SPIRVBitOps.td 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
//===-- SPIRVBitOps.td - MLIR SPIR-V Bit Ops -*- tablegen -*-===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains bit ops for the SPIR-V dialect. It corresponds
// to "3.32.13. Bit Instructions" of the SPIR-V specification.
//
//===----------------------------------------------------------------------===//

#ifndef SPIRV_BIT_OPS
#define SPIRV_BIT_OPS

include "mlir/Dialect/SPIRV/SPIRVBase.td"

class SPV_BitBinaryOp<string mnemonic, list<OpTrait> traits = []> :
      // All the operands type used in bit instructions are SPV_Integer.
      SPV_BinaryOp<mnemonic, SPV_Integer, SPV_Integer,
                   !listconcat(traits,
                               [NoSideEffect, SameOperandsAndResultType])>;

class SPV_BitFieldExtractOp<string mnemonic, list<OpTrait> traits = []> :
      SPV_Op<mnemonic, !listconcat(traits, [NoSideEffect])> {
  let arguments = (ins
    SPV_ScalarOrVectorOf<SPV_Integer>:$base,
    SPV_Integer:$offset,
    SPV_Integer:$count
  );

  let results = (outs
    SPV_ScalarOrVectorOf<SPV_Integer>:$result
  );

  let parser = [{ return ::parseBitFieldExtractOp(parser, result); }];
  let printer = [{ ::printBitFieldExtractOp(this->getOperation(), p); }];
  let verifier = [{ return ::verifyBitFieldExtractOp(this->getOperation()); }];
}

class SPV_BitUnaryOp<string mnemonic, list<OpTrait> traits = []> :
      SPV_UnaryOp<mnemonic, SPV_Integer, SPV_Integer,
                   !listconcat(traits,
                               [NoSideEffect, SameOperandsAndResultType])>;

class SPV_ShiftOp<string mnemonic, list<OpTrait> traits = []> :
      SPV_BinaryOp<mnemonic, SPV_Integer, SPV_Integer,
                   !listconcat(traits,
                               [NoSideEffect, SameOperandsAndResultShape])> {
  let parser = [{ return ::parseShiftOp(parser, result); }];
  let printer = [{ ::printShiftOp(this->getOperation(), p); }];
  let verifier = [{ return ::verifyShiftOp(this->getOperation()); }];
}

// -----

def SPV_BitCountOp : SPV_BitUnaryOp<"BitCount", []> {
  let summary = "Count the number of set bits in an object.";

  let description = [{
     Results are computed per component.

    Result Type must be a scalar or vector of integer type.  The components
    must be wide enough to hold the unsigned Width of Base as an unsigned
    value. That is, no sign bit is needed or counted when checking for a
    wide enough result width.

    Base must be a scalar or vector of integer type.  It must have the same
    number of components as Result Type.

    The result is the unsigned value that is the number of bits in Base that
    are 1.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitcount-op ::= ssa-id `=` `spv.BitCount` ssa-use
                               `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.BitCount %0: i32
    %3 = spv.BitCount %1: vector<4xi32>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_BitFieldInsertOp : SPV_Op<"BitFieldInsert", [NoSideEffect]> {
  let summary = [{
    Make a copy of an object, with a modified bit field that comes from
    another object.
  }];

  let description = [{
     Results are computed per component.

    Result Type must be a scalar or vector of integer type.

     The type of Base and Insert must be the same as Result Type.

    Any result bits numbered outside [Offset, Offset + Count -  1]
    (inclusive) will come from the corresponding bits in Base.

    Any result bits numbered in [Offset, Offset + Count -  1] come, in
    order, from the bits numbered [0, Count - 1] of Insert.

    Count  must be an integer type scalar. Count is the number of bits taken
    from Insert. It will be consumed as an unsigned value. Count can be 0,
    in which case the result will be Base.

    Offset  must be an integer type scalar. Offset is the lowest-order bit
    of the bit field.  It will be consumed as an unsigned value.

    The resulting value is undefined if Count or Offset or their sum is
    greater than the number of bits in the result.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitfield-insert-op ::= ssa-id `=` `spv.BitFieldInsert` ssa-use `,` ssa-use
                                      `,` ssa-use `,` ssa-use
                                      `:` integer-scalar-vector-type
                                      `,` integer-type `,` integer-type
    ```

    For example:

    ```
    %0 = spv.BitFieldInsert %base, %insert, %offset, %count : vector<3xi32>, i8, i8
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[SPV_C_Shader]>
  ];

  let arguments = (ins
    SPV_ScalarOrVectorOf<SPV_Integer>:$base,
    SPV_ScalarOrVectorOf<SPV_Integer>:$insert,
    SPV_Integer:$offset,
    SPV_Integer:$count
  );

  let results = (outs
    SPV_ScalarOrVectorOf<SPV_Integer>:$result
  );
}

// -----

def SPV_BitFieldSExtractOp : SPV_BitFieldExtractOp<"BitFieldSExtract", []> {
  let summary = "Extract a bit field from an object, with sign extension.";

  let description = [{
     Results are computed per component.

    Result Type must be a scalar or vector of integer type.

     The type of Base must be the same as Result Type.

    If Count is greater than 0: The bits of Base numbered in [Offset, Offset
    + Count -  1] (inclusive) become the bits numbered [0, Count - 1] of the
    result. The remaining bits of the result will all be the same as bit
    Offset + Count -  1 of Base.

    Count  must be an integer type scalar. Count is the number of bits
    extracted from Base. It will be consumed as an unsigned value. Count can
    be 0, in which case the result will be 0.

    Offset  must be an integer type scalar. Offset is the lowest-order bit
    of the bit field to extract from Base.  It will be consumed as an
    unsigned value.

    The resulting value is undefined if Count or Offset or their sum is
    greater than the number of bits in the result.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitfield-extract-s-op ::= ssa-id `=` `spv.BitFieldSExtract` ssa-use
                                         `,` ssa-use `,` ssa-use
                                         `:` integer-scalar-vector-type
                                         `,` integer-type `,` integer-type
    ```

    For example:

    ```
    %0 = spv.BitFieldSExtract %base, %offset, %count : vector<3xi32>, i8, i8
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[SPV_C_Shader]>
  ];
}

// -----

def SPV_BitFieldUExtractOp : SPV_BitFieldExtractOp<"BitFieldUExtract", []> {
  let summary = "Extract a bit field from an object, without sign extension.";

  let description = [{
    The semantics are the same as with OpBitFieldSExtract with the exception
    that there is no sign extension. The remaining bits of the result will
    all be 0.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitfield-extract-u-op ::= ssa-id `=` `spv.BitFieldUExtract` ssa-use
                                         `,` ssa-use `,` ssa-use
                                         `:` integer-scalar-vector-type
                                         `,` integer-type `,` integer-type
    ```

    For example:

    ```
    %0 = spv.BitFieldUExtract %base, %offset, %count : vector<3xi32>, i8, i8
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[SPV_C_Shader]>
  ];
}

// -----

def SPV_BitReverseOp : SPV_BitUnaryOp<"BitReverse", []> {
  let summary = "Reverse the bits in an object.";

  let description = [{
     Results are computed per component.

    Result Type must be a scalar or vector of integer type.

     The type of Base must be the same as Result Type.

    The bit-number n of the result will be taken from bit-number Width - 1 -
    n of Base, where Width is the OpTypeInt operand of the Result Type.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                   `vector<` integer-literal `x` integer-type `>`
    bitreverse-op ::= ssa-id `=` `spv.BitReverse` ssa-use
                                 `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.BitReverse %0 : i32
    %3 = spv.BitReverse %1 : vector<4xi32>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[SPV_C_Shader]>
  ];
}

// -----

def SPV_BitwiseAndOp : SPV_BitBinaryOp<"BitwiseAnd", [Commutative]> {
  let summary = [{
    Result is 1 if both Operand 1 and Operand 2 are 1. Result is 0 if either
    Operand 1 or Operand 2 are 0.
  }];

  let description = [{
     Results are computed per component, and within each component, per bit.

    Result Type must be a scalar or vector of integer type.  The type of
    Operand 1 and Operand 2  must be a scalar or vector of integer type.
    They must have the same number of components as Result Type. They must
    have the same component width as Result Type.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitwise-and-op ::= ssa-id `=` `spv.BitwiseAnd` ssa-use, ssa-use
                                  `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.BitwiseAnd %0, %1 : i32
    %2 = spv.BitwiseAnd %0, %1 : vector<4xi32>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_BitwiseOrOp : SPV_BitBinaryOp<"BitwiseOr", [Commutative]> {
  let summary = [{
    Result is 1 if either Operand 1 or Operand 2 is 1. Result is 0 if both
    Operand 1 and Operand 2 are 0.
  }];

  let description = [{
     Results are computed per component, and within each component, per bit.

    Result Type must be a scalar or vector of integer type.  The type of
    Operand 1 and Operand 2  must be a scalar or vector of integer type.
    They must have the same number of components as Result Type. They must
    have the same component width as Result Type.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitwise-or-op ::= ssa-id `=` `spv.BitwiseOr` ssa-use, ssa-use
                                  `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.BitwiseOr %0, %1 : i32
    %2 = spv.BitwiseOr %0, %1 : vector<4xi32>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_BitwiseXorOp : SPV_BitBinaryOp<"BitwiseXor", [Commutative]> {
  let summary = [{
    Result is 1 if exactly one of Operand 1 or Operand 2 is 1. Result is 0
    if Operand 1 and Operand 2 have the same value.
  }];

  let description = [{
     Results are computed per component, and within each component, per bit.

    Result Type must be a scalar or vector of integer type.  The type of
    Operand 1 and Operand 2  must be a scalar or vector of integer type.
    They must have the same number of components as Result Type. They must
    have the same component width as Result Type.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    bitwise-xor-op ::= ssa-id `=` `spv.BitwiseXor` ssa-use, ssa-use
                                  `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.BitwiseXor %0, %1 : i32
    %2 = spv.BitwiseXor %0, %1 : vector<4xi32>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_ShiftLeftLogicalOp : SPV_ShiftOp<"ShiftLeftLogical", []> {
  let summary = [{
    Shift the bits in Base left by the number of bits specified in Shift.
    The least-significant bits will be zero filled.
  }];

  let description = [{
    Result Type must be a scalar or vector of integer type.

     The type of each Base and Shift must be a scalar or vector of integer
    type. Base and Shift must have the same number of components.  The
    number of components and bit width of the type of Base must be the same
    as in Result Type.

    Shift is treated as unsigned. The result is undefined if Shift is
    greater than or equal to the bit width of the components of Base.

    The number of components and bit width of Result Type must match those
    Base type. All types must be integer types.

     Results are computed per component.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    shift-left-logical-op ::= ssa-id `=` `spv.ShiftLeftLogical`
                                          ssa-use `,` ssa-use `:`
                                          integer-scalar-vector-type `,`
                                          integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.ShiftLeftLogical %0, %1 : i32, i16
    %5 = spv.ShiftLeftLogical %3, %4 : vector<3xi32>, vector<3xi16>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_ShiftRightArithmeticOp : SPV_ShiftOp<"ShiftRightArithmetic", []> {
  let summary = [{
    Shift the bits in Base right by the number of bits specified in Shift.
    The most-significant bits will be filled with the sign bit from Base.
  }];

  let description = [{
    Result Type must be a scalar or vector of integer type.

     The type of each Base and Shift must be a scalar or vector of integer
    type. Base and Shift must have the same number of components.  The
    number of components and bit width of the type of Base must be the same
    as in Result Type.

    Shift is treated as unsigned. The result is undefined if Shift is
    greater than or equal to the bit width of the components of Base.

     Results are computed per component.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    shift-right-arithmetic-op ::= ssa-id `=` `spv.ShiftRightArithmetic`
                                              ssa-use `,` ssa-use `:`
                                              integer-scalar-vector-type `,`
                                              integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.ShiftRightArithmetic %0, %1 : i32, i16
    %5 = spv.ShiftRightArithmetic %3, %4 : vector<3xi32>, vector<3xi16>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_ShiftRightLogicalOp : SPV_ShiftOp<"ShiftRightLogical", []> {
  let summary = [{
    Shift the bits in Base right by the number of bits specified in Shift.
    The most-significant bits will be zero filled.
  }];

  let description = [{
    Result Type must be a scalar or vector of integer type.

     The type of each Base and Shift must be a scalar or vector of integer
    type. Base and Shift must have the same number of components.  The
    number of components and bit width of the type of Base must be the same
    as in Result Type.

    Shift is consumed as an unsigned integer. The result is undefined if
    Shift is greater than or equal to the bit width of the components of
    Base.

     Results are computed per component.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    shift-right-logical-op ::= ssa-id `=` `spv.ShiftRightLogical`
                                           ssa-use `,` ssa-use `:`
                                           integer-scalar-vector-type `,`
                                           integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.ShiftRightLogical %0, %1 : i32, i16
    %5 = spv.ShiftRightLogical %3, %4 : vector<3xi32>, vector<3xi16>
    ```
  }];

  let availability = [
    MinVersion<SPV_V_1_0>,
    MaxVersion<SPV_V_1_5>,
    Extension<[]>,
    Capability<[]>
  ];
}

// -----

def SPV_NotOp : SPV_BitUnaryOp<"Not", []> {
  let summary = "Complement the bits of Operand.";

  let description = [{
     Results are computed per component, and within each component, per bit.

    Result Type must be a scalar or vector of integer type.

    Operand’s type  must be a scalar or vector of integer type.  It must
    have the same number of components as Result Type.  The component width
    must equal the component width in Result Type.

    ### Custom assembly form

    ```
    integer-scalar-vector-type ::= integer-type |
                                  `vector<` integer-literal `x` integer-type `>`
    not-op ::= ssa-id `=` `spv.BitNot` ssa-use `:` integer-scalar-vector-type
    ```

    For example:

    ```
    %2 = spv.Not %0 : i32
    %3 = spv.Not %1 : vector<4xi32>
    ```
  }];
}

#endif // SPIRV_BIT_OPS