inlineasm-X-constraint.ll
4.67 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
; RUN: llc -mtriple=armv7-none-eabi -mattr=+neon < %s -o - | FileCheck %s
; The following functions test the use case where an X constraint is used to
; add a dependency between an assembly instruction (vmsr in this case) and
; another instruction. In each function, we use a different type for the
; X constraint argument.
;
; We can something similar from the following C code:
; double f1(double f, int pscr_value) {
; asm volatile("vmsr fpscr,%0" : "=X" ((f)): "r" (pscr_value));
; return f+f;
; }
; CHECK-LABEL: f1
; CHECK: vmsr fpscr
; CHECK: vadd.f64
define arm_aapcs_vfpcc double @f1(double %f, i32 %pscr_value) {
entry:
%f.addr = alloca double, align 8
store double %f, double* %f.addr, align 8
call void asm sideeffect "vmsr fpscr,$1", "=*X,r"(double* nonnull %f.addr, i32 %pscr_value) nounwind
%0 = load double, double* %f.addr, align 8
%add = fadd double %0, %0
ret double %add
}
; int f2(int f, int pscr_value) {
; asm volatile("vmsr fpscr,%0" : "=X" ((f)): "r" (pscr_value));
; return f+f;
; }
; CHECK-LABEL: f2
; CHECK: vmsr fpscr
; CHECK: mul
define arm_aapcs_vfpcc i32 @f2(i32 %f, i32 %pscr_value) {
entry:
%f.addr = alloca i32, align 4
store i32 %f, i32* %f.addr, align 4
call void asm sideeffect "vmsr fpscr,$1", "=*X,r"(i32* nonnull %f.addr, i32 %pscr_value) nounwind
%0 = load i32, i32* %f.addr, align 4
%mul = mul i32 %0, %0
ret i32 %mul
}
; int f3(int f, int pscr_value) {
; asm volatile("vmsr fpscr,%0" : "=X" ((f)): "r" (pscr_value));
; return f+f;
; }
; typedef signed char int8_t;
; typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
; void f3 (void)
; {
; int8x8_t vector_res_int8x8;
; unsigned int fpscr;
; asm volatile ("vmsr fpscr,%1" : "=X" ((vector_res_int8x8)) : "r" (fpscr));
; return vector_res_int8x8 * vector_res_int8x8;
; }
; CHECK-LABEL: f3
; CHECK: vmsr fpscr
; CHECK: vmul.i8
define arm_aapcs_vfpcc <8 x i8> @f3() {
entry:
%vector_res_int8x8 = alloca <8 x i8>, align 8
%0 = getelementptr inbounds <8 x i8>, <8 x i8>* %vector_res_int8x8, i32 0, i32 0
call void asm sideeffect "vmsr fpscr,$1", "=*X,r"(<8 x i8>* nonnull %vector_res_int8x8, i32 undef) nounwind
%1 = load <8 x i8>, <8 x i8>* %vector_res_int8x8, align 8
%mul = mul <8 x i8> %1, %1
ret <8 x i8> %mul
}
; We can emit integer constants.
; We can get this from:
; void f() {
; int x = 2;
; asm volatile ("add r0, r0, %0" : : "X" (x));
; }
;
; CHECK-LABEL: f4
; CHECK: add r0, r0, #2
define void @f4() {
entry:
tail call void asm sideeffect "add r0, r0, $0", "X"(i32 2)
ret void
}
; We can emit function labels. This is equivalent to the following C code:
; void f(void) {
; void (*x)(void) = &foo;
; asm volatile ("bl %0" : : "X" (x));
; }
; CHECK-LABEL: f5
; CHECK: bl f4
define void @f5() {
entry:
tail call void asm sideeffect "bl $0", "X"(void ()* nonnull @f4)
ret void
}
declare void @foo(...)
; This tests the behavior of the X constraint when used on functions pointers,
; or functions with a cast. In the first asm call we figure out that this
; is a function pointer and emit the label. However, in the second asm call
; we can't see through the bitcast and we end up having to lower this constraint
; to something else. This is not ideal, but it is a correct behaviour according
; to the definition of the X constraint.
;
; In this case (and other cases where we could have emitted something else),
; what we're doing with the X constraint is not particularly useful either,
; since the user could have used "r" in this situation for the same effect.
; CHECK-LABEL: f6
; CHECK: bl foo
; CHECK: bl r
define void @f6() nounwind {
entry:
tail call void asm sideeffect "bl $0", "X"(void (...)* @foo) nounwind
tail call void asm sideeffect "bl $0", "X"(void (...)* bitcast (void ()* @f4 to void (...)*)) nounwind
ret void
}
; The following IR can be generated from C code with a function like:
; void a() {
; void* a = &&A;
; asm volatile ("bl %0" : : "X" (a));
; A:
; return;
; }
;
; Ideally this would give the block address of bb, but it requires us to see
; through blockaddress, which we can't do at the moment. This might break some
; existing use cases where a user would expect to get a block label and instead
; gets the block address in a register. However, note that according to the
; "no constraints" definition this behaviour is correct (although not very nice).
; CHECK-LABEL: f7
; CHECK: bl
define void @f7() {
call void asm sideeffect "bl $0", "X"( i8* blockaddress(@f7, %bb) )
br label %bb
bb:
ret void
}
; If we use a constraint "=*X", we should get a store back to *%x (in r0).
; CHECK-LABEL: f8
; CHECK: str r{{.*}}, [r0]
define void @f8(i32 *%x) {
entry:
tail call void asm sideeffect "add $0, r0, r0", "=*X"(i32 *%x)
ret void
}