Operation();
/// Returns the operand storage object.
detail::OperandStorage &getOperandStorage() {
return *getTrailingObjects<detail::OperandStorage>();
}
/// Returns a raw pointer to the storage for the given trailing result. The
/// given result number should be 0-based relative to the trailing results,
/// and not all of the results of the operation. This method should generally
/// only be used by the 'Value' classes.
detail::TrailingOpResult *getTrailingResult(unsigned trailingResultNumber) {
return getTrailingObjects<detail::TrailingOpResult>() +
trailingResultNumber;
}
/// Provide a 'getParent' method for ilist_node_with_parent methods.
/// We mark it as a const function because ilist_node_with_parent specifically
/// requires a 'getParent() const' method. Once ilist_node removes this
/// constraint, we should drop the const to fit the rest of the MLIR const
/// model.
Block *getParent() const { return block; }
/// The operation block that contains this operation.
Block *block = nullptr;
/// This holds information about the source location the operation was defined
/// or derived from.
Location location;
/// Relative order of this operation in its parent block. Used for
/// O(1) local dominance checks between operations.
mutable unsigned orderIndex = 0;
const unsigned numSuccs;
const unsigned numRegions : 31;
/// This holds the result types of the operation. There are three different
/// states recorded here:
/// - 0 results : The type below is null.
/// - 1 result : The single result type is held here.
/// - N results : The type here is a tuple holding the result types.
/// Note: We steal a bit for 'hasSingleResult' from somewhere else so that we
/// can use 'resultType` in an ArrayRef<Type>.
bool hasSingleResult : 1;
Type resultType;
/// This holds the name of the operation.
OperationName name;
/// This holds general named attributes for the operation.
NamedAttributeList attrs;
// allow ilist_traits access to 'block' field.
friend struct llvm::ilist_traits<Operation>;
// allow block to access the 'orderIndex' field.
friend class Block;
// allow value to access the 'getTrailingResult' method.
friend class Value;
// allow ilist_node_with_parent to access the 'getParent' method.
friend class llvm::ilist_node_with_parent<Operation, Block>;
// This stuff is used by the TrailingObjects template.
friend llvm::TrailingObjects<Operation, detail::TrailingOpResult,
BlockOperand, Region, detail::OperandStorage>;
size_t numTrailingObjects(OverloadToken<detail::TrailingOpResult>) const {
return OpResult::getNumTrailing(
const_cast<Operation *>(this)->getNumResults());
}
size_t numTrailingObjects(OverloadToken<BlockOperand>) const {
return numSuccs;
}
size_t numTrailingObjects(OverloadToken<Region>) const { return numRegions; }
};
inline raw_ostream &operator<<(raw_ostream &os, Operation &op) {
op.print(os);
return os;
}
} // end namespace mlir
namespace llvm {
/// Provide isa functionality for operation casts.
template <typename T> struct isa_impl<T, ::mlir::Operation> {
static inline bool doit(const ::mlir::Operation &op) {
return T::classof(const_cast<::mlir::Operation *>(&op));
}
};
/// Provide specializations for operation casts as the resulting T is value
/// typed.
template <typename T> struct cast_retty_impl<T, ::mlir::Operation *> {
using ret_type = T;
};
template <typename T> struct cast_retty_impl<T, ::mlir::Operation> {
using ret_type = T;
};
template <class T>
struct cast_convert_val<T, ::mlir::Operation, ::mlir::Operation> {
static T doit(::mlir::Operation &val) { return T(&val); }
};
template <class T>
struct cast_convert_val<T, ::mlir::Operation *, ::mlir::Operation *> {
static T doit(::mlir::Operation *val) { return T(val); }
};
} // end namespace llvm
#endif // MLIR_IR_OPERATION_H