heap_find.cpp
30.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//===-- heap_find.c ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file compiles into a dylib and can be used on darwin to find data that
// is contained in active malloc blocks. To use this make the project, then
// load the shared library in a debug session while you are stopped:
//
// (lldb) process load /path/to/libheap.dylib
//
// Now you can use the "find_pointer_in_heap" and "find_cstring_in_heap"
// functions in the expression parser.
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the pointer 0x112233000000:
//
// (lldb) expression find_pointer_in_heap (0x112233000000)
//
// This will grep everything in all active allocation blocks and print and
// malloc blocks that contain the C string "hello" (as a substring, no
// NULL termination included):
//
// (lldb) expression find_cstring_in_heap ("hello")
//
// The results will be printed to the STDOUT of the inferior program. The
// return value of the "find_pointer_in_heap" function is the number of
// pointer references that were found. A quick example shows
//
// (lldb) expr find_pointer_in_heap(0x0000000104000410)
// (uint32_t) $5 = 0x00000002
// 0x104000740: 0x0000000104000410 found in malloc block 0x104000730 + 16
// (malloc_size = 48)
// 0x100820060: 0x0000000104000410 found in malloc block 0x100820000 + 96
// (malloc_size = 4096)
//
// From the above output we see that 0x104000410 was found in the malloc block
// at 0x104000730 and 0x100820000. If we want to see what these blocks are, we
// can display the memory for this block using the "address" ("A" for short)
// format. The address format shows pointers, and if those pointers point to
// objects that have symbols or know data contents, it will display information
// about the pointers:
//
// (lldb) memory read --format address --count 1 0x104000730
// 0x104000730: 0x0000000100002460 (void *)0x0000000100002488: MyString
//
// We can see that the first block is a "MyString" object that contains our
// pointer value at offset 16.
//
// Looking at the next pointers, are a bit more tricky:
// (lldb) memory read -fA 0x100820000 -c1
// 0x100820000: 0x4f545541a1a1a1a1
// (lldb) memory read 0x100820000
// 0x100820000: a1 a1 a1 a1 41 55 54 4f 52 45 4c 45 41 53 45 21 ....AUTORELEASE!
// 0x100820010: 78 00 82 00 01 00 00 00 60 f9 e8 75 ff 7f 00 00 x.......`..u....
//
// This is an objective C auto release pool object that contains our pointer.
// C++ classes will show up if they are virtual as something like:
// (lldb) memory read --format address --count 1 0x104008000
// 0x104008000: 0x109008000 vtable for lldb_private::Process
//
// This is a clue that the 0x104008000 is a "lldb_private::Process *".
//===----------------------------------------------------------------------===//
// C includes
#include <assert.h>
#include <ctype.h>
#include <dlfcn.h>
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <malloc/malloc.h>
#include <objc/objc-runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
// C++ includes
#include <vector>
// Redefine private types from "/usr/local/include/stack_logging.h"
typedef struct {
uint32_t type_flags;
uint64_t stack_identifier;
uint64_t argument;
mach_vm_address_t address;
} mach_stack_logging_record_t;
// Redefine private defines from "/usr/local/include/stack_logging.h"
#define stack_logging_type_free 0
#define stack_logging_type_generic 1
#define stack_logging_type_alloc 2
#define stack_logging_type_dealloc 4
// This bit is made up by this code
#define stack_logging_type_vm_region 8
// Redefine private function prototypes from
// "/usr/local/include/stack_logging.h"
extern "C" kern_return_t __mach_stack_logging_set_file_path(task_t task,
char *file_path);
extern "C" kern_return_t
__mach_stack_logging_get_frames(task_t task, mach_vm_address_t address,
mach_vm_address_t *stack_frames_buffer,
uint32_t max_stack_frames, uint32_t *count);
extern "C" kern_return_t __mach_stack_logging_enumerate_records(
task_t task, mach_vm_address_t address,
void enumerator(mach_stack_logging_record_t, void *), void *context);
extern "C" kern_return_t __mach_stack_logging_frames_for_uniqued_stack(
task_t task, uint64_t stack_identifier,
mach_vm_address_t *stack_frames_buffer, uint32_t max_stack_frames,
uint32_t *count);
extern "C" void *gdb_class_getClass(void *objc_class);
static void range_info_callback(task_t task, void *baton, unsigned type,
uint64_t ptr_addr, uint64_t ptr_size);
// Redefine private global variables prototypes from
// "/usr/local/include/stack_logging.h"
extern "C" int stack_logging_enable_logging;
// Local defines
#define MAX_FRAMES 1024
// Local Typedefs and Types
typedef void range_callback_t(task_t task, void *baton, unsigned type,
uint64_t ptr_addr, uint64_t ptr_size);
typedef void zone_callback_t(void *info, const malloc_zone_t *zone);
typedef int (*comare_function_t)(const void *, const void *);
struct range_callback_info_t {
zone_callback_t *zone_callback;
range_callback_t *range_callback;
void *baton;
int check_vm_regions;
};
enum data_type_t {
eDataTypeAddress,
eDataTypeContainsData,
eDataTypeObjC,
eDataTypeHeapInfo
};
struct aligned_data_t {
const uint8_t *buffer;
uint32_t size;
uint32_t align;
};
struct objc_data_t {
void *match_isa; // Set to NULL for all objective C objects
bool match_superclasses;
};
struct range_contains_data_callback_info_t {
data_type_t type;
const void *lookup_addr;
union {
uintptr_t addr;
aligned_data_t data;
objc_data_t objc;
};
uint32_t match_count;
bool done;
bool unique;
};
struct malloc_match {
void *addr;
intptr_t size;
intptr_t offset;
uintptr_t type;
};
struct malloc_stack_entry {
const void *address;
uint64_t argument;
uint32_t type_flags;
uint32_t num_frames;
mach_vm_address_t frames[MAX_FRAMES];
};
struct malloc_block_contents {
union {
Class isa;
void *pointers[2];
};
};
static int compare_void_ptr(const void *a, const void *b) {
Class a_ptr = *(Class *)a;
Class b_ptr = *(Class *)b;
if (a_ptr < b_ptr)
return -1;
if (a_ptr > b_ptr)
return +1;
return 0;
}
class MatchResults {
enum { k_max_entries = 8 * 1024 };
public:
MatchResults() : m_size(0) {}
void clear() {
m_size = 0;
bzero(&m_entries, sizeof(m_entries));
}
bool empty() const { return m_size == 0; }
void push_back(const malloc_match &m, bool unique = false) {
if (unique) {
// Don't add the entry if there is already a match for this address
for (uint32_t i = 0; i < m_size; ++i) {
if (((uint8_t *)m_entries[i].addr + m_entries[i].offset) ==
((uint8_t *)m.addr + m.offset))
return; // Duplicate entry
}
}
if (m_size < k_max_entries - 1) {
m_entries[m_size] = m;
m_size++;
}
}
malloc_match *data() {
// If empty, return NULL
if (empty())
return NULL;
// In not empty, terminate and return the result
malloc_match terminator_entry = {NULL, 0, 0, 0};
// We always leave room for an empty entry at the end
m_entries[m_size] = terminator_entry;
return m_entries;
}
protected:
malloc_match m_entries[k_max_entries];
uint32_t m_size;
};
class MallocStackLoggingEntries {
enum { k_max_entries = 128 };
public:
MallocStackLoggingEntries() : m_size(0) {}
void clear() { m_size = 0; }
bool empty() const { return m_size == 0; }
malloc_stack_entry *next() {
if (m_size < k_max_entries - 1) {
malloc_stack_entry *result = m_entries + m_size;
++m_size;
return result;
}
return NULL; // Out of entries...
}
malloc_stack_entry *data() {
// If empty, return NULL
if (empty())
return NULL;
// In not empty, terminate and return the result
m_entries[m_size].address = NULL;
m_entries[m_size].argument = 0;
m_entries[m_size].type_flags = 0;
m_entries[m_size].num_frames = 0;
return m_entries;
}
protected:
malloc_stack_entry m_entries[k_max_entries];
uint32_t m_size;
};
// A safe way to allocate memory and keep it from interfering with the
// malloc enumerators.
void *safe_malloc(size_t n_bytes) {
if (n_bytes > 0) {
const int k_page_size = getpagesize();
const mach_vm_size_t vm_size =
((n_bytes + k_page_size - 1) / k_page_size) * k_page_size;
vm_address_t address = 0;
kern_return_t kerr = vm_allocate(mach_task_self(), &address, vm_size, true);
if (kerr == KERN_SUCCESS)
return (void *)address;
}
return NULL;
}
// ObjCClasses
class ObjCClasses {
public:
ObjCClasses() : m_objc_class_ptrs(NULL), m_size(0) {}
bool Update() {
// TODO: find out if class list has changed and update if needed
if (m_objc_class_ptrs == NULL) {
m_size = objc_getClassList(NULL, 0);
if (m_size > 0) {
// Allocate the class pointers
m_objc_class_ptrs = (Class *)safe_malloc(m_size * sizeof(Class));
m_size = objc_getClassList(m_objc_class_ptrs, m_size);
// Sort Class pointers for quick lookup
::qsort(m_objc_class_ptrs, m_size, sizeof(Class), compare_void_ptr);
} else
return false;
}
return true;
}
uint32_t FindClassIndex(Class isa) {
Class *matching_class = (Class *)bsearch(&isa, m_objc_class_ptrs, m_size,
sizeof(Class), compare_void_ptr);
if (matching_class) {
uint32_t idx = matching_class - m_objc_class_ptrs;
return idx;
}
return UINT32_MAX;
}
Class GetClassAtIndex(uint32_t idx) const {
if (idx < m_size)
return m_objc_class_ptrs[idx];
return NULL;
}
uint32_t GetSize() const { return m_size; }
private:
Class *m_objc_class_ptrs;
uint32_t m_size;
};
// Local global variables
MatchResults g_matches;
MallocStackLoggingEntries g_malloc_stack_history;
ObjCClasses g_objc_classes;
// ObjCClassInfo
enum HeapInfoSortType { eSortTypeNone, eSortTypeBytes, eSortTypeCount };
class ObjCClassInfo {
public:
ObjCClassInfo() : m_entries(NULL), m_size(0), m_sort_type(eSortTypeNone) {}
void Update(const ObjCClasses &objc_classes) {
m_size = objc_classes.GetSize();
m_entries = (Entry *)safe_malloc(m_size * sizeof(Entry));
m_sort_type = eSortTypeNone;
Reset();
}
bool AddInstance(uint32_t idx, uint64_t ptr_size) {
if (m_size == 0)
Update(g_objc_classes);
// Update the totals for the classes
if (idx < m_size) {
m_entries[idx].bytes += ptr_size;
++m_entries[idx].count;
return true;
}
return false;
}
void Reset() {
m_sort_type = eSortTypeNone;
for (uint32_t i = 0; i < m_size; ++i) {
// In case we sort the entries after gathering the data, we will
// want to know the index into the m_objc_class_ptrs[] array.
m_entries[i].idx = i;
m_entries[i].bytes = 0;
m_entries[i].count = 0;
}
}
void SortByTotalBytes(const ObjCClasses &objc_classes, bool print) {
if (m_sort_type != eSortTypeBytes && m_size > 0) {
::qsort(m_entries, m_size, sizeof(Entry),
(comare_function_t)compare_bytes);
m_sort_type = eSortTypeBytes;
}
if (print && m_size > 0) {
puts("Objective-C objects by total bytes:");
puts("Total Bytes Class Name");
puts("----------- "
"-----------------------------------------------------------------");
for (uint32_t i = 0; i < m_size && m_entries[i].bytes > 0; ++i) {
printf("%11llu %s\n", m_entries[i].bytes,
class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx)));
}
}
}
void SortByTotalCount(const ObjCClasses &objc_classes, bool print) {
if (m_sort_type != eSortTypeCount && m_size > 0) {
::qsort(m_entries, m_size, sizeof(Entry),
(comare_function_t)compare_count);
m_sort_type = eSortTypeCount;
}
if (print && m_size > 0) {
puts("Objective-C objects by total count:");
puts("Count Class Name");
puts("-------- "
"-----------------------------------------------------------------");
for (uint32_t i = 0; i < m_size && m_entries[i].count > 0; ++i) {
printf("%8u %s\n", m_entries[i].count,
class_getName(objc_classes.GetClassAtIndex(m_entries[i].idx)));
}
}
}
private:
struct Entry {
uint32_t idx; // Index into the m_objc_class_ptrs[] array
uint32_t count; // Number of object instances that were found
uint64_t bytes; // Total number of bytes for each objc class
};
static int compare_bytes(const Entry *a, const Entry *b) {
// Reverse the comparison to most bytes entries end up at top of list
if (a->bytes > b->bytes)
return -1;
if (a->bytes < b->bytes)
return +1;
return 0;
}
static int compare_count(const Entry *a, const Entry *b) {
// Reverse the comparison to most count entries end up at top of list
if (a->count > b->count)
return -1;
if (a->count < b->count)
return +1;
return 0;
}
Entry *m_entries;
uint32_t m_size;
HeapInfoSortType m_sort_type;
};
ObjCClassInfo g_objc_class_snapshot;
// task_peek
//
// Reads memory from this tasks address space. This callback is needed
// by the code that iterates through all of the malloc blocks to read
// the memory in this process.
static kern_return_t task_peek(task_t task, vm_address_t remote_address,
vm_size_t size, void **local_memory) {
*local_memory = (void *)remote_address;
return KERN_SUCCESS;
}
static const void foreach_zone_in_this_process(range_callback_info_t *info) {
if (info == NULL || info->zone_callback == NULL)
return;
vm_address_t *zones = NULL;
unsigned int num_zones = 0;
kern_return_t err = malloc_get_all_zones(0, task_peek, &zones, &num_zones);
if (KERN_SUCCESS == err) {
for (unsigned int i = 0; i < num_zones; ++i) {
info->zone_callback(info, (const malloc_zone_t *)zones[i]);
}
}
if (info->check_vm_regions) {
#if defined(VM_REGION_SUBMAP_SHORT_INFO_COUNT_64)
typedef vm_region_submap_short_info_data_64_t RegionInfo;
enum { kRegionInfoSize = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64 };
#else
typedef vm_region_submap_info_data_64_t RegionInfo;
enum { kRegionInfoSize = VM_REGION_SUBMAP_INFO_COUNT_64 };
#endif
task_t task = mach_task_self();
mach_vm_address_t vm_region_base_addr;
mach_vm_size_t vm_region_size;
natural_t vm_region_depth;
RegionInfo vm_region_info;
((range_contains_data_callback_info_t *)info->baton)->unique = true;
for (vm_region_base_addr = 0, vm_region_size = 1; vm_region_size != 0;
vm_region_base_addr += vm_region_size) {
mach_msg_type_number_t vm_region_info_size = kRegionInfoSize;
const kern_return_t err = mach_vm_region_recurse(
task, &vm_region_base_addr, &vm_region_size, &vm_region_depth,
(vm_region_recurse_info_t)&vm_region_info, &vm_region_info_size);
if (err)
break;
// Check all read + write regions. This will cover the thread stacks
// and any regions of memory that aren't covered by the heap
if (vm_region_info.protection & VM_PROT_WRITE &&
vm_region_info.protection & VM_PROT_READ) {
// printf ("checking vm_region: [0x%16.16llx - 0x%16.16llx)\n",
// (uint64_t)vm_region_base_addr, (uint64_t)vm_region_base_addr +
// vm_region_size);
range_info_callback(task, info->baton, stack_logging_type_vm_region,
vm_region_base_addr, vm_region_size);
}
}
}
}
// dump_malloc_block_callback
//
// A simple callback that will dump each malloc block and all available
// info from the enumeration callback perspective.
static void dump_malloc_block_callback(task_t task, void *baton, unsigned type,
uint64_t ptr_addr, uint64_t ptr_size) {
printf("task = 0x%4.4x: baton = %p, type = %u, ptr_addr = 0x%llx + 0x%llu\n",
task, baton, type, ptr_addr, ptr_size);
}
static void ranges_callback(task_t task, void *baton, unsigned type,
vm_range_t *ptrs, unsigned count) {
range_callback_info_t *info = (range_callback_info_t *)baton;
while (count--) {
info->range_callback(task, info->baton, type, ptrs->address, ptrs->size);
ptrs++;
}
}
static void enumerate_range_in_zone(void *baton, const malloc_zone_t *zone) {
range_callback_info_t *info = (range_callback_info_t *)baton;
if (zone && zone->introspect)
zone->introspect->enumerator(
mach_task_self(), info, MALLOC_PTR_IN_USE_RANGE_TYPE,
(vm_address_t)zone, task_peek, ranges_callback);
}
static void range_info_callback(task_t task, void *baton, unsigned type,
uint64_t ptr_addr, uint64_t ptr_size) {
const uint64_t end_addr = ptr_addr + ptr_size;
range_contains_data_callback_info_t *info =
(range_contains_data_callback_info_t *)baton;
switch (info->type) {
case eDataTypeAddress:
// Check if the current malloc block contains an address specified by
// "info->addr"
if (ptr_addr <= info->addr && info->addr < end_addr) {
++info->match_count;
malloc_match match = {(void *)ptr_addr, ptr_size, info->addr - ptr_addr,
type};
g_matches.push_back(match, info->unique);
}
break;
case eDataTypeContainsData:
// Check if the current malloc block contains data specified in "info->data"
{
const uint32_t size = info->data.size;
if (size < ptr_size) // Make sure this block can contain this data
{
uint8_t *ptr_data = NULL;
if (task_peek(task, ptr_addr, ptr_size, (void **)&ptr_data) ==
KERN_SUCCESS) {
const void *buffer = info->data.buffer;
assert(ptr_data);
const uint32_t align = info->data.align;
for (uint64_t addr = ptr_addr;
addr < end_addr && ((end_addr - addr) >= size);
addr += align, ptr_data += align) {
if (memcmp(buffer, ptr_data, size) == 0) {
++info->match_count;
malloc_match match = {(void *)ptr_addr, ptr_size, addr - ptr_addr,
type};
g_matches.push_back(match, info->unique);
}
}
} else {
printf("0x%llx: error: couldn't read %llu bytes\n", ptr_addr,
ptr_size);
}
}
}
break;
case eDataTypeObjC:
// Check if the current malloc block contains an objective C object
// of any sort where the first pointer in the object is an OBJC class
// pointer (an isa)
{
malloc_block_contents *block_contents = NULL;
if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) ==
KERN_SUCCESS) {
// We assume that g_objc_classes is up to date
// that the class list was verified to have some classes in it
// before calling this function
const uint32_t objc_class_idx =
g_objc_classes.FindClassIndex(block_contents->isa);
if (objc_class_idx != UINT32_MAX) {
bool match = false;
if (info->objc.match_isa == 0) {
// Match any objective C object
match = true;
} else {
// Only match exact isa values in the current class or
// optionally in the super classes
if (info->objc.match_isa == block_contents->isa)
match = true;
else if (info->objc.match_superclasses) {
Class super = class_getSuperclass(block_contents->isa);
while (super) {
match = super == info->objc.match_isa;
if (match)
break;
super = class_getSuperclass(super);
}
}
}
if (match) {
// printf (" success\n");
++info->match_count;
malloc_match match = {(void *)ptr_addr, ptr_size, 0, type};
g_matches.push_back(match, info->unique);
} else {
// printf (" error: wrong class: %s\n", dl_info.dli_sname);
}
} else {
// printf ("\terror: symbol not objc class: %s\n", dl_info.dli_sname);
return;
}
}
}
break;
case eDataTypeHeapInfo:
// Check if the current malloc block contains an objective C object
// of any sort where the first pointer in the object is an OBJC class
// pointer (an isa)
{
malloc_block_contents *block_contents = NULL;
if (task_peek(task, ptr_addr, sizeof(void *), (void **)&block_contents) ==
KERN_SUCCESS) {
// We assume that g_objc_classes is up to date
// that the class list was verified to have some classes in it
// before calling this function
const uint32_t objc_class_idx =
g_objc_classes.FindClassIndex(block_contents->isa);
if (objc_class_idx != UINT32_MAX) {
// This is an objective C object
g_objc_class_snapshot.AddInstance(objc_class_idx, ptr_size);
} else {
// Classify other heap info
}
}
}
break;
}
}
static void
get_stack_for_address_enumerator(mach_stack_logging_record_t stack_record,
void *task_ptr) {
malloc_stack_entry *stack_entry = g_malloc_stack_history.next();
if (stack_entry) {
stack_entry->address = (void *)stack_record.address;
stack_entry->type_flags = stack_record.type_flags;
stack_entry->argument = stack_record.argument;
stack_entry->num_frames = 0;
stack_entry->frames[0] = 0;
kern_return_t err = __mach_stack_logging_frames_for_uniqued_stack(
*(task_t *)task_ptr, stack_record.stack_identifier, stack_entry->frames,
MAX_FRAMES, &stack_entry->num_frames);
// Terminate the frames with zero if there is room
if (stack_entry->num_frames < MAX_FRAMES)
stack_entry->frames[stack_entry->num_frames] = 0;
}
}
malloc_stack_entry *get_stack_history_for_address(const void *addr,
int history) {
if (!stack_logging_enable_logging)
return NULL;
g_malloc_stack_history.clear();
kern_return_t err;
task_t task = mach_task_self();
if (history) {
err = __mach_stack_logging_enumerate_records(
task, (mach_vm_address_t)addr, get_stack_for_address_enumerator, &task);
} else {
malloc_stack_entry *stack_entry = g_malloc_stack_history.next();
if (stack_entry) {
stack_entry->address = addr;
stack_entry->type_flags = stack_logging_type_alloc;
stack_entry->argument = 0;
stack_entry->num_frames = 0;
stack_entry->frames[0] = 0;
err = __mach_stack_logging_get_frames(task, (mach_vm_address_t)addr,
stack_entry->frames, MAX_FRAMES,
&stack_entry->num_frames);
if (err == 0 && stack_entry->num_frames > 0) {
// Terminate the frames with zero if there is room
if (stack_entry->num_frames < MAX_FRAMES)
stack_entry->frames[stack_entry->num_frames] = 0;
} else {
g_malloc_stack_history.clear();
}
}
}
// Return data if there is any
return g_malloc_stack_history.data();
}
// find_pointer_in_heap
//
// Finds a pointer value inside one or more currently valid malloc
// blocks.
malloc_match *find_pointer_in_heap(const void *addr, int check_vm_regions) {
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the pointer
if (addr) {
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer =
(uint8_t *)&addr; // What data? The pointer value passed in
data_info.data.size =
sizeof(addr); // How many bytes? The byte size of a pointer
data_info.data.align = sizeof(addr); // Align to a pointer byte size
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = {enumerate_range_in_zone, range_info_callback,
&data_info, check_vm_regions};
foreach_zone_in_this_process(&info);
}
return g_matches.data();
}
// find_pointer_in_memory
//
// Finds a pointer value inside one or more currently valid malloc
// blocks.
malloc_match *find_pointer_in_memory(uint64_t memory_addr, uint64_t memory_size,
const void *addr) {
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer =
(uint8_t *)&addr; // What data? The pointer value passed in
data_info.data.size =
sizeof(addr); // How many bytes? The byte size of a pointer
data_info.data.align = sizeof(addr); // Align to a pointer byte size
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_info_callback(mach_task_self(), &data_info, stack_logging_type_generic,
memory_addr, memory_size);
return g_matches.data();
}
// find_objc_objects_in_memory
//
// Find all instances of ObjC classes 'c', or all ObjC classes if 'c' is
// NULL. If 'c' is non NULL, then also check objects to see if they
// inherit from 'c'
malloc_match *find_objc_objects_in_memory(void *isa, int check_vm_regions) {
g_matches.clear();
if (g_objc_classes.Update()) {
// Setup "info" to look for a malloc block that contains data
// that is the pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeObjC; // Check each block for data
data_info.objc.match_isa = isa;
data_info.objc.match_superclasses = true;
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = {enumerate_range_in_zone, range_info_callback,
&data_info, check_vm_regions};
foreach_zone_in_this_process(&info);
}
return g_matches.data();
}
// get_heap_info
//
// Gather information for all allocations on the heap and report
// statistics.
void get_heap_info(int sort_type) {
if (g_objc_classes.Update()) {
// Reset all stats
g_objc_class_snapshot.Reset();
// Setup "info" to look for a malloc block that contains data
// that is the pointer
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeHeapInfo; // Check each block for data
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
const int check_vm_regions = false;
range_callback_info_t info = {enumerate_range_in_zone, range_info_callback,
&data_info, check_vm_regions};
foreach_zone_in_this_process(&info);
// Sort and print byte total bytes
switch (sort_type) {
case eSortTypeNone:
default:
case eSortTypeBytes:
g_objc_class_snapshot.SortByTotalBytes(g_objc_classes, true);
break;
case eSortTypeCount:
g_objc_class_snapshot.SortByTotalCount(g_objc_classes, true);
break;
}
} else {
printf("error: no objective C classes\n");
}
}
// find_cstring_in_heap
//
// Finds a C string inside one or more currently valid malloc blocks.
malloc_match *find_cstring_in_heap(const char *s, int check_vm_regions) {
g_matches.clear();
if (s == NULL || s[0] == '\0') {
printf("error: invalid argument (empty cstring)\n");
return NULL;
}
// Setup "info" to look for a malloc block that contains data
// that is the C string passed in aligned on a 1 byte boundary
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeContainsData; // Check each block for data
data_info.data.buffer = (uint8_t *)s; // What data? The C string passed in
data_info.data.size = strlen(s); // How many bytes? The length of the C string
data_info.data.align =
1; // Data doesn't need to be aligned, so set the alignment to 1
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = {enumerate_range_in_zone, range_info_callback,
&data_info, check_vm_regions};
foreach_zone_in_this_process(&info);
return g_matches.data();
}
// find_block_for_address
//
// Find the malloc block that whose address range contains "addr".
malloc_match *find_block_for_address(const void *addr, int check_vm_regions) {
g_matches.clear();
// Setup "info" to look for a malloc block that contains data
// that is the C string passed in aligned on a 1 byte boundary
range_contains_data_callback_info_t data_info;
data_info.type = eDataTypeAddress; // Check each block to see if the block
// contains the address passed in
data_info.addr = (uintptr_t)addr; // What data? The C string passed in
data_info.match_count = 0; // Initialize the match count to zero
data_info.done = false; // Set done to false so searching doesn't stop
data_info.unique = false; // Set to true when iterating on the vm_regions
range_callback_info_t info = {enumerate_range_in_zone, range_info_callback,
&data_info, check_vm_regions};
foreach_zone_in_this_process(&info);
return g_matches.data();
}