Analysis.cpp
20.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Analysis.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
static const char kCsvSep = ',';
namespace {
enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
template <EscapeTag Tag> void writeEscaped(raw_ostream &OS, const StringRef S);
template <> void writeEscaped<kEscapeCsv>(raw_ostream &OS, const StringRef S) {
if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
OS << S;
} else {
// Needs escaping.
OS << '"';
for (const char C : S) {
if (C == '"')
OS << "\"\"";
else
OS << C;
}
OS << '"';
}
}
template <> void writeEscaped<kEscapeHtml>(raw_ostream &OS, const StringRef S) {
for (const char C : S) {
if (C == '<')
OS << "<";
else if (C == '>')
OS << ">";
else if (C == '&')
OS << "&";
else
OS << C;
}
}
template <>
void writeEscaped<kEscapeHtmlString>(raw_ostream &OS, const StringRef S) {
for (const char C : S) {
if (C == '"')
OS << "\\\"";
else
OS << C;
}
}
} // namespace
template <EscapeTag Tag>
static void
writeClusterId(raw_ostream &OS,
const InstructionBenchmarkClustering::ClusterId &CID) {
if (CID.isNoise())
writeEscaped<Tag>(OS, "[noise]");
else if (CID.isError())
writeEscaped<Tag>(OS, "[error]");
else
OS << CID.getId();
}
template <EscapeTag Tag>
static void writeMeasurementValue(raw_ostream &OS, const double Value) {
// Given Value, if we wanted to serialize it to a string,
// how many base-10 digits will we need to store, max?
static constexpr auto MaxDigitCount =
std::numeric_limits<decltype(Value)>::max_digits10;
// Also, we will need a decimal separator.
static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
// So how long of a string will the serialization produce, max?
static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;
// WARNING: when changing the format, also adjust the small-size estimate ^.
static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");
writeEscaped<Tag>(
OS, formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
}
template <typename EscapeTag, EscapeTag Tag>
void Analysis::writeSnippet(raw_ostream &OS, ArrayRef<uint8_t> Bytes,
const char *Separator) const {
SmallVector<std::string, 3> Lines;
// Parse the asm snippet and print it.
while (!Bytes.empty()) {
MCInst MI;
uint64_t MISize = 0;
if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, nulls())) {
writeEscaped<Tag>(OS, join(Lines, Separator));
writeEscaped<Tag>(OS, Separator);
writeEscaped<Tag>(OS, "[error decoding asm snippet]");
return;
}
SmallString<128> InstPrinterStr; // FIXME: magic number.
raw_svector_ostream OSS(InstPrinterStr);
InstPrinter_->printInst(&MI, 0, "", *SubtargetInfo_, OSS);
Bytes = Bytes.drop_front(MISize);
Lines.emplace_back(StringRef(InstPrinterStr).trim());
}
writeEscaped<Tag>(OS, join(Lines, Separator));
}
// Prints a row representing an instruction, along with scheduling info and
// point coordinates (measurements).
void Analysis::printInstructionRowCsv(const size_t PointId,
raw_ostream &OS) const {
const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
OS << kCsvSep;
writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
OS << kCsvSep;
assert(!Point.Key.Instructions.empty());
const MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId;
std::tie(SchedClassId, std::ignore) = ResolvedSchedClass::resolveSchedClassId(
*SubtargetInfo_, *InstrInfo_, MCI);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
const MCSchedClassDesc *const SCDesc =
SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
#else
OS << SchedClassId;
#endif
for (const auto &Measurement : Point.Measurements) {
OS << kCsvSep;
writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
}
OS << "\n";
}
Analysis::Analysis(const Target &Target, std::unique_ptr<MCInstrInfo> InstrInfo,
const InstructionBenchmarkClustering &Clustering,
double AnalysisInconsistencyEpsilon,
bool AnalysisDisplayUnstableOpcodes)
: Clustering_(Clustering), InstrInfo_(std::move(InstrInfo)),
AnalysisInconsistencyEpsilonSquared_(AnalysisInconsistencyEpsilon *
AnalysisInconsistencyEpsilon),
AnalysisDisplayUnstableOpcodes_(AnalysisDisplayUnstableOpcodes) {
if (Clustering.getPoints().empty())
return;
const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
MCTargetOptions MCOptions;
AsmInfo_.reset(
Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple, MCOptions));
SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
FirstPoint.CpuName, ""));
InstPrinter_.reset(Target.createMCInstPrinter(
Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
*InstrInfo_, *RegInfo_));
Context_ = std::make_unique<MCContext>(AsmInfo_.get(), RegInfo_.get(),
&ObjectFileInfo_);
Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
assert(Disasm_ && "cannot create MCDisassembler. missing call to "
"InitializeXXXTargetDisassembler ?");
}
template <>
Error Analysis::run<Analysis::PrintClusters>(raw_ostream &OS) const {
if (Clustering_.getPoints().empty())
return Error::success();
// Write the header.
OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
<< kCsvSep << "sched_class";
for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Measurement.Key);
}
OS << "\n";
// Write the points.
const auto &Clusters = Clustering_.getValidClusters();
for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
for (const size_t PointId : Clusters[I].PointIndices) {
printInstructionRowCsv(PointId, OS);
}
OS << "\n\n";
}
return Error::success();
}
Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
ResolvedSchedClass &&RSC)
: RSC(std::move(RSC)) {}
std::vector<Analysis::ResolvedSchedClassAndPoints>
Analysis::makePointsPerSchedClass() const {
std::vector<ResolvedSchedClassAndPoints> Entries;
// Maps SchedClassIds to index in result.
std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
const auto &Points = Clustering_.getPoints();
for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
const InstructionBenchmark &Point = Points[PointId];
if (!Point.Error.empty())
continue;
assert(!Point.Key.Instructions.empty());
// FIXME: we should be using the tuple of classes for instructions in the
// snippet as key.
const MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId;
bool WasVariant;
std::tie(SchedClassId, WasVariant) =
ResolvedSchedClass::resolveSchedClassId(*SubtargetInfo_, *InstrInfo_,
MCI);
const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
if (IndexIt == SchedClassIdToIndex.end()) {
// Create a new entry.
SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
ResolvedSchedClassAndPoints Entry(
ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
Entry.PointIds.push_back(PointId);
Entries.push_back(std::move(Entry));
} else {
// Append to the existing entry.
Entries[IndexIt->second].PointIds.push_back(PointId);
}
}
return Entries;
}
// Uops repeat the same opcode over again. Just show this opcode and show the
// whole snippet only on hover.
static void writeUopsSnippetHtml(raw_ostream &OS,
const std::vector<MCInst> &Instructions,
const MCInstrInfo &InstrInfo) {
if (Instructions.empty())
return;
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
if (Instructions.size() > 1)
OS << " (x" << Instructions.size() << ")";
}
// Latency tries to find a serial path. Just show the opcode path and show the
// whole snippet only on hover.
static void writeLatencySnippetHtml(raw_ostream &OS,
const std::vector<MCInst> &Instructions,
const MCInstrInfo &InstrInfo) {
bool First = true;
for (const MCInst &Instr : Instructions) {
if (First)
First = false;
else
OS << " → ";
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
}
}
void Analysis::printPointHtml(const InstructionBenchmark &Point,
llvm::raw_ostream &OS) const {
OS << "<li><span class=\"mono\" title=\"";
writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, "\n");
OS << "\">";
switch (Point.Mode) {
case InstructionBenchmark::Latency:
writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
case InstructionBenchmark::Uops:
case InstructionBenchmark::InverseThroughput:
writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
default:
llvm_unreachable("invalid mode");
}
OS << "</span> <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
OS << "</span></li>";
}
void Analysis::printSchedClassClustersHtml(
const std::vector<SchedClassCluster> &Clusters,
const ResolvedSchedClass &RSC, raw_ostream &OS) const {
const auto &Points = Clustering_.getPoints();
OS << "<table class=\"sched-class-clusters\">";
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
assert(!Clusters.empty());
for (const auto &Measurement :
Points[Clusters[0].getPointIds()[0]].Measurements) {
OS << "<th>";
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
OS << "</th>";
}
OS << "</tr>";
for (const SchedClassCluster &Cluster : Clusters) {
OS << "<tr class=\""
<< (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_,
AnalysisInconsistencyEpsilonSquared_)
? "good-cluster"
: "bad-cluster")
<< "\"><td>";
writeClusterId<kEscapeHtml>(OS, Cluster.id());
OS << "</td><td><ul>";
for (const size_t PointId : Cluster.getPointIds()) {
printPointHtml(Points[PointId], OS);
}
OS << "</ul></td>";
for (const auto &Stats : Cluster.getCentroid().getStats()) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
OS << "<br><span class=\"minmax\">[";
writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
OS << ";";
writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
OS << "]</span></td>";
}
OS << "</tr>";
}
OS << "</table>";
}
void Analysis::SchedClassCluster::addPoint(
size_t PointId, const InstructionBenchmarkClustering &Clustering) {
PointIds.push_back(PointId);
const auto &Point = Clustering.getPoints()[PointId];
if (ClusterId.isUndef())
ClusterId = Clustering.getClusterIdForPoint(PointId);
assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
Centroid.addPoint(Point.Measurements);
}
bool Analysis::SchedClassCluster::measurementsMatch(
const MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
const InstructionBenchmarkClustering &Clustering,
const double AnalysisInconsistencyEpsilonSquared_) const {
assert(!Clustering.getPoints().empty());
const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
if (!Centroid.validate(Mode))
return false;
const std::vector<BenchmarkMeasure> ClusterCenterPoint =
Centroid.getAsPoint();
const std::vector<BenchmarkMeasure> SchedClassPoint =
RSC.getAsPoint(Mode, STI, Centroid.getStats());
if (SchedClassPoint.empty())
return false; // In Uops mode validate() may not be enough.
assert(ClusterCenterPoint.size() == SchedClassPoint.size() &&
"Expected measured/sched data dimensions to match.");
return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint,
AnalysisInconsistencyEpsilonSquared_);
}
void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
raw_ostream &OS) const {
OS << "<table class=\"sched-class-desc\">";
OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
"th><th>RThroughput</th><th>WriteProcRes</th><th title=\"This is the "
"idealized unit resource (port) pressure assuming ideal "
"distribution\">Idealized Resource Pressure</th></tr>";
if (RSC.SCDesc->isValid()) {
const auto &SM = SubtargetInfo_->getSchedModel();
OS << "<tr><td>✔</td>";
OS << "<td>" << (RSC.WasVariant ? "✔" : "✕") << "</td>";
OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
// Latencies.
OS << "<td><ul>";
for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
const auto *const Entry =
SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
OS << "<li>" << Entry->Cycles;
if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
// Dismabiguate if more than 1 latency.
OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
}
OS << "</li>";
}
OS << "</ul></td>";
// inverse throughput.
OS << "<td>";
writeMeasurementValue<kEscapeHtml>(
OS,
MCSchedModel::getReciprocalThroughput(*SubtargetInfo_, *RSC.SCDesc));
OS << "</td>";
// WriteProcRes.
OS << "<td><ul>";
for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS,
SM.getProcResource(WPR.ProcResourceIdx)->Name);
OS << "</span>: " << WPR.Cycles << "</li>";
}
OS << "</ul></td>";
// Idealized port pressure.
OS << "<td><ul>";
for (const auto &Pressure : RSC.IdealizedProcResPressure) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
.getProcResource(Pressure.first)
->Name);
OS << "</span>: ";
writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
OS << "</li>";
}
OS << "</ul></td>";
OS << "</tr>";
} else {
OS << "<tr><td>✕</td><td></td><td></td></tr>";
}
OS << "</table>";
}
void Analysis::printClusterRawHtml(
const InstructionBenchmarkClustering::ClusterId &Id, StringRef display_name,
llvm::raw_ostream &OS) const {
const auto &Points = Clustering_.getPoints();
const auto &Cluster = Clustering_.getCluster(Id);
if (Cluster.PointIndices.empty())
return;
OS << "<div class=\"inconsistency\"><p>" << display_name << " Cluster ("
<< Cluster.PointIndices.size() << " points)</p>";
OS << "<table class=\"sched-class-clusters\">";
// Table Header.
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
for (const auto &Measurement : Points[Cluster.PointIndices[0]].Measurements) {
OS << "<th>";
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
OS << "</th>";
}
OS << "</tr>";
// Point data.
for (const auto &PointId : Cluster.PointIndices) {
OS << "<tr class=\"bad-cluster\"><td>" << display_name << "</td><td><ul>";
printPointHtml(Points[PointId], OS);
OS << "</ul></td>";
for (const auto &Measurement : Points[PointId].Measurements) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Measurement.PerInstructionValue);
}
OS << "</tr>";
}
OS << "</table>";
OS << "</div>";
} // namespace exegesis
static constexpr const char kHtmlHead[] = R"(
<head>
<title>llvm-exegesis Analysis Results</title>
<style>
body {
font-family: sans-serif
}
span.sched-class-name {
font-weight: bold;
font-family: monospace;
}
span.opcode {
font-family: monospace;
}
span.config {
font-family: monospace;
}
div.inconsistency {
margin-top: 50px;
}
table {
margin-left: 50px;
border-collapse: collapse;
}
table, table tr,td,th {
border: 1px solid #444;
}
table ul {
padding-left: 0px;
margin: 0px;
list-style-type: none;
}
table.sched-class-clusters td {
padding-left: 10px;
padding-right: 10px;
padding-top: 10px;
padding-bottom: 10px;
}
table.sched-class-desc td {
padding-left: 10px;
padding-right: 10px;
padding-top: 2px;
padding-bottom: 2px;
}
span.mono {
font-family: monospace;
}
td.measurement {
text-align: center;
}
tr.good-cluster td.measurement {
color: #292
}
tr.bad-cluster td.measurement {
color: #922
}
tr.good-cluster td.measurement span.minmax {
color: #888;
}
tr.bad-cluster td.measurement span.minmax {
color: #888;
}
</style>
</head>
)";
template <>
Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
raw_ostream &OS) const {
const auto &FirstPoint = Clustering_.getPoints()[0];
// Print the header.
OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
OS << "<h3>Triple: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
OS << "</span></h3>";
for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
if (!RSCAndPoints.RSC.SCDesc)
continue;
// Bucket sched class points into sched class clusters.
std::vector<SchedClassCluster> SchedClassClusters;
for (const size_t PointId : RSCAndPoints.PointIds) {
const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
if (!ClusterId.isValid())
continue; // Ignore noise and errors. FIXME: take noise into account ?
if (ClusterId.isUnstable() ^ AnalysisDisplayUnstableOpcodes_)
continue; // Either display stable or unstable clusters only.
auto SchedClassClusterIt =
std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
[ClusterId](const SchedClassCluster &C) {
return C.id() == ClusterId;
});
if (SchedClassClusterIt == SchedClassClusters.end()) {
SchedClassClusters.emplace_back();
SchedClassClusterIt = std::prev(SchedClassClusters.end());
}
SchedClassClusterIt->addPoint(PointId, Clustering_);
}
// Print any scheduling class that has at least one cluster that does not
// match the checked-in data.
if (all_of(SchedClassClusters, [this,
&RSCAndPoints](const SchedClassCluster &C) {
return C.measurementsMatch(*SubtargetInfo_, RSCAndPoints.RSC,
Clustering_,
AnalysisInconsistencyEpsilonSquared_);
}))
continue; // Nothing weird.
OS << "<div class=\"inconsistency\"><p>Sched Class <span "
"class=\"sched-class-name\">";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
#else
OS << RSCAndPoints.RSC.SchedClassId;
#endif
OS << "</span> contains instructions whose performance characteristics do"
" not match that of LLVM:</p>";
printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
OS << "<p>llvm SchedModel data:</p>";
printSchedClassDescHtml(RSCAndPoints.RSC, OS);
OS << "</div>";
}
printClusterRawHtml(InstructionBenchmarkClustering::ClusterId::noise(),
"[noise]", OS);
OS << "</body></html>";
return Error::success();
}
} // namespace exegesis
} // namespace llvm