twoaddr-lea.ll
2.61 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
;; X's live range extends beyond the shift, so the register allocator
;; cannot coalesce it with Y. Because of this, a copy needs to be
;; emitted before the shift to save the register value before it is
;; clobbered. However, this copy is not needed if the register
;; allocator turns the shift into an LEA. This also occurs for ADD.
; Check that the shift gets turned into an LEA.
; RUN: llc < %s -mcpu=generic -mtriple=x86_64-apple-darwin | FileCheck %s
@G = external global i32
define i32 @test1(i32 %X) nounwind {
; CHECK-LABEL: test1:
; CHECK: movl %edi, %eax
; CHECK: leal 1(%rax)
%Z = add i32 %X, 1
store volatile i32 %Z, i32* @G
ret i32 %X
}
; rdar://8977508
; The second add should not be transformed to leal nor should it be
; commutted (which would require inserting a copy).
define i32 @test2(i32 inreg %a, i32 inreg %b, i32 %c, i32 %d) nounwind {
entry:
; CHECK-LABEL: test2:
; CHECK: leal
; CHECK-NEXT: addl
; CHECK-NEXT: addl
; CHECK-NEXT: ret
%add = add i32 %b, %a
%add3 = add i32 %add, %c
%add5 = add i32 %add3, %d
ret i32 %add5
}
; rdar://9002648
define i64 @test3(i64 %x) nounwind readnone ssp {
entry:
; CHECK-LABEL: test3:
; CHECK: leaq (%rdi,%rdi), %rax
; CHECK-NOT: addq
; CHECK-NEXT: ret
%0 = shl i64 %x, 1
ret i64 %0
}
@global = external global i32, align 4
@global2 = external global i64, align 8
; Test that liveness is properly updated and we do not encounter the
; assert/crash from http://llvm.org/PR28301
; CHECK-LABEL: ham
define void @ham() {
bb:
br label %bb1
bb1:
%tmp = phi i64 [ %tmp40, %bb9 ], [ 0, %bb ]
%tmp2 = phi i32 [ %tmp39, %bb9 ], [ 0, %bb ]
%tmp3 = icmp sgt i32 undef, 10
br i1 %tmp3, label %bb2, label %bb3
bb2:
%tmp6 = load i32, i32* @global, align 4
%tmp8 = add nsw i32 %tmp6, %tmp2
%tmp9 = sext i32 %tmp8 to i64
br label %bb6
bb3:
; CHECK: subl %e[[REG0:[a-z0-9]+]],
; CHECK: addq $4, %r[[REG0]]
%tmp14 = phi i64 [ %tmp15, %bb5 ], [ 0, %bb1 ]
%tmp15 = add nuw i64 %tmp14, 4
%tmp16 = trunc i64 %tmp14 to i32
%tmp17 = sub i32 %tmp2, %tmp16
br label %bb4
bb4:
%tmp20 = phi i64 [ %tmp14, %bb3 ], [ %tmp34, %bb5 ]
%tmp28 = icmp eq i32 %tmp17, 0
br i1 %tmp28, label %bb5, label %bb8
bb5:
%tmp34 = add nuw nsw i64 %tmp20, 1
%tmp35 = icmp slt i64 %tmp34, %tmp15
br i1 %tmp35, label %bb4, label %bb3
bb6:
store volatile i64 %tmp, i64* @global2, align 8
store volatile i64 %tmp9, i64* @global2, align 8
store volatile i32 %tmp6, i32* @global, align 4
%tmp45 = icmp slt i32 undef, undef
br i1 %tmp45, label %bb6, label %bb9
bb8:
unreachable
bb9:
%tmp39 = add nuw nsw i32 %tmp2, 4
%tmp40 = add nuw i64 %tmp, 4
br label %bb1
}